首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catecholaminergic cell groups of the brainstem play an important role in the regulation of motivated behavior, including reproductive behavior. In songbirds, these cell groups project to telencephalic nuclei involved in singing and contain steroid hormone receptors, implicating them in the seasonal regulation of song. Whether these nuclei are involved in the activation of song on a short-term, moment-to-moment basis is unknown. In this study, free-living male song sparrows (Melospiza melodia) were subjected to simulated territorial intrusion (STI), which stimulates territorial singing. The resulting fos-like immunoreactivity (FLI) was quantified in two HVc- and RA-projecting catecholaminergic regions of the brainstem: the area ventralis of Tsai (AVT) and the midbrain central gray (GCt). Males subjected to STI showed more FLI in both of these regions than control males. In addition, FLI in both nuclei was correlated positively with the number of songs sung in response to STI. The number of flights directed at the intruder was correlated with FLI in AVT but not GCt. These results suggest a role for AVT and GCt, and thus possibly catecholamines, in the regulation of territorial behavior in songbirds.  相似文献   

2.
Male songbirds often establish territories and attract mates by singing, and some song features can reflect the singer's condition or quality. The quality of the song environment can change, so male songbirds should benefit from assessing the competitiveness of the song environment and appropriately adjusting their own singing behavior and the neural substrates by which song is controlled. In a wide range of taxa, social modulation of behavior is partly mediated by the arginine vasopressin or vasotocin (AVP/AVT) systems. To examine the modulation of singing behavior in response to the quality of the song environment, we compared the song output of laboratory-housed male Lincoln's sparrows (Melospiza lincolnii) exposed to 1 week of chronic playback of songs categorized as either high or low quality, based on song length, complexity, and trill performance. To explore the neural basis of any facultative shifts in behavior, we also quantified the subjects' AVT immunoreactivity (AVT-IR) in three forebrain regions that regulate sociosexual behavior: the medial bed nucleus of the stria terminalis (BSTm), the lateral septum (LS), and the preoptic area. We found that high-quality songs increased singing effort and reduced AVT-IR in the BSTm and LS, relative to low-quality songs. The effect of the quality of the song environment on both singing effort and forebrain AVT-IR raises the hypothesis that AVT within these brain regions plays a role in the modulation of behavior in response to competition that individual males may assess from the prevailing song environment.  相似文献   

3.
鸣禽的鸣唱与人类的语言产生相似,是一种复杂的习得性行为.因此,鸣禽可以作为研究人类语言学习与产生的重要模式动物.鸣禽鸣唱受到相互联系的鸣唱控制核团调控.多巴胺作为脑内重要的神经递质,参与调控哺乳动物多种活动.多巴胺及其受体在鸣禽鸣唱相关神经核团大量分布.近期研究表明,多巴胺通过调控鸣唱相关核团,促进鸣禽幼年期鸣曲学习、成年期鸣曲保持以及求偶性鸣唱的产生.本文结合本课题组的研究工作,对近年鸣禽多巴胺系统调控鸣唱相关神经核团及鸣唱行为的研究进展进行了综述,并提出了多巴胺信号调控鸣禽鸣唱学习行为的潜在机制.  相似文献   

