共查询到20条相似文献,搜索用时 0 毫秒
1.
Kim MJ Liu IH Song Y Lee JA Halfter W Balice-Gordon RJ Linney E Cole GJ 《Glycobiology》2007,17(2):231-247
Although recent studies have extended our understanding of agrin's function during development, its function in the central nervous system (CNS) is not clearly understood. To address this question, zebrafish agrin was identified and characterized. Zebrafish agrin is expressed in the developing CNS and in nonneural structures such as somites and notochord. In agrin morphant embryos, acetylcholine receptor (AChR) cluster number and size on muscle fibers at the choice point were unaffected, whereas AChR clusters on muscle fibers in the dorsal and ventral regions of the myotome were reduced or absent. Defects in the axon outgrowth by primary motor neurons, subpopulations of branchiomotor neurons, and Rohon-Beard sensory neurons were also observed, which included truncation of axons and increased branching of motor axons. Moreover, agrin morphants exhibit significantly inhibited tail development in a dose-dependent manner, as well as defects in the formation of the midbrain-hindbrain boundary and reduced size of eyes and otic vesicles. Together these results show that agrin plays an important role in both peripheral and CNS development and also modulates posterior development in zebrafish. 相似文献
2.
Agrin is a proteoglycan that can inhibit neurite outgrowth from multiple neuronal types when present as a substrate. Agrin's neurite inhibitory activity is confined to the N-terminal segment of the protein (agrin N150), which contains heparan sulfate (HS) and chondroitin sulfate (CS) side chains. We have examined the activities of various purified recombinant agrin fragments and their glycosaminoglycan (GAG) side chains in neurite outgrowth inhibition. Inhibitory activity was tested using dissociated chick ciliary ganglion neurons or dorsal root ganglion explants growing on laminin or N-cadherin. Initial experiments demonstrated that agrin N150 lacking GAG chains inhibited neurite outgrowth. Both halves of N150, each containing HS and/or CS side chains, could also inhibit neurite growth. Experiments using agrin fragments in which the GAG acceptor residues were mutated, or using agrin fragments purified from cells deficient in GAG synthesis, demonstrated that inhibition by the N-terminal portion of N150 requires GAGs, but that inhibition from the C-terminal part of N150 does not. Thus, the core protein or other types of glycosylation are important for inhibition from the more C-terminal region. Our results suggest that there are two distinct mechanisms for neurite outgrowth inhibition by agrin, one that is GAG-dependent and one that is GAG-independent. 相似文献
3.
John L. Bixby 《Developmental neurobiology》1995,26(2):262-272
We have studied presynaptic and postsynaptic differentiation at neuromuscular junctions in vitro by examining the localization of synapse-specific proteins. In nerve–muscle co-cultures, the synaptic vesicle protein synaptotagmin (p65) accumulated in the nerve terminal overlying myotubes in association with postsynaptic cluster of acetylcholine receptors (AChRs), heparan sulfate proteoglycan (HSPG), laminin, and agrin. Inhibition of collagen synthesis with cis-hydroxyproline decreased the nerve-induced clustering of AChRs in muscle cells as well as that caused by exogenous agrin in muscle-only cultures. Moreover, accumulation of HSPG at contacts was also inhibited in cis-hydroxyproline–treated cultures. However, accumulation of p65 in nerve fibers at sites of muscle contact, a sign of presynaptic differentiation, was unaffected by cis-hydroxyproline treatment. In addition, even in cis-hydroxyproline–inhibited cultures, agrin was evident at more than 90% of contacts showing accumulation of p65 in the nerve terminal. Therefore, a mechanism exists to maintain agrin concentrations at nerve–muscle contacts, even when at least some extracellular matrix (ECM) proteins are disrupted. Our results suggest that HSPG is not required for the induction of nerve terminal differentiation but are consistent with the idea that HSPG or other ECM proteins are important in both nerve-and agrin-induced AChR clustering. In particular, agrin accumulation at sites of nerve–muscle contact is not sufficient to induce AChR clusters when the ECM at these contacts is disrupted. © 1995 John Wiley & Sons, Inc. 相似文献
4.
