首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Songbirds have a specialized steroid-sensitive network of brain nuclei, the song system, for controlling song. Most nuclei of the song system express androgen receptors, and the sensory-motor integration nucleus High Vocal Center (HVC) alone also expresses estrogen receptors. Apart from expressing estrogen receptors in the vocal control system, songbirds are unique among birds because they have high concentrations of the estrogen-synthesizing enzyme aromatase in the neostriatum surrounding HVC. However, the role of estrogen in controlling the development of the song structure has been scarcely investigated. In this work, we show that blocking the production of estrogen during testosterone-induced song motor development in adult female canaries alters the song pattern compared to control females treated with testosterone only. These effects were correlated with inhibition of the expression of estrogen-sensitive genes, such as brain-derived nerve growth factor, in HVC. The expression of the ATP-synthase gene, an indicator of cell activity, in HVC, and the size of HVC, were not affected by the treatment. Our results provide the first example of estrogen-sensitive mechanisms controlling the structural features of adult birdsong.  相似文献   

2.
The contribution of social factors to seasonal plasticity in singing behavior and forebrain nuclei controlling song, and their interplay with gonadal steroid hormones are still poorly understood. In many songbird species, testosterone (T) enhances singing behavior but elevated plasma T concentrations are not absolutely required for singing to occur. Singing is generally produced either to defend a territory or to attract a mate and it is therefore not surprising that singing rate can be influenced by the sex and behavior of the social partner. We investigated, based on two independent experiments, the effect of the presence of a male or female partner on the rate of song produced by male canaries. In the first experiment, song rate was measured in dyads composed of one male and one female (M‐F) or two males (M‐M). Birds were implanted with T‐filled Silastic capsules or with empty capsules as control. The number of complete song bouts produced by all males was recorded during 240 min on week 1, 2, 4, and 8 after implantation. On the day following each recording session, brains from approximately one‐fourth of the birds were collected and the volumes of the song control nuclei HVC and RA were measured. T increased the singing rate and volume of HVC and RA but these effects were affected by the social context. Singing rates were higher in the M‐M than in the M‐F dyads. Also, in the M‐M dyads a dominance‐subordination relationship soon became established and dominant males sang at higher rates than subordinates in T‐treated but not in control pairs. The differences in song production were not reflected in the size of the song control nuclei: HVC was larger in M‐F than in M‐M males and within the M‐M dyads, no difference in HVC or RA size could be detected between dominant and subordinate males. At the individual level, the song rate with was positively correlated with RA and to a lower degree HVC volume, but this relationship was observed only in M‐M dyads, specifically in dominant males. A second experiment, carried out with castrated males that were all treated with T and exposed either to another T‐treated castrate or to an estradiol‐implanted female, confirmed that song rate was higher in the M‐M than in the M‐F condition and that HVC volume was larger in heterosexual than in same‐sex dyads. The effects of T on singing rate and on the volume of the song control nuclei are thus modulated by the social environment, including the presence/absence of a potential mate and dominance status among males. 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

3.
Learned communication was a trait observed in a limited number of vertebrates such as humans but also songbirds (i.e., species in the suborder passeri sometimes called oscines). Robust male‐biased sex‐differences in song development and production have been observed in several songbird species. However, in some of these species treating adult females with testosterone (T) induced neuro‐behavioral changes such that females become more male‐like in brain and behavior. T‐treatment in these adult females seemed to stimulate sensorimotor song development to facilitate song masculinization. In male songbirds it was known that the lateral magnocellular nucleus of the anterior nidopallium (LMAN) played a modulatory role during song development. LMAN was androgen sensitive and may be a key target of a T‐induced recapitulation of a developmental process in adult females. This hypothesis was tested. Adult female canaries were given either a chemical lesion of LMAN or a control sham‐surgery. Prior to surgery birds were individually housed for 2‐weeks in sound‐attenuated chambers to record baseline vocal behavior. Post‐surgery birds were given 1‐week to recover before subcutaneous implantation with silastic capsules filled with crystalline‐T. Birds remained on treatment for 3‐weeks (behavioral recordings continued throughout). Birds with a lesion to LMAN had less variability in their song compared with controls. The diversity of syllable and phrase type(s) was greater in sham controls as compared with birds with LMAN lesions. Birds did not differ in song rate. These data suggested that the sustention and conclusion of T‐induced sensorimotor song development in adult female canaries required an intact LMAN. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 3–18, 2016  相似文献   