4.
In European starlings (Sturnus vulgaris) as in other seasonally breeding songbirds, a major function of song during the breeding season is mate attraction, and song in this context is highly sexually motivated. Song learning, perception, and production are regulated by nuclei of the song control system, but there is no evidence that these nuclei participate in the motivation to sing. Evidence suggests that the medial preoptic nucleus (POM), a diencephalic nucleus outside of the song control system, might regulate the motivation to sing, at least in a sexual context. If the POM is involved in the regulation of sexually motivated song, then this structure must interact with the song control system. To examine possible neuroanatomical connections between the POM and song control nuclei a tract-tracing study was performed in male starlings using the antero- and retrograde tract tracer, biotinylated dextran amine (BDA). No direct connections were identified between the POM and song control nuclei; however, labeled fibers were found to terminate in a region bordering dorsal-medial portions of the robust nucleus of the archistriatum (RA). Additionally, several indirect routes via which the POM might communicate with the song control system were identified. Specifically, POM projected to dorsomedial nucleus intercollicularis (DM), mesencephalic central gray (GCt), area ventralis of Tsai (AVT), and locus ceruleus (LoC), structures projecting directly to nuclei involved in song production (DM vocal-patterning and respiratory nuclei; GCt, AVT, LoC RA and HVC, and the context in which song is sung (AVT area X). These results are consistent with the possibility that the POM regulates sexually motivated song through interactions with brain regions involved in vocal production.We gratefully acknowledge grant sponsors NIMH (R01-MH 65645) to LVR and NSF for a graduate research fellowship to SJA  相似文献   

5.
In seasonally breeding songbirds, the brain regions that control song behavior undergo dramatic structural changes at the onset of each annual breeding season. As spring approaches and days get longer, gonadal testosterone (T) secretion increases and triggers the growth of several song control nuclei. T can be converted to androgenic and estrogenic metabolites by enzymes expressed in the brain. This opens the possibility that the effects of T may be mediated via the androgen receptor, the estrogen receptor, or both. To test this hypothesis, we examined the effects of two bioactive T metabolites on song nucleus growth and song behavior in adult male white‐crowned sparrows. Castrated sparrows with regressed song control nuclei were implanted with silastic capsules containing either crystalline T, 5α‐dihydrotestosterone (DHT), estradiol (E2), or a combination of DHT+E2. Control animals received empty implants. Song production was highly variable within treatment groups. Only one of seven birds treated with E2 alone was observed singing, whereas a majority of birds with T or DHT sang. After 37 days of exposure to sex steroids, we measured the volumes of the forebrain song nucleus HVc, the robust nucleus of the archistriatum (RA), and a basal ganglia homolog (area X). All three steroid treatments increased the volumes of these three song nuclei when compared to blank‐implanted controls. These data demonstrate that androgen and estrogen receptor binding are sufficient to trigger seasonal song nucleus growth. These data also suggest that T's effects on seasonal song nucleus growth may depend, in part, upon enzymatic conversion of T to bioactive metabolites. © 2003 Wiley Periodicals, Inc. J Neurobiol 57:130–140, 2003  相似文献   

6.
The present experiments were conducted to determine (1) which basal forebrain regions and/or their peptidergic components are responsive to social challenge and nonsocial stress, and (2) the influence of an arginine vasopressin V(1) antagonist (AVPa) on these responses. Experiments were conducted in wild-caught male song sparrows (Melospiza melodia) that were housed on seminatural territories (field-based flight cages). Subjects were each fitted with a chronic guide cannula directed at the lateral ventricle and exposed to one of five conditions before sacrifice and histochemistry: saline + simulated territorial intrusion (STI; consisting of song playback and presentation of a caged conspecific male), AVPa + STI, saline + empty cage, AVPa + empty cage, unhandled. Two tissue series were prepared and immunofluorescently double-labeled for ZENK (egr-1) protein and either arginine vasotocin (AVT; avian homologue of AVP) or corticotropin releasing factor (CRF). The results indicate that the neuronal populations that are sensitive to nonsocial stress (capture, handling and infusion) and STI are at least partially segregated. Increases in ZENK-immunoreactive (-ir) nuclei following handling and infusion were observed in a large number of areas, whereas neural responses that were specific to STI were more limited. However, multiple areas showed responses to both handling and STI. AVPa infusions significantly reduced or eliminated most experimental increases in ZENK-ir, suggesting a broad role for endogenous AVT in the modulation of baseline activity and/or stress responsivity, and a much more limited role in the specific response to social challenge. Particular attention is given to the numerous zones of the lateral septum (LS), which are differentially responsive to handling, STI, and V(1)-like receptor blockade. These data suggest that septal AVT modulates neural responses to general stressors, not social stimuli specifically. Thus, species differences in septal AVT function (as previously described in songbirds) likely reflect differences in the relationship of stress or anxiety to species-specific behaviors, or to behavior in species-typical contexts.  相似文献   