Recent studies from our laboratory have begun to elucidate the role of agrin in zebrafish development. One agrin morphant phenotype that results from agrin knockdown is microphthalmia (reduced eye size). To begin to understand the mechanisms underlying the role of agrin in eye development, we have analyzed retina development in agrin morphants. Retinal differentiation is impaired in agrin morphants, with retinal lamination being disrupted following agrin morpholino treatment. Pax 6.1 and Mbx1 gene expression, markers of eye development, are markedly reduced in agrin morphants. Formation of the optic fiber layer of the zebrafish retina is also impaired, exhibited as both reduced size of the optic fiber layer, and disruption of retinal ganglion cell axon growth to the optic tectum. The retinotectal topographic projection to the optic tectum is perturbed in agrin morphants in association with a marked loss of heparan sulfate expression in the retinotectal pathway, with this phenotype resembling retinotectal phenotypes observed in mutant zebrafish lacking enzymes for heparan sulfate synthesis. Treatment of agrin morphants with a fibroblast growth factor (Fgf) receptor inhibitor, rescue of the retinal lamination phenotype by transplantation of Fgf8-coated beads, and disruption of both the expression of Fgf-dependent genes and activation of ERK in agrin morphants provides evidence that agrin modulation of Fgf function contributes to retina development. Collectively, these agrin morphant phenotypes provide support for a crucial role of agrin in retina development and formation of an ordered retinotectal topographic map in the optic tectum of zebrafish. 相似文献
5.
6.
John L. Bixby Kristine Baerwald‐De La Torre Cong Wang Fritz G. Rathjen Markus A. Rüegg 《Developmental neurobiology》2002,50(2):164-179
Agrin is required for appropriate pre‐ and postsynaptic differentiation of neuromuscular junctions. While agrin's ability to orchestrate postsynaptic differentiation is well documented, more recent experiments have suggested that agrin is also a “stop signal” for the presynaptic neuron, and that agrin has actions on neurons in the CNS. To elucidate the neuronal activities of agrin and to define the receptor(s) responsible for these functions, we have examined adhesions of neurons and their neurite‐outgrowth responses to purified agrin in vitro. We find that both full‐length agrin and the C‐terminal 95 kDa of agrin (agrin c95), which is sufficient to induce postsynaptic differentiation, are adhesive for chick ciliary ganglion (CG) and forebrain neurons. Consistent with previous findings, our results show that N‐CAM binds to full‐length agrin, and suggest that α‐dystroglycan is a neuronal receptor for agrin c95. In neurite outgrowth assays, full‐length agrin inhibited both laminin‐ and N‐cadherin–induced neurite growth from CG neurons. The N‐terminal 150 kDa fragment of agrin, but not agrin c95, inhibited neurite outgrowth, indicating that domains in the N‐terminal portion of agrin are sufficient for this function. Adhesion assays using protein‐coated beads and agrin‐expressing cells revealed differential interactions of agrin with members of the immunoglobulin superfamily of cell adhesion molecules. However, none of these, including N‐CAM, appeared to be critical for neuronal adhesion. In summary, our results suggest that the N‐terminal half of agrin is involved in agrin's ability to inhibit neurite outgrowth. Our results further suggest that neither α‐dystroglycan nor N‐CAM, two known binding proteins for agrin, mediate this effect. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 164–179, 2002; DOI 10.1002/neu.10025 相似文献
7.
M M French S E Smith K Akanbi T Sanford J Hecht M C Farach-Carson D D Carson 《The Journal of cell biology》1999,145(5):1103-1115
Expression of the basement membrane heparan sulfate proteoglycan (HSPG), perlecan (Pln), mRNA, and protein has been examined during murine development. Both Pln mRNA and protein are highly expressed in cartilaginous regions of developing mouse embryos, but not in areas of membranous bone formation. Initially detected at low levels in precartilaginous areas of d 12.5 embryos, Pln protein accumulates in these regions through d 15.5 at which time high levels are detected in the cartilage primordia. Laminin and collagen type IV, other basal lamina proteins commonly found colocalized with Pln, are absent from the cartilage primordia. Accumulation of Pln mRNA, detected by in situ hybridization, was increased in d 14.5 embryos. Cartilage primordia expression decreased to levels similar to that of the surrounding tissue at d 15.5. Pln accumulation in developing cartilage is preceded by that of collagen type II. To gain insight into Pln function in chondrogenesis, an assay was developed to assess the potential inductive activity of Pln using multipotential 10T1/2 murine embryonic fibroblast cells. Culture on Pln, but not on a variety of other matrices, stimulated extensive formation of dense nodules reminiscent of embryonic cartilaginous condensations. These nodules stained intensely with Alcian blue and collagen type II antibodies. mRNA encoding chondrocyte markers including collagen type II, aggrecan, and Pln was elevated in 10T1/2 cells cultured on Pln. Human chondrocytes that otherwise rapidly dedifferentiate during in vitro culture also formed nodules and expressed high levels of chondrocytic marker proteins when cultured on Pln. Collectively, these studies demonstrate that Pln is not only a marker of chondrogenesis, but also strongly potentiates chondrogenic differentiation in vitro. 相似文献
8.
