首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Epstein-Barr virus (EBV) latency has been associated with a variety of human cancers. Latent membrane protein 1 (LMP-1) is one of the key viral proteins required for transformation of primary B cells in vitro and establishment of EBV latency. We have previously shown that LMP-1 induces the expression of several interferon (IFN)-stimulated genes and has antiviral effect (Zhang, J., Das, S. C., Kotalik, C., Pattnaik, A. K., and Zhang, L. (2004) J. Biol. Chem. 279, 46335-46342). In this report, a novel mechanism related to the antiviral effect of LMP-1 is identified. We show that EBV type III latency cells, in which LMP-1 is expressed, are primed to produce robust levels of endogenous IFNs upon infection of Sendai virus. The priming action is due to the expression of LMP-1 but not EBV nuclear antigen 2 (EBNA-2). The signaling events from the C-terminal activator regions of LMP-1 are essential to prime cells for high IFN production. LMP-1-mediated activation of NF-kappaB is apparently necessary and sufficient for LMP-1-mediated priming effect in DG75 cells, a human B cell line. IFN regulatory factor 7 (IRF-7) that can be activated by LMP-1 is also implicated in the priming action. Taken together, these data strongly suggest that LMP-1 may prime EBV latency cells for IFN production and that the antiviral property of LMP-1 may be an intrinsic part of EBV latency program, which may assist the establishment and/or maintenance of viral latency.  相似文献   

4.
Xu J  Ahmad A  Menezes J 《Journal of virology》2002,76(8):4080-4086
The Epstein-Barr virus (EBV)-encoded latent membrane protein-1 (LMP-1) is thought to play a role in the EBV-induced B-cell transformation and immortalization. EBV has also been implicated in certain human T-cell lymphomas; however, the phenotypic effects of the expression of this oncoprotein in T cells are not known. To learn whether LMP-1 also induces phenotypic changes in T cells, we stably expressed it in human cell lines of T and B lineages and 25 LMP-1-expressing T-cell clones and 7 B-cell clones were examined. Our results show for the first time that, in sharp contrast to B cells, LMP-1 preferentially localizes to nuclei in T cells and does not induce the phenotypic changes in these cells that it induces in B cells, does not associate with TRAF proteins, and does not arrest the cell cycle in the G2/M phase. A computer-assisted analysis revealed that LMP-1 lacks the canonical nuclear localization signal. Our results suggest that this oncoprotein may not play the same role in the lymphomagenesis of T cells as it does in B cells.  相似文献   

5.
6.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) is the principal oncogenic protein in the EBV transformation process. LMP-1 induces the expression of interferon regulatory factor 7 (IRF-7) and activates IRF-7 protein by phosphorylation and nuclear translocation. LMP-1 is an integral membrane protein with two regions in its C terminus that initiate signaling processes, the C-terminal activator regions 1 (CTAR-1) and CTAR-2. Here, genetic analysis of LMP-1 has determined that the PXQXT motif that governs the interaction between LMP-1 CTAR-1 and tumor necrosis factor receptor-associated factors (TRAFs) is needed to induce the expression of IRF-7. Mutations in the PXQXT motif in CTAR-1 that disrupt the interaction between LMP-1 and TRAFs abolished the induction of IRF-7. Also, dominant-negative mutants of TRAFs inhibited the induction of IRF-7 by CTAR-1. The last three amino acids (YYD) of CTAR-2 are also important for the induction of IRF-7. When both PXQXT and YYD were mutated (LMP-DM), the LMP-1 mutant failed to induce IRF-7. Also, LMP-DM blocked the induction of IRF-7 by wild-type LMP-1. These data strongly suggest that both CTAR-1 and CTAR-2 of LMP-1 independently induce the expression of IRF-7. In addition, NF-kappaB is involved in the induction of IRF-7. A superrepressor of IkappaB (sr-IkappaB) could block the induction of IRF-7 by LMP-1, and overexpression of NF-kappaB (p65 plus p50) could induce the expression of IRF-7. In addition, we have found that human IRF-7 is a stable protein, and sodium butyrate, a modifier of chromatin structure, induces IRF-7.  相似文献   