7.
The dawn chorus is a period of peak singing activity of many songbirds. Numerous studies have sought to understand this widespread phenomenon, and many hypotheses have been proposed to explain the dawn chorus. The social dynamics hypothesis proposes that dawn singing plays an important role in the announcement of territorial occupancy and the regulation of social relationships between males; it predicts that the dawn chorus vocal behavior varies with changes in social relationships. In this study, we tested the influence of territorial insertions and the number of neighbors, on the intensity of the brownish‐flanked bush warbler (Cettia fortipes)'s dawn singing. We found that simulated territorial insertions (playback) caused the males to increase their dawn singing significantly the next day, and males that had many neighbors exhibited more intense dawn singing than did males with few neighbors. Our study provides evidence that dawn singing plays an important role in the announcement of territorial occupancy and the regulation of the social relationships between the males.  相似文献   

8.
鸣禽的鸣唱是一种习得性行为,它由脑内离散的神经核团所控制,这些核团相互关联构成鸣唱控制系统.鸣禽体内的性激素可以通过调控鸣唱系统来影响鸣唱行为.研究表明性激素中的雄激素在调节鸣唱稳定性方面发挥关键作用.雄激素可以通过调控细胞增殖、神经元电生理特性、突触传递及相关受体来影响鸣唱控制核团进而导致鸣唱行为改变.本文主要集中在雄激素对鸣禽鸣唱行为调控作用的神经机制研究进展进行论述.  相似文献   

9.
The song‐control system in the brain of songbirds is important for the production and acquisition of song and exhibits both remarkable seasonal plasticity and some of the largest neural sex differences observed in vertebrates. We measured sex and seasonal differences in two nuclei of the song‐control system of brood‐parasitic brown‐headed cowbirds (Molothrus ater) and closely‐related non‐parasitic red‐winged blackbirds (Agelaius phoeniceus). These species differ in both the development and function of song. Brown‐headed cowbirds have a larger sex difference in song than red‐winged blackbirds. Female cowbirds never sing, whereas female blackbirds do though much less than males. In cowbirds, song primarily functions in mate choice and males modify their song as they approach sexual maturity and interact with females. In red‐winged blackbirds, song is used primarily in territorial defence and is crystalized earlier in life. We found that the HVC was more likely to be discernable in breeding female blackbirds than in breeding female cowbirds. Compared to males, females had a smaller HVC and a smaller robust nucleus of the arcopallium (RA). However, females had higher doublecortin immunoreactivity (DCX+) in HVC, a measure of neurogenesis. Consistent with sex differences in song, the sex difference in RA volume was greater in cowbirds than in blackbirds. Males of both species had a smaller HVC with higher DCX+ in post‐breeding condition than in breeding condition when song is more plastic. Sex and seasonal differences in the song‐control system were closely related to variation in song in these two icterid songbirds. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1226–1240, 2016  相似文献   

10.
Aggressive signaling is an important component in animal communication, as it provides an efficient mechanism for settling conflicts over resources between competitors. In songbirds, a number of singing behaviors have been proposed to be aggressive signals used in territory defense, including song rate. Although aggressive signaling in songbirds has received considerable research attention, adequate evidence for most putative aggressive signals is not available. In this study, we experimentally investigated whether the song rate of male wood warblers Phylloscopus sibilatrix is a signal of their aggressive intent in male–male interactions. We found that males responded differentially to simulated territorial intrusions depending on the song rate of an intruder. Moreover, males that continued to sing during territorial contests increased their song rates, and this behavior predicted the strength of aggressive escalation by the signaler. These results suggest that song rate is an aggressive signal during male–male interactions in the wood warbler. We also found high intra‐individual repeatability in the strength of aggressive response to simulated intrusions, likely reflecting differences in personality (aggressiveness) or quality of male wood warblers. We conclude that changes in singing rate may be an efficient mechanism of signaling immediate shifts in motivation of signalers during territorial contests, especially in species that lack large repertoires or have simple songs.  相似文献   

