首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tobacco etch virus (TEV) encodes three proteinases that catalyze processing of the genome-encoded polyprotein. The P1 proteinase originates from the N terminus of the polyprotein and catalyzes proteolysis between itself and the helper component proteinase (HC-Pro). Mutations resulting in substitution of a single amino acid, small insertions, or deletions were introduced into the P1 coding sequence of the TEV genome. Deletion of the N-terminal, nonproteolytic domain of P1 had only minor effects on virus infection in protoplasts and whole plants. Insertion mutations that did not impair proteolytic activity had no measurable effects regardless of whether the modification affected the N-terminal nonproteolytic or C-terminal proteolytic domain. In contrast, three mutations (termed S256A, F, and delta 304) that debilitated P1 proteolytic activity rendered the virus nonviable, whereas a fourth proteinase-debilitating mutation (termed C) resulted in a slow-infection phenotype. A strategy was devised to determine whether the defect in the P1 mutants was due to an inactive proteinase domain or due simply to a lack of proteolytic maturation between P1 and HC-Pro. Sequences coding for a surrogate cleavage site recognized by the TEV NIa proteinase were inserted into the genome of each processing-debilitated mutant at positions that resulted in NIa-mediated proteolysis between P1 and HC-Pro. The infectivity of each mutant was restored by these second-site modifications. These data indicate that P1 proteinase activity is not essential for viral infectivity but that separation of P1 and HC-Pro is required. The data also provide evidence that the proteinase domain is involved in additional, nonproteolytic functions.  相似文献   

2.
The NIa protein of plant potyviruses is a bifunctional protein containing an N-terminal VPg domain and a C-terminal proteinase region. The majority of tobacco etch potyvirus (TEV) NIa molecules are localized to the nucleus of infected cells, although a proportion of NIa is attached covalently as VPg to viral RNA in the cytoplasm. A suboptimal cleavage site that is recognized by the NIa proteinase is located between the two domains. This site was found to be utilized in the VPg-associated, but not the nuclear, pool of NIa. A mutation converting Glu-189 to Leu at the P1 position of the processing site inhibited internal cleavage. Introduction of this mutation into TEV-GUS, an engineered variant of TEV that expresses a reporter protein (beta-glucuronidase [GUS]) fused to the N terminus of the helper component-proteinase (HC-Pro), rendered the virus replication defective in tobacco protoplasts. Site-specific reversion of the mutant internal processing site to the wild-type sequence restored virus viability. In addition, the trans-processing activity of NIa proteinase was tested in vivo after introduction of an artificial cleavage site between the GUS and HC-Pro sequences in the cytoplasmic GUS/HC-Pro polyprotein encoded by TEV-GUS. The novel site was recognized and processed in plants infected by the engineered virus, indicating the presence of excess NIa processing capacity in the cytoplasm. The potential roles of internal NIa processing in TEV-infected cells are discussed.  相似文献   

3.
Tobacco etch potyvirus engineered to express the reporter protein beta-glucuronidase (TEV-GUS) was used for direct observation and quantitation of virus translocation in plants. Four TEV-GUS mutants were generated containing capsid proteins (CPs) with single amino acid substitutions (R154D and D198R), a double substitution (DR), or a deletion of part of the N-terminal domain (delta N). Each modified virus replicated as well as the parental virus in protoplasts, but was defective in cell-to-cell movement through inoculated leaves. The R154D, D198R and DR mutants were restricted essentially to single, initially infected cells. The delta N variant exhibited slow cell-to-cell movement in inoculated leaves, but was unable to move systemically due to a lack of entry into or replication in vascular-associated cells. Both cell-to-cell and systemic movement defects of each mutant were rescued in transgenic plants expressing wild-type TEV CP. Cell-to-cell movement, but not systemic movement, of the DR mutant was rescued partially in transgenic plants expressing TEV CP lacking the C-terminal domain, and in plants expressing CP from the heterologous potyvirus, potato virus Y. Despite comparable levels of accumulation of parental virus and each mutant in symptomatic tissue of TEV CP-expressing transgenic plants, virions were detected only in parental virus- and delta N mutant-infected plants, as revealed using three independent assays. These data suggest that the potyvirus CP possesses distinct, separable activities required for virion assembly, cell-to-cell movement and long-distance transport.  相似文献   