7.
Transporter associated with antigen processing 2 (Tap-2) is responsible for ATP-dependent transport of peptides from the cytosol to the endoplasmic reticulum, where peptides bind to newly synthesized human leukocyte antigen (HLA) class I molecules, which are essential for cellular immune responses. Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) has been shown to induce the expression of Tap-2. In this study, the induction of endogenous Tap-2 by LMP-1 is shown to be associated with and requires the expression of interferon regulatory factor 7 (IRF-7). In DG75 Burkitt's lymphoma (BL) cells, in which LMP-1 induces the expression of IRF-7, LMP-1 induced endogenous Tap-2, and ectopic expression of IRF-7 could enhance the induction. In Akata BL cells, in which LMP-1 could not induce IRF-7, LMP-1 could not induce Tap-2. Addition of IRF-7, which complements the defect in Akata cells, could stimulate the expression of Tap-2. Furthermore, LMP-1 and IRF-7A but not other IRF-7 splicing variants could activate endogenous Tap-2. A Tap-2 promoter reporter construct could be activated by the overexpression of IRF-7A. The activation could be specifically enhanced by LMP-1 and was dependent on an intact interferon-stimulated response element (ISRE) present in the Tap-2 promoter. Also, IRF-7 can bind to the Tap-2 promoter under physiological conditions in vivo, as shown by formaldehyde cross-linking, as well as to the Tap-2 ISRE in vitro, as shown by gel mobility shift assays. Furthermore, LMP-1 facilitates the phosphorylation and nuclear translocation of IRF-7. These data point to the role of IRF-7 as a secondary mediator of LMP-1-activated signal transduction for Tap-2 as follows: LMP-1 stimulates the expression of IRF-7 and facilitates its phosphorylation and nuclear translocation, and then the activated IRF-7 mediates the activation of the cellular Tap-2 gene. The induction of Tap-2 by IRF-7 and LMP-1 may have an important implication for the immune response to EBV and its persistence in vivo.  相似文献   

8.
J I Cohen  F Wang    E Kieff 《Journal of virology》1991,65(5):2545-2554
Epstein-Barr virus (EBV) nuclear protein 2 (EBNA-2) is essential for B-lymphocyte growth transformation. EBNA-2 transactivates expression of the EBV latent membrane protein (LMP-1) and also transactivates expression of the B-lymphocyte proteins CD21 and CD23. In order to analyze the functional domains of EBNA-2, we constructed 11 linker-insertion and 15 deletion mutations. Each of the mutant EBNA-2 proteins localized to the nucleus, and each was expressed at levels similar to wild-type EBNA-2. Deletion of both EBNA-2 basic domains was required to prevent nuclear localization, indicating that either is sufficient for nuclear translocation. The mutant EBNA-2 genes were assayed for lymphocyte transformation after recombination with the EBNA-2-deleted P3HR-1 EBV genome and for LMP-1 transactivation following transfection into P3HR-1-infected B-lymphoma cells. Cell lines transformed by recombinant EBV carrying EBNA-2 mutations were assayed for growth properties and LMP-1, CD21, and CD23 expression. The mutational analysis indicates that at least four separate EBNA-2 domains are essential for lymphocyte transformation. Two other domains are necessary for the full transforming phenotype. Two deletion and eight linker-insertion mutations did not reduce transforming activity. Mutations which diminish or abolish lymphocyte transformation also diminish or abolish LMP-1 transactivation, respectively. Cells transformed by recombinant EBV carrying EBNA-2 genes with diminished or normal transforming activity all expressed high levels of LMP-1, CD23, and CD21. These findings suggest that transactivation of these viral and cellular genes by EBNA-2 plays a critical role in lymphocyte transformation by EBV. Furthermore, these results indicate that the transformation and transactivation functions of EBNA-2 may not be separable.  相似文献   

9.
10.
11.
12.
13.
Epstein-Barr virus (EBV) infection is associated with several human cancers. Latent membrane protein 1 (LMP-1) is one of the key viral proteins required for transformation of primary B cells in vitro and establishment of EBV latency. In this report, we show that LMP-1 is able to induce the expression of several interferon (IFN)-stimulated genes (ISGs) with antiviral properties such as 2'-5' oligoadenylate synthetase (OAS), stimulated trans-acting factor of 50 kDa (STAF-50), and ISG-15. LMP-1 inhibits vesicular stomatitis virus (VSV) replication at low multiplicity of infection (0.1 pfu/cell). The antiviral effect of LMP-1 is associated with the ability of LMP-1 to induce ISGs; an LMP-1 mutant that cannot induce ISGs fails to induce an antiviral state. High levels of ISGs are expressed in EBV latency cells in which LMP-1 is expressed. EBV latency cells have antiviral activity that inhibits replication of superinfecting VSV. The antiviral activity of LMP-1 is apparently not related to IFN production in our experimental systems. In addition, EBV latency is responsive to viral superinfection: LMP-1 is induced and EBV latency is disrupted by EBV lytic replication during VSV superinfection of EBV latency cells. These data suggest that LMP-1 has antiviral effect, which may be an intrinsic part of EBV latency program to assist the establishment and/or maintenance of EBV latency.  相似文献   