11.
12.
Male songbirds often maintain territories throughout the breeding season, and one of the main functions of song is to deter invaders. Therefore, the distance of an unknown singing rival should play a crucial role within territorial singing interactions of males. This distance is expected to be assessed as more threatening the closer the rival approaches. Here, we tested this assumption by conducting nocturnal playbacks from two different distances in territorial Common nightingales (Luscinia megarhynchos). Immediate vocal responses of birds were examined by analysing changes in song structure as well as temporal response features. The next morning, follow‐up playbacks from an intermediate distance allowed us to investigate longer‐lasting effects of nocturnal playbacks. We found that the distance of a simulated rival had an effect on both immediate and later vocal responses of territorial male nightingales with different song parameters being affected during nocturnal and diurnal singing. This indicates that birds perceive intruder distances and adjust their response behaviour both immediately and in later interactions.  相似文献   

13.
In the majority of songbird species, males have repertoires of multiple song types used for mate attraction and territory defence. The wood‐warblers (family Parulidae) are a diverse family of songbirds in which males of many migratory species use different song types or patterns of song delivery (known as ‘singing modes’) depending on context. The vocal behaviour of most tropical resident warblers remains undescribed, although these species differ ecologically and behaviourally from migratory species, and may therefore differ in their vocal behaviour. We test whether male Rufous‐capped Warblers Basileuterus rufifrons use distinct singing modes by examining song structure and context‐dependent variation in their songs. We recorded multiple song bouts from 50 male Warblers in a Costa Rican population over 3 years to describe seasonal, diel and annual variation in song structure and vocal behaviour. We found that Rufous‐capped Warbler songs are complex, with many syllable types shared both within and between males’ repertoires. Males varied their song output depending on context: they sang long songs at a high rate at dawn and during the breeding season, and shortened songs in the presence of a vocalizing female mate. Unlike many migratory species, Rufous‐capped Warblers do not appear to have different singing modes; they did not change the song variants used or the pattern of song delivery according to time of day, season or female vocal activity. Our research provides the first detailed vocal analysis of any Basileuterus warbler species, and enhances our understanding of the evolution of repertoire specialization in tropical resident songbirds.  相似文献   

14.
Following the pioneering work of Nottebohm, the brain regions involved in song production in songbirds have become a focus of extensive research in several laboratories. As both singing behavior and the neuroanatomy of song control regions are strongly affected by sex steroids in many songbird species, this system has become regarded as an ideal model system in which one can potentially determine how steroids affect neuronal anatomy, how altered anatomy leads to altered physiology, and how the altered physiology causes changes in singing. In the initial part of this review, I shall focus on canaries and zebra finches as most of our knowledge of the song system has been obtained from these two species. I shall describe singing behavior, the constituents of the song system, what is known of how these nuclei contribute to song, and how each is affected by steroid fluctuations. I shall then speculate on new ways of posing questions on hormone—anatomy interaction in this system (which I will illustrate with preliminary data from my own lab). This review will be brief as several reviews of aspects of the song system have recently been published (Arnold, 1982; Nottebohm, 1984; Arnold and Gorski, 1984; DeVoogd, 1984; Konishi, 1985).  相似文献   