4.
Transport of viruses from cell to cell in plants typically involves one or more viral proteins that supply dedicated movement functions. Transport from leaf to leaf through phloem, or long-distance transport, is a poorly understood process with requirements differing from those of cell-to-cell movement. Through genetic analysis of tobacco etch virus (TEV; potyvirus group), a novel long-distance movement factor was identified that facilitates vascular-associated movement in tobacco. A mutation in the central region of the helper component proteinase (HC-Pro), a TEV-encoded protein with previously described activities in aphid-mediated transmission and polyprotein processing, inactivated long-distance movement. This mutant virus exhibited only minor defects in genome amplification and cell-to-cell movement functions. In situ histochemical analysis revealed that the mutant was capable of infecting mesophyll, bundle sheath, and phloem cells within inoculated leaves, suggesting that the long-distance movement block was associated with entry into or exit from sieve elements. The long-distance movement defect was specifically complemented by HC-Pro supplied in trans by a transgenic host. The data indicate that HC-Pro functions in one or more steps unique to long-distance transport.  相似文献   

5.
The RNA genome of tobacco etch potyvirus (TEV) was engineered to express bacterial beta-glucuronidase (GUS) fused to the virus helper component proteinase (HC-Pro). It was shown previously that prolonged periods (approximately 1 month) of TEV-GUS propagation in plants resulted in the appearance of spontaneous deletion variants. Nine deletion mutants were identified by nucleotide sequence analysis of 40 cDNA clones obtained after polymerase chain reaction amplification. The mutants were missing between 1,741 and 2,074 nucleotides from TEV-GUS, including the sequences coding for most of GUS and the N-terminal region of HC-Pro. This region of HC-Pro contains determinants involved in helper component activity during aphid transmission, as well as a highly conserved series of cysteine residues. The deletion variants were shown to replicate and move systemically without the aid of a helper virus. Infectious viruses harboring the two largest HC-Pro deletions (termed TEV-2del and TEV-7del) were reconstructed by subcloning the corresponding mutated regions into full-length DNA copies of the TEV genome. Characterization of these and additional variants derived by site-directed mutagenesis demonstrated that deletion of sequences coding for the HC-Pro N-terminal domain had a negative effect on accumulation of viral RNA and coat protein. The TEV-2del variant possessed an aphid-nontransmissible phenotype that could be rescued partially by prefeeding of aphids on active HC-Pro from another potyvirus. These data suggest that the N-terminal domain of HC-Pro or its coding sequence enhances virus replication or genome expression but does not provide an activity essential for these processes. The function of this domain, as well as a proposed deletion mechanism involving nonhomologous recombination, is discussed.  相似文献   

6.
J C Carrington  D D Freed    C S Oh 《The EMBO journal》1990,9(5):1347-1353
All proteins encoded by the plant potyvirus, tobacco etch virus (TEV), arise by proteolytic processing of a single polyprotein. Two virus-encoded proteinases (NIa and HC-Pro) that catalyze most of the proteolytic events have been characterized previously. The two proteins that are derived from the N-terminal 87 kd region of the viral polyprotein are a 35 kd protein and HC-Pro (52 kd). It is demonstrated in this study that a third proteolytic activity is required to process the junction between these proteins. Proteolysis at the HC-Pro N terminus to separate these proteins occurred poorly, if at all, after in vitro synthesis of a 97 kd polyprotein, whereas cleavage of the HC-Pro C terminus occurred efficiently by an autoprocessing mechanism. Synthesis of the same polyprotein in transgenic tobacco plants, however, resulted in complete and accurate proteolysis at both termini of HC-Pro. A point mutation affecting an amino acid residue essential for the proteolytic activity of HC-Pro had no effect on N-terminal processing. Expression in transgenic plants of a construct with a large deletion in the 35 kd protein coding region resulted in partial inhibition of HC-Pro N-terminal cleavage, suggesting that the 35 kd protein may affect the proteolytic event but not in a catalytic role. We speculate that this cleavage event is catalyzed by either a cryptic potyviral proteinase that requires a host factor or subcellular environment for activation, or possibly a host proteinase.  相似文献   