Bellin R Capila I Lincecum J Park PW Reizes O Bernfield MR 《Glycoconjugate journal》2002,19(4-5):295-304
Heparan sulfate proteoglycans are known to modulate the activity of a large number of extracellular ligands thereby having the potential to regulate a great diversity of biological processes. The long-term studies in our laboratory have focused on the syndecans, one of the major cell surface heparan sulfate proteoglycan families. Most early work on syndecans involved biochemical studies that provided initial information on their structure and putative biological roles. In recent years, the development of transgenic organisms has allowed a more complete understanding of syndecan function. Studies with transgenic syndecan-1 and syndecan-3 mice have demonstrated an unforeseen role for syndecans in the regulation of feeding behavior. Syndecan-1 knockout mice display a reduced susceptibility to both Wnt-induced tumorigenesis and microbial pathogenesis. Experiments with Drosophila show that syndecan is first expressed upon cellularization in the early embryo, and may play a role in the early developmental stages of the fly. This review focuses on these diverse functions of the syndecans that have been elucidated by the use of transgenic mice and Drosophila as model systems. Published in 2003. 相似文献
9.
Understanding the process of wound healing will provide valuable insight for the development of new strategies to treat diseases associated with improper regeneration, such as blindness induced by corneal scarring. Heparan sulfate proteoglycans (HSPG) are not normally expressed in the corneal stroma, but their presence at sites of injury suggests their involvement in the wound healing response. Primary cultured corneal stromal fibroblasts constitutively express HSPG and represent an injured phenotype. Recently, nuclear localization of HSPG was shown to increase in corneal stromal fibroblasts plated on fibronectin (FN), an extracellular matrix protein whose appearance in the corneal stroma correlates with injury. One possible role for the nuclear localization of HSPG is to function as a shuttle for the nuclear transport of heparin-binding growth factors, such as basic fibroblast growth factor (FGF-2). Once in the nucleus, these growth factors might directly modulate cellular activities. To investigate this hypothesis, cells were treated with (125)I-labelled FGF-2 under various conditions and fractionated. Our results show that nuclear localization of FGF-2 was increased in cells plated on FN compared to those on collagen type I (CO). Interestingly, FGF-2-stimulated proliferation was increased in cells plated on FN compared to CO and this effect was absent in the presence of heparinase III. Furthermore, pre-treatment with heparinase III decreased nuclear FGF-2, and CHO cells defective in the ability to properly synthesize heparan sulfate chains showed reduced nuclear FGF-2 indicating that the heparan sulfate chains of HSPG are critical for this process. HSPG signaling, particularly through the cytoplasmic tails of syndecans, was investigated as a potential mechanism for the nuclear localization of FGF-2. Treatment with phorbol 12-myristate-13-acetate (PMA), under conditions that caused downregulation of protein kinase Calpha (PKCalpha), decreased nuclear FGF-2. Using pharmacological inhibitors of specific PKC isozymes, we elucidated a potential mode of regulation whereby PKCalpha mediates the nuclear localization of FGF-2 and PKCdelta inhibits it. Our studies suggest a novel mechanism in which FGF-2 translocates to the nucleus in response to injury. 相似文献
10.
11.
Gomes RR Joshi SS Farach-Carson MC Carson DD 《Differentiation; research in biological diversity》2006,74(1):53-63
Perlecan (Pln) is an abundant heparan sulfate (HS) proteoglycan in the pericellular matrix of developing cartilage, and its absence dramatically disrupts endochondral bone formation. This study examined two previously unexamined aspects of the function of Pln in mesenchymal chondrogenesis in vitro. Using the well-established high-density micromass model of chondrogenic differentiation, we first examined the requirement for endogenous Pln synthesis and secretion through the use of Pln-targeted ribozymes in murine C3H10T1/2 embryonic fibroblasts. Second, we examined the ability of the unique N-terminal, HS-bearing Pln domain I (PlnDI) to synergize with exogenous bone morphogenetic protein-2 (BMP-2) to support later stage chondrogenic maturation of cellular condensations. The results provide clear evidence that the function of Pln in late stage chondrogenesis requires Pln biosynthesis and secretion, because 60%-70% reductions in Pln greatly diminish chondrogenic marker expression in micromass culture. Additionally, these data support the idea that while early chondrocyte differentiation can be supported by exogenous HS-decorated PlnDI, efficient late stage PlnDI-supported chondrogenesis requires both BMP-2 and Pln biosynthesis. 相似文献
12.