15.
Many animals exhibit seasonal changes in behavior and its underlying neural substrates. In seasonally breeding songbirds, the brain nuclei that control song learning and production undergo substantial structural changes at the onset of each breeding season, in association with changes in song behavior. These changes are largely mediated by photoperiod‐dependent changes in circulating concentrations of gonadal steroid hormones. Little is known, however, about whether changes in the electrophysiological activity of neurons accompany the dramatic morphological changes in the song nuclei. Here we induced seasonal‐like changes in the song systems of adult white‐crowned sparrows and used extracellular recording in acute brain slices from those individuals to study physiological properties of neurons in the robust nucleus of the arcopallium (RA), a pre‐motor nucleus necessary for song production. We report that: RA neurons from birds in breeding condition show a more than twofold increase in spontaneous firing rate compared to those from nonbreeding condition; this change appears to require both androgenic and estrogenic actions; and this change is intrinsic to the RA neurons. Thus, neurons in the song circuit exhibit both morphological and physiological adult seasonal plasticity. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

16.
Duetting is a collective behavior and might have multiple functions, including joint territory defense and mate guarding. An important step toward understanding the adaptive function of bird song is to determine if and how singing behavior varies seasonally. However, seasonal patterns for duetting species are different from the pattern described for species in which only the male sings, because song function may vary according to sex, singing role (initiator vs responder) and level of duet organization (individual vs pair). We investigated whether patterns of seasonal variation in duetting depends on these factors, which would suggest different interpretations of song function. We studied social pairs of a Neotropical bird species (rufous hornero Furnarius rufus) for seven consecutive months, recording vocal and territorial behaviors. Overall, partners coordinated 61% of their songs into duets and many song traits (song initiation rate, song output and duet rate) peaked in territorial contexts. Males engaged in territorial interactions with strangers more often, initiated more songs, and answered proportionately more of their partners’ songs than females. Male song initiation rate peaked during the pre‐ and post‐breeding stages, whereas females initiated more songs during the non‐breeding season. Both sexes answered partner songs faster and at higher rates during the pre‐breeding and female fertile stages. Partners duetted at a higher rate during the pre‐ and post‐breeding stages. Finally, song initiation rates and duet rate, but not song answering rates, correlated with frequency of territorial interactions with strangers. Although our findings indicate that song function may vary with sex, singing role and level of duet organization, our results suggest that in general duet functions to defend common territories and as a mutual mate guarding strategy in the rufous hornero.  相似文献   

17.
In birds with song repertoires, song‐type matching occurs when an individual responds to another individual's song by producing the same song type. Song‐type matching has been described in multiple bird species and a growing body of evidence suggests that song‐type matching may serve as a conventional signal of aggression, particularly in male birds in the temperate zone. Few studies have investigated song‐type matching in tropical birds or female birds, in spite of the fact that avian biodiversity is highest in the tropics, that female song is widespread in the tropics, and that female song is the ancestral state among songbirds. In this study of rufous‐and‐white wrens Thryophilus rufalbus, a resident neotropical songbird where both sexes sing, we presented territorial males and females with playback that simulated a territorial rival producing shared and unshared songs. In response, both males and females sang matched song types at levels statistically equal to levels expected by chance. Furthermore, males and females exhibited similar levels of aggression and similar vocal behaviours in response to playback of both shared and unshared songs. These results indicate that rufous‐and‐white wrens do not use song‐type matching in territorial conflicts as a conventional signal of aggression. We discuss alternative hypotheses for the function of song‐type sharing in tropical birds. In particular, we point out that shared songs may play an important role in intra‐pair communication, especially for birds where males and females combine their songs in vocal duets, and this may supersede the function of song‐type matching in some tropical birds.  相似文献   

18.
Songbirds show dramatic neural plasticity as adults, including large-scale anatomical changes in discrete brain regions ("song control nuclei") controlling the production of singing behavior. The volumes of several song control nuclei are much larger in the breeding season than in the nonbreeding season, and these seasonal neural changes are regulated by plasma testosterone (T) levels. In many cases, the effects of T on the central nervous system are mediated by neural conversion to estradiol (E(2)) by the enzyme aromatase. The forebrain of male songbirds expresses very high levels of aromatase, in some cases adjacent to song control nuclei. We examined the effects of aromatase inhibition and estrogen treatment on song nuclei size using wild male songbirds in both the breeding and nonbreeding seasons. In breeding males, aromatase inhibition caused the volume of a telencephalic song control nucleus (HVC) to decrease, and this effect was partially rescued by concurrent estrogen replacement. In nonbreeding males, estradiol treatment caused HVC to grow to maximal spring size within 2 weeks. Overall, these data suggest that aromatization of T is an important mediator of song control system plasticity, and that estradiol has neurotrophic effects in adult male songbirds. This study demonstrates that estrogen can affect adult neural plasticity on a gross anatomical scale and is the first examination of estrogen effects on the brain of a wild animal.  相似文献   