7.
To investigate host functions involved in the tobacco etch potyvirus (TEV) infection process, a tobacco line (V20) with a strain-specific defect in supporting systemic infection was analyzed. Using a modified TEV encoding a reporter protein, beta-glucuronidase (GUS), genome amplification, cell-to-cell movement, and long-distance movement were measured in V20 and a susceptible line, Havana425. Comparable levels of TEV-GUS genome amplification were measured in inoculated protoplasts from both tobacco lines. The rates of cell-to-cell movement of virus in inoculated leaves were nearly identical in V20 and Havana425 between 48 and 72 h postinoculation. In contrast, long-distance movement from leaf to leaf was markedly restricted in V20 relative to Havana425. In situ histochemical analysis of inoculated leaves revealed that infection foci expanded radially over time, providing the potential for contact of virus with veins. Immunocytochemical analysis of V20 tissue from infection foci indicated that TEV-GUS entered the phloem parenchyma or companion cells adjacent to the sieve elements, suggesting that the block in long-distance movement was associated with entry into, or exit from, sieve elements. The genetic basis for the V20 restriction was characterized in a segregation analysis of a cross between V20 and Havana425. The heterozygous F1 progeny displayed the susceptible phenotype, indicating that the V20 restriction was a recessive trait. Segregation in the F2 progeny indicated that the restriction was likely due to the interaction of recessive genes at two nonlinked loci. These data support the hypothesis that long-distance movement requires a set of host functions that are distinct from those involved in cell-to-cell movement.  相似文献   

8.
9.
Members of the Closteroviridae and Potyviridae families of the plant positive-strand RNA viruses encode one or two papain-like leader proteinases. In addition to a C-terminal proteolytic domain, each of these proteinases possesses a nonproteolytic N-terminal domain. We compared functions of the several leader proteinases using a gene swapping approach. The leader proteinase (L-Pro) of Beet yellows virus (BYV; a closterovirus) was replaced with L1 or L2 proteinases of Citrus tristeza virus (CTV; another closterovirus), P-Pro proteinase of Lettuce infectious yellows virus (LIYV; a crinivirus), and HC-Pro proteinase of Tobacco etch virus (a potyvirus). Each foreign proteinase efficiently processed the chimeric BYV polyprotein in vitro. However, only L1 and P-Pro, not L2 and HC-Pro, were able to rescue the amplification of the chimeric BYV variants. The combined expression of L1 and L2 resulted in an increased RNA accumulation compared to that of the parental BYV. Remarkably, this L1-L2 chimera exhibited reduced invasiveness and inability to move from cell to cell. Similar analyses of the BYV hybrids, in which only the papain-like domain of L-Pro was replaced with those derived from L1, L2, P-Pro, and HC-Pro, also revealed functional specialization of these domains. In subcellular-localization experiments, distinct patterns were observed for the leader proteinases of BYV, CTV, and LIYV. Taken together, these results demonstrated that, in addition to a common proteolytic activity, the leader proteinases of closteroviruses possess specialized functions in virus RNA amplification, virus invasion, and cell-to-cell movement. The phylogenetic analysis suggested that functionally distinct L1 and L2 of CTV originated by a gene duplication event.  相似文献   

10.
The roles of the capsid protein (CP) and the CP coding sequence of tobacco etch potyvirus (TEV) in genome amplification were analyzed. A series of frameshift-stop codon mutations that interrupted translation of the CP coding sequence at various positions were introduced into the TEV genome. A series of 3' deletion mutants that lacked the CP coding sequence beyond each of the frameshift-stop codon mutations were also produced. In addition, a series of 5' CP deletion mutants were generated. Amplification of genomes containing either frameshift-stop codon insertions after codons 1, 59, 103, and 138 or genomes containing the corresponding 3' deletions of the CP coding sequence was reduced by 100- to 1,000-fold relative to that of the parental genome in inoculated protoplasts. In contrast, a mutant containing a frameshift-stop codon after CP position 189 was amplified to 27% of the level of the parental virus, but the corresponding 3' deletion mutant lacking codons 190 to 261 was nonviable. Deletion mutants lacking CP codons 2 to 100, 2 to 150, 2 to 189, and 2 to 210 were amplified relatively efficiently in protoplasts, but a deletion mutant lacking codons 2 to 230 was nonviable. None of the amplification-defective frameshift-stop codon or deletion mutants was rescued in transgenic cells expressing TEV CP, although the transgenic CP was able to rescue intercellular movement defects of replication-competent CP mutants. Coupled with previous results, these data led to the conclusions that (i) TEV genome amplification requires translation to a position between CP codons 138 and 189 but does not require the CP product and (ii) the TEV CP coding sequence contains a cis-active RNA element between codons 211 and 246. The implications of these findings on mechanisms of RNA replication and genome evolution are discussed.  相似文献   