4.
Previous studies have suggested that both major active metabolites of testosterone, estradiol (E2) and dihydrotestosterone (DHT), are needed for complete masculinization of the brain regions that control song in passerine birds. However, DHT treatment of hatchling female zebra finches has only small masculinizing effects on the song system. To assess whether E2 and DHT have a synergistic effect on the masculinization of the zebra finch song system, female zebra finches were given Silastic implants of E2 on the day of hatching (day 1) either without any additional hormone treatment or in combination with DHT on days 1, 14, or 70. At 105 to 110 days of age, we measured the volumes of Area X, higher vocal center (HVC), robust nucleus of the archistriatum (RA), soma sizes in HVC, RA, and the lateral magnocellular nucleus of the neostriatum (lMAN), and neuron density and number in RA. E2 masculinized all of the measures in the song system with the exception of the number of neurons in RA. DHT did not synergize with E2 to produce any additional masculinization of the attributes measured. These data demonstrate that the combination of E2 and DHT did not result in the complete masculinization of the song control nuclei and argue against the importance of androgen in sexual differentiation of the song system. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
In seasonally breeding songbirds, the brain regions that control song behavior undergo dramatic structural changes at the onset of each annual breeding season. As spring approaches and days get longer, gonadal testosterone (T) secretion increases and triggers the growth of several song control nuclei. T can be converted to androgenic and estrogenic metabolites by enzymes expressed in the brain. This opens the possibility that the effects of T may be mediated via the androgen receptor, the estrogen receptor, or both. To test this hypothesis, we examined the effects of two bioactive T metabolites on song nucleus growth and song behavior in adult male white‐crowned sparrows. Castrated sparrows with regressed song control nuclei were implanted with silastic capsules containing either crystalline T, 5α‐dihydrotestosterone (DHT), estradiol (E2), or a combination of DHT+E2. Control animals received empty implants. Song production was highly variable within treatment groups. Only one of seven birds treated with E2 alone was observed singing, whereas a majority of birds with T or DHT sang. After 37 days of exposure to sex steroids, we measured the volumes of the forebrain song nucleus HVc, the robust nucleus of the archistriatum (RA), and a basal ganglia homolog (area X). All three steroid treatments increased the volumes of these three song nuclei when compared to blank‐implanted controls. These data demonstrate that androgen and estrogen receptor binding are sufficient to trigger seasonal song nucleus growth. These data also suggest that T's effects on seasonal song nucleus growth may depend, in part, upon enzymatic conversion of T to bioactive metabolites. © 2003 Wiley Periodicals, Inc. J Neurobiol 57:130–140, 2003  相似文献   

6.
Song behavior and the neural song system that serves it are sexually dimorphic in zebra finches. In this species, males sing and females normally do not. The sex differences in the song system include sex differences in the proportion of neurons that express androgen receptors, which is higher in specific brain regions of males. Estradiol (E2) administered in early development profoundly masculinizes the song system of females, including the proportion of neurons expressing androgen receptors. We examined whether or not the expression of these androgen receptors was causally related to the E2-induced masculinization of this system by co-administering Flutamide, which blocks androgen action at the receptor, along with E2 at hatching. E2 alone had its usual masculinizing effect on the female song system, measured in adulthood: increasing the size of song nuclei, the size of neurons in HVC, RA, and 1MAN, and the number of neurons in HVC. E2's masculinizing action, however, was significantly diminished on all measures by co-administering Flutamide. Indeed, females receiving both E2 and Flutamide were never significantly more masculine than controls on any measure. Flutamide alone had no effect. Our results strongly suggest that the activation of androgen receptors is necessary for the E2-induced masculinization of the song system in females.  相似文献   