14.
B lymphocytes are known as a potential site for latency and reactivation of the human neurotropic polyomavirus, JC virus (JCV). In light of recent studies on the oncogenicity of JCV and the transforming ability of the JCV early protein, T antigen, we investigated the association of JCV with B-cell lymphomas of the central nervous system. Examination of 27 well-characterized clinical specimens by gene amplification and immunohistochemistry revealed the presence of DNA sequences corresponding to the JCV early genome and the late Agnoprotein in 22 samples and the JCV late genome encoding the viral capsid proteins in 8 samples. Expression of T antigen and that of Agnoprotein by immunohistochemistry were each detected in six specimens. No evidence of the production of viral capsid proteins was observed, ruling out productive infection of JCV in the tumor cells. The results from laser capture microdissection verified the presence of JCV T-antigen sequences in tumor cells with positive immunoreactivity to antibodies against the viral proteins T antigen and Agnoprotein. Due to previous reports demonstrating an association of the Epstein-Barr virus (EBV) with transformation of B lymphocytes, EBV DNA sequences and the EBV transforming protein, latent membrane protein 1 (LMP1), were analyzed in parallel. EBV LMP1 DNA sequences were detected in 16 of 23 samples, and LMP1 expression was detected in 16 samples, 5 of which exhibited positive immunoreactivity to JCV proteins. Double labeling demonstrated coexpression of JCV T antigen and EBV LMP1 in the same cells. The detection of the JCV genome in large numbers of B-cell lymphomas and its coexistence with EBV suggest a potential role for JCV in the pathogenesis of primary CNS lymphoma.  相似文献   

15.
16.
Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs.  相似文献   

17.
The cellular interferon regulatory factor-4 (IRF-4), which is a member of IRF family, is involved in the development of multiple myeloma and Epstein-Barr virus (EBV)-mediated transformation of B lymphocytes. However, the molecular mechanism of IRF-4 in cellular transformation is unknown. We have found that knockdown of IRF-4 leads to high expression of IRF-5, a pro-apoptotic member in the IRF family. Overexpression of IRF-4 represses IRF-5 expression. Reduction of IRF-4 leads to growth inhibition, and the restoration of IRF-4 by exogenous plasmids correlates with the growth recovery and reduces IRF-5 expression. In addition, IRF-4 negatively regulates IRF-5 promoter reporter activities and binds to IRF-5 promoters in vivo and in vitro. Knockdown of IRF-5 rescues IRF-4 knockdown-mediated growth inhibition, and IRF-5 overexpression alone is sufficient to induce cellular growth inhibition of EBV-transformed cells. Therefore, IRF-5 is one of the targets of IRF-4, and IRF-4 regulates the growth of EBV-transformed cells partially through IRF-5. This work provides insight on how IRFs interact with one another to participate in viral pathogenesis and transformation.  相似文献   

18.
19.
20.
The fibroblast mitogen platelet-derived growth factor -BB (PDGF-BB) induces a transient expression of the orphan nuclear receptor NR4A1 (also named Nur77, TR3 or NGFIB). The aim of the present study was to investigate the pathways through which NR4A1 is induced by PDGF-BB and its functional role. We demonstrate that in PDGF-BB stimulated NIH3T3 cells, the MEK1/2 inhibitor CI-1040 strongly represses NR4A1 expression, whereas Erk5 downregulation delays the expression, but does not block it. Moreover, we report that treatment with the NF-κB inhibitor BAY11-7082 suppresses NR4A1 mRNA and protein expression. The majority of NR4A1 in NIH3T3 was found to be localized in the cytoplasm and only a fraction was translocated to the nucleus after continued PDGF-BB treatment. Silencing NR4A1 slightly increased the proliferation rate of NIH3T3 cells; however, it did not affect the chemotactic or survival abilities conferred by PDGF-BB. Moreover, overexpression of NR4A1 promoted anchorage-independent growth of NIH3T3 cells and the glioblastoma cell lines U-105MG and U-251MG. Thus, whereas NR4A1, induced by PDGF-BB, suppresses cell growth on a solid surface, it increases anchorage-independent growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号