Cell Surface Heparan Sulfate Proteoglycan Syndecan-2 Induces the Maturation of Dendritic Spines in Rat Hippocampal Neurons
下载免费PDF全文

Dendritic spines are small protrusions that receive synapses, and changes in spine morphology are thought to be the structural basis for learning and memory. We demonstrate that the cell surface heparan sulfate proteoglycan syndecan-2 plays a critical role in spine development. Syndecan-2 is concentrated at the synapses, specifically on the dendritic spines of cultured hippocampal neurons, and its accumulation occurs concomitant with the morphological maturation of spines from long thin protrusions to stubby and headed shapes. Early introduction of syndecan-2 cDNA into immature hippocampal neurons, by transient transfection, accelerates spine formation from dendritic protrusions. Deletion of the COOH-terminal EFYA motif of syndecan-2, the binding site for PDZ domain proteins, abrogates the spine-promoting activity of syndecan-2. Syndecan-2 clustering on dendritic protrusions does not require the PDZ domain-binding motif, but another portion of the cytoplasmic domain which includes a protein kinase C phosphorylation site. Our results indicate that syndecan-2 plays a direct role in the development of postsynaptic specialization through its interactions with PDZ domain proteins. 相似文献
13.
Kirankumar Katta Tabasum Imran Marta Busse-Wicher Mona Gr?nning Szymon Czajkowski Marion Kusche-Gullberg 《The Journal of biological chemistry》2015,290(21):13168-13177
Heparan sulfate proteoglycans are ubiquitously located on cell surfaces and in the extracellular matrices. The negatively charged heparan sulfate chains interact with a multitude of different proteins, thereby influencing a variety of cellular and developmental processes, for example cell adhesion, migration, tissue morphogenesis, and differentiation. The human exostosin (EXT) family of genes contains five members: the heparan sulfate polymerizing enzymes, EXT1 and EXT2, and three EXT-like genes, EXTL1, EXTL2, and EXTL3. EXTL2 has been ascribed activities related to the initiation and termination of heparan sulfate chains. Here we further investigated the role of EXTL2 in heparan sulfate chain elongation by gene silencing and overexpression strategies. We found that siRNA-mediated knockdown of EXTL2 in human embryonic kidney 293 cells resulted in increased chain length, whereas overexpression of EXTL2 in the same cell line had little or no effect on heparan sulfate chain length. To study in more detail the role of EXTL2 in heparan sulfate chain elongation, we tested the ability of the overexpressed protein to catalyze the in vitro incorporation of N-acetylglucosamine and N-acetylgalactosamine to oligosaccharide acceptors resembling unmodified heparan sulfate and chondroitin sulfate precursor molecules. Analysis of the generated products revealed that recombinant EXTL2 showed weak ability to transfer N-acetylgalactosamine to heparan sulfate precursor molecules but also, that EXTL2 exhibited much stronger in vitro N-acetylglucosamine-transferase activity related to elongation of heparan sulfate chains. 相似文献
14.
Yi-Ping Hsueh Fu-Chia Yang Viktor Kharazia Scott Naisbitt Alexandra R. Cohen Richard J. Weinberg Morgan Sheng 《The Journal of cell biology》1998,142(1):139-151
CASK, the rat homolog of a gene (LIN-2) required for vulval differentiation in Caenorhabditis elegans, is expressed in mammalian brain, but its function in neurons is unknown. CASK is distributed in a punctate somatodendritic pattern in neurons. By immunogold EM, CASK protein is concentrated in synapses, but is also present at nonsynaptic membranes and in intracellular compartments. This immunolocalization is consistent with biochemical studies showing the presence of CASK in soluble and synaptosomal membrane fractions and its enrichment in postsynaptic density fractions of rat brain. By yeast two-hybrid screening, a specific interaction was identified between the PDZ domain of CASK and the COOH terminal tail of syndecan-2, a cell surface heparan sulfate proteoglycan (HSPG). The interaction was confirmed by coimmunoprecipitation from heterologous cells. In brain, syndecan-2 localizes specifically at synaptic junctions where it shows overlapping distribution with CASK, consistent with an interaction between these proteins in synapses. Cell surface HSPGs can bind to extracellular matrix proteins, and are required for the action of various heparin-binding polypeptide growth/differentiation factors. The synaptic localization of CASK and syndecan suggests a potential role for these proteins in adhesion and signaling at neuronal synapses. 相似文献
15.