7.
Most songbirds learn their songs from adult tutors, who can be their father or other male conspecifics. However, the variables that control song learning in a natural social context are largely unknown. We investigated whether the time of hatching of male domesticated canaries has an impact on their song development and on the neuroendocrine parameters of the song control system. Average age difference between early- and late-hatched males was 50 days with a maximum of 90 days. Song activity of adult tutor males decreased significantly during the breeding season. While early-hatched males were exposed to tutor songs for on average the first 99 days, late-hatched peers heard adult song only during the first 48 days of life. Remarkably, although hatching late in the season negatively affected body condition, no differences between both groups of males were found in song characteristics either in autumn or in the following spring. Similarly, hatching date had no effect on song nucleus size and circulating testosterone levels. Our data suggest that late-hatched males must have undergone accelerated song development. Furthermore, the limited tutor song exposure did not affect adult song organization and song performance.  相似文献   

8.
Estrogen treatment of hatchling female zebra finches causes the masculine development of singing behavior and of the telencephalic brain regions involved in the control of song. However, early estrogen treatment of males also blocks masculine development of copulatory behavior, presumably controlled by diencephalic regions. In an effort to determine whether the differences in estrogen action are related to sex and regional differences in androgen metabolism (estrogen synthesis or androgen inactivation), we measured aromatase and 5β-reductase activity in dissociated-cell cultures made separately from the telencephalon, diencephalon, and also cerebellum of hatching zebra finches under a variety of conditions. Cultures from all three brain regions express high levels of aromatase and 5β-reductase activity. Comparisons between telencephalic and diencephalic cultures of the activity and kinetics of aromatase suggest that the telencephalic cultures convert androgen to estrogen more efficiently than diencephalic cultures, which might be important in the differential action of estrogen in the two brain regions. However, the activity of neither aromatase nor 5β-reductase was significantly different between the sexes in either telencephalic or diencephalic cultures. Thus, comparisons between the sexes do not support the idea that differences in posthatching aromatase or 5β-reductase activity account for the pattern of sexual differentiation of the song and copulatory systems. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
Estrogens can be neuroprotective following traumatic brain injury. Immediately after trauma to the zebra finch hippocampus, the estrogen-synthetic enzyme aromatase is rapidly upregulated in astrocytes and radial glia around the lesion site. Brain injury also induces high levels of cell proliferation. Estrogens promote neuronal differentiation, migration, and survival naturally in the avian brain. We suspect that glia are a source of estrogens promoting cell proliferation after neural injury. To explore this hypothesis, we examined the spatial and temporal relationship between glial aromatase expression and cell proliferation after neural injury in adult female zebra finches. Birds were ovariectomized and given a blank implant or one filled with estradiol; some birds were also administered an aromatase inhibitor or vehicle. All birds received penetrating injuries to the right hippocampus. Twenty-four hours after lesioning, birds were injected once with BrdU to label mitotically active cells and euthanized 2 h, 24 h, or 7 days later. The brains were processed for double-label BrdU and aromatase immunocytochemistry. Injury-induced glial aromatase expression was unaffected by survival time and aromatase inhibition. BrdU labeling was significantly reduced at 24 h by ovariectomy and by aromatase inhibition; effects were partially reversed by E2 replacement. Irrespective of ovariectomy, the densities of aromatase immunoreactive astrocytes and BrdU-labeled cells at known distances from the lesion site were highly correlated. These data suggest that injury-induced glial aromatization may influence the reorganization of injured tissue by providing a rich estrogenic environment available to influence cellular incorporation.  相似文献   

10.
Adult neuroplasticity is strongly influenced by steroids. In particular, corticosterone (CORT) and dehydroepiandrosterone (DHEA) can have opposing effects, where CORT reduces while DHEA increases neurogenesis and neuron recruitment. It has been previously shown that in adult male song sparrows, DHEA treatment increases neuron recruitment throughout the telencephalon, including the lateral ventricular zone, while the effect of CORT treatment is restricted to HVC, one of the song control regions. These data suggest that the two steroids may differentially affect proliferation, migration, differentiation, and/or survival of new neurons. To determine if CORT or DHEA alters the migration and differentiation of young neurons, we examined an endogenous marker of migrating immature neurons, doublecortin (DCX), in HVC and hippocampus of adult male song sparrows that were treated with CORT and/or DHEA for 28 days. In HVC, DHEA increased the number of DCX‐labeled round cells, while CORT had no main effect on the number of DCX‐labeled cells. Furthermore, DHEA increased the area covered by DCX immunoreactivity in HVC, regardless of CORT treatment. In the hippocampus, neither DHEA nor CORT affected DCX immunoreactivity. These results suggest that DHEA enhances migration and differentiation of young neurons into HVC while CORT does not affect the process, whether in the presence of DHEA or not. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 52–62, 2014  相似文献   