11.
The tobacco etch potyvirus (TEV) genome encodes a polyprotein that is processed by three virus-encoded proteinases. Although replication of TEV likely occurs in the cytoplasm, two replication-associated proteins, VPg-proteinase (nuclear inclusion protein a) (NIa) and RNA-dependent RNA polymerase (nuclear inclusion protein b) (NIb), accumulate in the nucleus of infected cells. The 6-kDa protein is located adjacent to the N terminus of NIa in the TEV polyprotein, and, in the context of a 6-kDa protein/NIa (6/NIa) polyprotein, impedes nuclear translocation of NIa (M. A. Restrepo-Hartwig and J. C. Carrington, J. Virol. 66:5662-5666, 1992). The 6-kDa protein and three polyproteins containing the 6-kDa protein were identified by affinity chromatography of extracts from infected plants. Two of the polyproteins contained NIa or the N-terminal VPg domain of NIa linked to the 6-kDa protein. To investigate the role of the 6-kDa protein in vivo, insertion and substitution mutagenesis was targeted to sequences coding for the 6-kDa protein and its N- and C-terminal cleavage sites. These mutations were introduced into a TEV genome engineered to express the reporter protein beta-glucuronidase (GUS), allowing quantitation of virus amplification by a fluorometric assay. Three-amino-acid insertions at each of three positions in the 6-kDa protein resulted in viruses that were nonviable in tobacco protoplasts. Disruption of the N-terminal cleavage site resulted in a virus that was approximately 10% as active as the parent, while disruption of the C-terminal processing site eliminated virus viability. The subcellular localization properties of the 6-kDa protein were investigated by fractionation and immunolocalization of 6-kDa protein/GUS (6/GUS) fusion proteins in transgenic plants. Nonfused GUS was associated with the cytosolic fraction (30,000 x g centrifugation supernatant), while 6/GUS and GUS/6 fusion proteins sedimented with the crude membrane fraction (30,000 x g centrifugation pellet). The GUS/6 fusion protein was localized to apparent membranous proliferations associated with the periphery of the nucleus. These data suggest that the 6-kDa protein is membrane associated and is necessary for virus replication.  相似文献   

12.
The NIb protein of tobacco etch potyvirus (TEV) possesses several functions, including RNA-dependent RNA polymerase and nuclear translocation activities. Using a reporter protein fusion strategy, NIb was shown to contain two independent nuclear localization signals (NLS I and NLS II). NLS I was mapped to a sequence within amino acid residues 1 to 17, and NLS II was identified between residues 292 and 316. Clustered point mutations resulting in substitutions of basic residues within the NLSs were shown previously to disrupt nuclear translocation activity. These mutations also abolished TEV RNA amplification when introduced into the viral genome. The amplification defects caused by each NLS mutation were complemented in trans within transgenic cells expressing functional NIb, although the level of complementation detected for each mutant differed significantly. Combined with previous results (X. H. Li and J. C. Carrington, Proc. Natl. Acad. Sci. USA 92:457-461, 1995), these data suggest that the NLSs overlap with essential regions necessary for NIb trans-active function(s). The fact that NIb functions in trans implies that it must interact with one or more other components of the genome replication apparatus. A yeast two-hybrid system was used to investigate physical interactions between NIb and several other TEV replication proteins, including the multifunctional VPg/proteinase NIa and the RNA helicase CI. A specific interaction was detected between NIa and NIb. Deletion of any of five regions spanning the NIb sequence resulted in NIb variants that were unable to interact with NIa. Clustered point mutations affecting the conserved GDD motif or NLS II within the central region of NIb, but not mutations affecting NLS I near the N terminus, reduced or eliminated the interaction. The C-terminal proteinase (Pro) domain of NIa, but not the N-terminal VPg domain, interacted with NIb. The effects of NIb mutations within NLS I, NLS II, and the GDD motif on the interaction between the Pro domain and NIb were identical to the effects of these mutations on the interaction between full-length NIa and NIb. These data are compatible with a model in which NIb is directed to replication complexes through an interaction with the Pro domain of NIa.  相似文献   

13.
The tobacco etch potyvirus (TEV) RNA-dependent RNA polymerase (NIb) has been shown to interact with the proteinase domain of the VPg-proteinase (NIa). To investigate the significance of this interaction, a Saccharomyces cerevisiae two-hybrid assay was used to isolate conditional NIa mutant proteins with temperature-sensitive (ts) defects in interacting with NIb. Thirty-six unique tsNIa mutants with substitutions affecting the proteinase domain were recovered. Most of the mutants coded for proteins with little or no proteolytic activity at permissive and nonpermissive temperatures. However, three mutant proteins retained proteolytic activity at both temperatures and, in two cases (tsNIa-Q384P and tsNIa-N393D), the mutations responsible for the ts interaction phenotype could be mapped to single positions. One of the mutations (N393D) conferred a ts-genome-amplification phenotype when it was placed in a recombinant TEV strain. Suppressor NIb mutants that restored interaction with the tsNIa-N393D protein at the restrictive temperature were recovered by a two-hybrid selection system. Although most of the suppressor mutants failed to stimulate amplification of genomes encoding the tsNIa-N393D protein, two suppressors (NIb-I94T and NIb-C380R) stimulated amplification of virus containing the N393D substitution by approximately sevenfold. These results support the hypothesis that interaction between NIa and NIb is important during TEV genome replication.  相似文献   