Shizhong Li Claus Christensen Lene B. Køhler Vladislav V. Kiselyov Vladimir Berezin Elisabeth Bock 《Developmental neurobiology》2009,69(13):837-854
Fibroblast growth factor receptor (FGFR) signaling is pivotal in the regulation of neurogenesis, neuronal differentiation and survival, and synaptic plasticity both during development and in adulthood. In order to develop low molecular weight agonists of FGFR, seven peptides, termed hexafins, corresponding to the β6‐β7 loop region of the FGF 1, 2, 3, 8, 9, 10, and 17, were synthesized. This region shares a homologous amino acid sequence with the FG‐loop region of the second fibronectin Type III module of the neural cell adhesion molecule (NCAM) that binds to the FGFR. Hexafins were shown by surface plasmon resonance to bind to FGFR1‐IIIc‐Ig2‐3 and FGFR2‐IIIb‐Ig2‐3. The heparin analog sucrose octasulfate inhibited hexafin binding to FGFR1‐IIIc‐Ig2‐3 indicating overlapping binding sites. Hexafin‐binding to FGFR1‐IIIc resulted in receptor phosphorylation, but inhibited FGF1‐induced FGFR1 phosphorylation, indicating that hexafins act as partial agonists. Hexafin2, 3, 8, 10, and 17 (but not 1 or 9) induced neurite outgrowth from cerebellar granule neurons (CGNs), an effect that was abolished by two inhibitors of FGFR, SU5402 and inositol hexaphosphate (IP6) and a diacylglycerol lipase inhibitor, RHC‐80267. The neuritogenic effects of selected hexafins could also be inhibited by FGF1 which by itself did not induce neurite outgrowth. Moreover, hexafin1, 3, 9, 10, and 17 (but not 2 or 8) promoted survival of CGNs induced to undergo apoptosis. Thus, selected hexafins induced neuronal differentiation and survival, making them promising pharmacological tools for the study of functional FGFR regulation in development of the nervous system. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009 相似文献
16.
硫酸乙酰肝素蛋白聚糖的功能机制研究进展 总被引:1,自引:0,他引:1
硫酸乙酰肝素蛋白聚糖是由核心蛋白和与之相连的硫酸乙酰肝素糖链组成,广泛分布于细胞膜与细胞外基质中。其中多配体蛋白聚糖(syndecan)和糖基磷脂酰肌醇锚定蛋白聚糖(glypican)存在与细胞膜上,而串珠蛋白聚糖(perlecan)和组合蛋白聚糖(agrin)表达在细胞外基质中。该类蛋白在生理与病理历程中,如发育、伤口愈合、肿瘤发生发展、感染、免疫应答等过程中担任重要作用,这些功能是其核心蛋白和糖链共同作用的结果。概述硫酸乙酰肝素蛋白聚糖的功能及其机制研究进展,同时强调其在作为药物靶标和临床诊断研究中的应用。 相似文献
17.
Syndecan-1-expressing Raji lymphoid cells (Raji-S1 cells) bind and spread rapidly when attaching to matrix ligands that contain heparan sulfate-binding domains. However, these ligands also contain binding sites for integrins, which are widely known to signal, raising the question of whether the proteoglycan core protein participates in generation of the signal for spreading. To address this question, the spreading of the Raji-S1 cells is examined on ligands specific for either β1 integrins, known to be present on the Raji cells, or the syndecan-1 core protein. The cells adhere and spread on invasin, a ligand that activates β1 integrins, the IIICS fragment of fibronectin, which is a specific ligand for the α4β1 integrin, or mAb281.2, an antibody specific for the syndecan-1 core protein. The signaling resulting from adhesion to the syndecan-specific antibody appears integrin independent as (i) the morphology of the cells spreading on the antibody is distinct from spreading initiated by the integrins alone; (ii) spreading on the syndecan or integrin ligands is affected differently by the kinase inhibitors tyrphostin 25, genistein, and staurosporine; and (iii) spreading on the syndecan-specific antibody is not disrupted by blocking β1 integrin activation with mAb13, a β1 inhibitory antibody. These data demonstrate that ligation of syndecan-1 initiates intracellular signaling and suggest that this signaling occurs when cells expressing syndecan-1 adhere to matrix ligands containing heparan sulfate-binding domains. 相似文献
18.