11.
Avian eggs contain substantial amounts of maternal yolk androgens, which have been shown to modulate offspring phenotype. The first studies on the functional consequences of maternal yolk androgens have focused on early life stages and their role in sibling competition. However, recent longitudinal studies reported long-lasting effects of maternal yolk androgens on offspring phenotype, mostly concerning traits that are sensitive to androgens. This suggests that maternal yolk androgens could play an important role in sexual selection, since the expression of many male sexual characters is testosterone-dependent. Using male canaries as a model, we examined the consequences of an experimental elevation of yolk testosterone concentrations on early development as well as long-lasting effects particularly on song, which is one of the most important sexual characters in male songbirds. Elevated yolk testosterone concentrations inhibited male growth, possibly in interaction with an existent ectoparasite exposure. Males hatched from testosterone-treated eggs (T-males) did not have enhanced competitive skills, in contrast to previous studies. The elevation of yolk testosterone concentrations delayed song development but did not affect adult song phenotype. This is intriguing, as yolk testosterone possibly induced developmental stress, which is known to reduce song quality. We hypothesize that yolk testosterone has either no direct effect on adult song phenotype, or that positive effects are merged by the negative effects of developmental stress. Finally, females mated with T-males invested more in their clutch indicating that females either assess T-males as more attractive (differential allocation hypothesis) or compensated for lower offspring viability (compensation hypothesis).  相似文献   

12.
Complex birdsong is a classic example of a sexually selected ornamental trait. In many species, females prefer males with large song repertoires, possibly because repertoire size is limited by the size of song control nuclei which reflect developmental success. We investigated whether song repertoire size was indicative of brain area and male quality in song sparrows (Melospiza melodia) by determining if repertoire size was related to the volume of song control nucleus HVC, as well as several morphological, immunological and genetic indices of quality. We found that males with large repertoires had larger HVCs and were in better body condition. They also had lower heterophil to lymphocyte ratios, indicating less physiological stress and a robust immune system as measured by the number of lymphocytes per red blood cell. Song repertoire size also tended to increase with neutral-locus genetic diversity, as assessed by mean d2, but was not related to internal relatedness. Our results suggest several mechanisms that might explain the finding of a recent study that song sparrows with large song repertoires have higher lifetime fitness.  相似文献   

13.
In birds with song repertoires, song‐type matching occurs when an individual responds to another individual's song by producing the same song type. Song‐type matching has been described in multiple bird species and a growing body of evidence suggests that song‐type matching may serve as a conventional signal of aggression, particularly in male birds in the temperate zone. Few studies have investigated song‐type matching in tropical birds or female birds, in spite of the fact that avian biodiversity is highest in the tropics, that female song is widespread in the tropics, and that female song is the ancestral state among songbirds. In this study of rufous‐and‐white wrens Thryophilus rufalbus, a resident neotropical songbird where both sexes sing, we presented territorial males and females with playback that simulated a territorial rival producing shared and unshared songs. In response, both males and females sang matched song types at levels statistically equal to levels expected by chance. Furthermore, males and females exhibited similar levels of aggression and similar vocal behaviours in response to playback of both shared and unshared songs. These results indicate that rufous‐and‐white wrens do not use song‐type matching in territorial conflicts as a conventional signal of aggression. We discuss alternative hypotheses for the function of song‐type sharing in tropical birds. In particular, we point out that shared songs may play an important role in intra‐pair communication, especially for birds where males and females combine their songs in vocal duets, and this may supersede the function of song‐type matching in some tropical birds.  相似文献   