19.
The contribution of social factors to seasonal plasticity in singing behavior and forebrain nuclei controlling song, and their interplay with gonadal steroid hormones are still poorly understood. In many songbird species, testosterone (T) enhances singing behavior but elevated plasma T concentrations are not absolutely required for singing to occur. Singing is generally produced either to defend a territory or to attract a mate and it is therefore not surprising that singing rate can be influenced by the sex and behavior of the social partner. We investigated, based on two independent experiments, the effect of the presence of a male or female partner on the rate of song produced by male canaries. In the first experiment, song rate was measured in dyads composed of one male and one female (M‐F) or two males (M‐M). Birds were implanted with T‐filled Silastic capsules or with empty capsules as control. The number of complete song bouts produced by all males was recorded during 240 min on week 1, 2, 4, and 8 after implantation. On the day following each recording session, brains from approximately one‐fourth of the birds were collected and the volumes of the song control nuclei HVC and RA were measured. T increased the singing rate and volume of HVC and RA but these effects were affected by the social context. Singing rates were higher in the M‐M than in the M‐F dyads. Also, in the M‐M dyads a dominance‐subordination relationship soon became established and dominant males sang at higher rates than subordinates in T‐treated but not in control pairs. The differences in song production were not reflected in the size of the song control nuclei: HVC was larger in M‐F than in M‐M males and within the M‐M dyads, no difference in HVC or RA size could be detected between dominant and subordinate males. At the individual level, the song rate with was positively correlated with RA and to a lower degree HVC volume, but this relationship was observed only in M‐M dyads, specifically in dominant males. A second experiment, carried out with castrated males that were all treated with T and exposed either to another T‐treated castrate or to an estradiol‐implanted female, confirmed that song rate was higher in the M‐M than in the M‐F condition and that HVC volume was larger in heterosexual than in same‐sex dyads. The effects of T on singing rate and on the volume of the song control nuclei are thus modulated by the social environment, including the presence/absence of a potential mate and dominance status among males. 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

20.
The genome of the white‐throated sparrow (Zonotrichia albicollis) contains an inversion polymorphism on chromosome 2 that is linked to predictable variation in a suite of phenotypic traits including plumage color, aggression and parental behavior. Differences in gene expression between the two color morphs, which represent the two common inversion genotypes (ZAL2/ZAL2 and ZAL2/ZAL2m), may therefore advance our understanding of the molecular underpinnings of these phenotypes. To identify genes that are differentially expressed between the two morphs and correlated with behavior, we quantified gene expression and terrirorial aggression, including song, in a population of free‐living white‐throated sparrows. We analyzed gene expression in two brain regions, the medial amygdala (MeA) and hypothalamus. Both regions are part of a ‘social behavior network’, which is rich in steroid hormone receptors and previously linked with territorial behavior. Using weighted gene co‐expression network analyses, we identified modules of genes that were correlated with both morph and singing behavior. The majority of these genes were located within the inversion, showing the profound effect of the inversion on the expression of genes captured by the rearrangement. These modules were enriched with genes related to retinoic acid signaling and basic cellular functioning. In the MeA, the most prominent pathways were those related to steroid hormone receptor activity. Within these pathways, the only gene encoding such a receptor was ESR1 (estrogen receptor 1), a gene previously shown to predict song rate in this species. The set of candidate genes we identified may mediate the effects of a chromosomal inversion on territorial behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号