Xi Gu Xiaohong Su Chunhong Jia Lifang Lin Shuhu Liu Peidong Zhang Xuemin Wang Xiaodan Jiang 《Journal of cellular physiology》2019,234(8):12847-12864
In multicellular organisms, receptor tyrosine kinases (RTKs) control a variety of cellular processes, including cell proliferation, differentiation, migration, and survival. Sprouty (SPRY) proteins represent an important class of ligand-inducible inhibitors of RTK-dependent signaling pathways. Here, we investigated the role of SPRY1 in cells of the central nervous system (CNS). Expression of SPRY1 was substantially higher in neural stem cells than in cortical neurons and was increased during neuronal differentiation of cortical neurons. We found that SPRY1 was a direct target gene of the CNS-specific microRNA, miR-124 and miR-132. In primary cultures of cortical neurons, the neurotrophic factors brain-derived neurotrophic factor (BDNF) and Basic fibroblast growth factor (FGF2) downregulated SPRY1 expression to positively regulate their own functions. In immature cortical neurons and mouse N2A cells, we found that overexpression of SPRY1 inhibited neurite development, whereas knockdown of SPRY1 expression promoted neurite development. In mature neurons, overexpression of SPRY1 inhibited the prosurvival effects of both BDNF and FGF2 on glutamate-mediated neuronal cell death. SPRY1 was also upregulated upon glutamate treatment in mature neurons and partially contributed to the cytotoxic effect of glutamate. Together, our results indicate that SPRY1 contributes to the regulation of CNS functions by influencing both neuronal differentiation under normal physiological processes and neuronal survival under pathological conditions. 相似文献
19.
Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis 总被引:16,自引:0,他引:16
下载免费PDF全文

Niethammer P Delling M Sytnyk V Dityatev A Fukami K Schachner M 《The Journal of cell biology》2002,157(3):521-532
The neural cell adhesion molecule (NCAM) has been reported to stimulate neuritogenesis either via nonreceptor tyrosine kinases or fibroblast growth factor (FGF) receptor. Here we show that lipid raft association of NCAM is crucial for activation of the nonreceptor tyrosine kinase pathway and induction of neurite outgrowth. Transfection of hippocampal neurons of NCAM-deficient mice revealed that of the three major NCAM isoforms only NCAM140 can act as a homophilic receptor that induces neurite outgrowth. Disruption of NCAM140 raft association either by mutation of NCAM140 palmitoylation sites or by lipid raft destruction attenuates activation of the tyrosine focal adhesion kinase and extracellular signal-regulated kinase 1/2, completely blocking neurite outgrowth. Likewise, NCAM-triggered neurite outgrowth is also completely blocked by a specific FGF receptor inhibitor, indicating that cosignaling via raft-associated kinases and FGF receptor is essential for neuritogenesis. 相似文献
20.
Yoneda A Lendorf ME Couchman JR Multhaupt HA 《The journal of histochemistry and cytochemistry》2012,60(1):9-21
Tumor markers are widely used in pathology not only for diagnostic purposes but also to assess the prognosis and to predict the treatment of the tumor. Because tumor marker levels may change over time, it is important to get a better understanding of the molecular changes during tumor progression. Occurrence of breast and ovarian cancer is high in older women. Common known risk factors of developing these cancers in addition to age are not having children or having children at a later age, the use of hormone replacement therapy, and mutations in certain genes. In addition, women with a history of breast cancer may also develop ovarian cancer. Here, the authors review the different tumor markers of breast and ovarian carcinoma and discuss the expression, mutations, and possible roles of cell surface heparan sulfate proteoglycans during tumorigenesis of these carcinomas. The focus is on two groups of proteoglycans, the transmembrane syndecans and the lipid-anchored glypicans. Both families of proteoglycans have been implicated in cellular responses to growth factors and morphogens, including many now associated with tumor progression. 相似文献