14.
The brain circuitry that controls song learning and production undergoes marked changes in morphology and connectivity during the song learning period in juvenile zebra finches, in parallel to the acquisition, practice and refinement of song. Yet, the genetic programs and timing of regulatory change that establish the neuronal connectivity and plasticity during this critical learning period remain largely undetermined. To address this question, we used in situ hybridization to compare the expression patterns of a set of 30 known robust molecular markers of HVC and/or area X, major telencephalic song nuclei, between adult and juvenile male zebra finches at different ages during development (20, 35, 50 days post‐hatch, dph). We found that several of the genes examined undergo substantial changes in expression within HVC or its surrounds, and/or in other song nuclei. They fit into broad patterns of regulation, including those whose expression within HVC during this period increases (COL12A1, COL 21A1, MPZL1, PVALB, and CXCR7) or decreases (e.g., KCNT2, SAP30L), as well as some that show decreased expression in the surrounding tissue with little change within song nuclei (e.g. SV2B, TAC1). These results reveal a broad range of molecular changes that occur in the song system in concert with the song learning period. Some of the genes and pathways identified are potential modulators of the developmental changes associated with the emergence of the adult properties of the song control system, and/or the acquisition of learned vocalizations in songbirds. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1315–1338, 2015  相似文献   

15.
16.
17.
It is generally thought that most circuits of the adult central nervous system (CNS) are sculpted, in part at least, by selective elimination of some of the neurons present in an initial overabundant set. In this scenario, the birth of neurons precedes the period when brain functions, such as learning, first occur. In contrast to this form of brainassembly, we describe here the delayed development of the high vocal center (HVC) and one of its efferent pathways in canaries. The retrograde tracer Fluoro-Gold (FG) was injected into one of HVC's two efferent targets, the nucleus robustus archistriatalis (RA), to define the boundaries of HVC. The HVC grows markedly between 1 and 4 months, invading neighboring territories of the caudal telencephalon. During this same period, 0.43%–0.64% of the HVC neurons present at 1 year of age are labeled per day of [3H]-thymidine injection. [3H]-Thymidine labeling is a marker of cell birth, and during the first 4 months HVC neuron number increases, probably accounting for part of the HVC growth observed. Thereafter, the number of HVC neurons remains constant, but neuronal birth persists. We infer from this that neuronal replacement starts as early as 4 months after hatching and perhaps before then. About half of the neurons born after posthatching day 10 grow an axon to RA to form the main efferent pathway exiting from HVC. HVC growth, neurogenesis, axogenesis, and the observed replacement of neurons happen during the period of juvenile vocal learning. However, the recruitment of neurons that are still present at 1 year shows no particular inflections corresponding to the various stages in song learning, and continues at essentially the same rate after the more stereotyped adult song has been acquired. We suggest that a combination of neurogenesis and neuronal replacement provides unique advantages for learning.  相似文献   

18.
19.
Sexual behavior in female rats, typified by the lordosis reflex, is dependent upon estrogen action in the ventromedial nucleus of the hypothalamus (VMH) and its surrounding neuropil. However, the synaptic organization of this brain region remains unclear. Pseudorabies virus (PRV) was used to transneuronally label the neural network that innervates the lumbar epaxial muscles that execute the lordosis response. PRV-labeled neurons were identified within and subjacent to the VMH four days after injection of PRV into the back muscles. The pattern of labeling was defined in relation to three landmarks: the VMH core, as defined by Crystal Violet staining; the shell, as defined by the oxytocin fiber tract; and the cluster of estrogen receptor-containing cell nuclei. The pattern of PRV labeling in the VMH displayed a striking rostral-caudal gradient. In general, many of the PRV-labeled neurons were found in the oxytocin fiber tract, with far fewer in the core of the VMH. Furthermore, PRV-labeled neurons were rarely found in the cluster of estrogen receptor-containing neurons, and less than 3% of the PRV-labeled neurons were double labeled for estrogen receptor. The results suggest that oxytocin may directly influence these lordosis-relevant VMH projection neurons, whereas estrogen may have transsynaptic effects.  相似文献   

20.
Juvenile male zebra finches develop their song by imitation. Females do not sing but are attracted to males' songs. With functional magnetic resonance imaging and event‐related potentials we tested how early auditory experience shapes responses in the auditory forebrain of the adult bird. Adult male birds kept in isolation over the sensitive period for song learning showed no consistency in auditory responses to conspecific songs, calls, and syllables. Thirty seconds of song playback each day over development, which is sufficient to induce song imitation, was also sufficient to shape stimulus‐specific responses. Strikingly, adult females kept in isolation over development showed responses similar to those of males that were exposed to songs. We suggest that early auditory experience with songs may be required to tune perception toward conspecific songs in males, whereas in females song selectivity develops even without prior exposure to song. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号