14.
15.
The V20 cultivar of Nicotiana tabacum was shown previously to exhibit a strain-specific restriction of long-distance movement of tobacco etch potyvirus (TEV). In V20, both TEV-HAT and TEV-Oxnard strains are capable of genome amplification and cell-to-cell movement, but only TEV-Oxnard is capable of systemic infection by vasculature-dependent long-distance movement. To investigate the basis for host-specific movement of TEV, chimeric virus genomes were assembled from TEV-HAT and TEV-Oxnard. Viruses containing the TEV-Oxnard coding regions for HC-Pro and/or capsid protein (CP), two proteins that are known to be essential for TEV long-distance movement, failed to infect V20 systemically. In contrast, chimeric viruses encoding the TEV-Oxnard VPg domain of NIa were able to infect V20 systemically. The critical region controlling the infection phenotype in V20 was mapped to a 67-nucleotide segment containing 10-nucleotide differences, but only five amino acid differences, between TEV-HAT and TEV-Oxnard. In V20 coinfection experiments, a restricted strain had no effect on systemic infection by a long-distance movement-competent chimeric strain, suggesting that the restricted strain was not inducing a generalized systemic resistance response. These data suggest that the VPg domain, which is covalently attached to the 5' end of genomic RNA, interacts either directly or indirectly with host components to facilitate long-distance movement.  相似文献   

16.
17.
18.
Ry confers extreme resistance to all strains of potato virus Y (PVY). To identify the elicitor of the Ry-mediated resistance against PVY in potato, we expressed each of the PVY-encoded proteins in leaves of PVY-resistant (Ry) and -susceptible (ry) plants. For most of the proteins tested, there was no evident response. However, when the NIa proteinase was expressed in leaves of Ry plants, there was a hypersensitive response (HR). Proteinase active site mutants failed to induce the Ry-mediated response. The HR was also induced by the NIa proteinase from pepper mottle virus (PepMoV), which has the same cleavage specificity as the PVY enzyme, but not by the tobacco etch virus (TEV) or the potato virus A (PVA) proteinases that cleave different peptide motifs. Based on these results, we propose that Ry-mediated resistance requires the intact active site of the NIa proteinase. Although the structure of the active proteinase could have elicitor activity, it is possible that this proteinase releases an elicitor by cleavage of a host-encoded protein. Alternatively, the proteinase could inactivate a negative regulator of the Ry-mediated resistance response.  相似文献   

19.
A mutational analysis was conducted to investigate the functions of the tobacco etch potyvirus VPg-proteinase (NIa) protein in vivo. The NIa N-terminal domain contains the VPg attachment site, whereas the C-terminal domain contains a picornavirus 3C-like proteinase. Cleavage at an internal site separating the two domains occurs in a subset of NIa molecules. The majority of NIa molecules in TEV-infected cells accumulate within the nucleus. By using a reporter fusion strategy, the NIa nuclear localization signal was mapped to a sequence within amino acid residues 40 to 49 in the VPg domain. Mutations resulting in debilitation of NIa nuclear translocation also debilitated genome amplification, suggesting that the NLS overlaps a region critical for RNA replication. The internal cleavage site was shown to be a poor substrate for NIa proteolysis because of a suboptimal sequence context around the scissile bond. Mutants that encoded NIa variants with accelerated internal proteolysis exhibited genome amplification defects, supporting the hypothesis that slow internal processing provides a regulatory function. Mutations affecting the VPg attachment site and proteinase active-site residues resulted in amplification-defective viruses. A transgenic complementation assay was used to test whether NIa supplied in trans could rescue amplification-defective viral genomes encoding altered NIa proteins. Neither cells expressing NIa alone nor cells expressing a series of NIa-containing polyproteins supported increased levels of amplification of the mutants. The lack of complementation of NIa-defective mutants is in contrast to previous results obtained with RNA polymerase (NIb)-defective mutants, which were relatively efficiently rescued in the transgenic complementation assay. It is suggested that, unlike NIb polymerase, NIa provides replicative functions that are cis preferential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号