首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The ligand specificity of the alpha 3A beta 1 integrin was analyzed using K562 cells transfected with full-length alpha 3A cDNA and was compared with that of alpha 6A beta 1 in similarly transfected K562 cells. Clones were obtained that showed comparable surface expression of either alpha 3A beta 1 or alpha 6A beta 1 integrins. Those expressing alpha 3A beta 1 attached to and spread on immunopurified human kalinin and cellular matrices containing human kalinin, which is a particular isoform of laminin. In addition, alpha 3A transfectants adhered to bovine kidney laminins possessing a novel A chain variant. Binding to kalinin was blocked by a monoclonal antibody against the A chain constituent of kalinin and adhesion to both kalinin and kidney laminins by anti-alpha 3 and beta 1 monoclonal antibodies. The alpha 3A transfected cells bound more strongly to kalinin and bovine kidney laminins after treatment with the beta 1 stimulatory antibody TS2/16. A distinctly weaker and activation-dependent adhesion of alpha 3A transfectants was observed on human placental laminins possessing the Am chain variant (merosin), and no adhesion occurred on bovine heart laminins and murine EHS tumor laminin. Further inactive substrates were fibronectin, nidogen, and collagen types IV and VI, indicating that the alpha 3A beta 1 integrin is a much less promiscuous receptor than thought before. By contrast, alpha 6A transfected cells adhered to all laminin isoforms when stimulated with TS2/16. Adhesion also occurred only on bovine kidney laminins in the absence of TS2/16. These results demonstrate that both alpha 3A beta 1 and alpha 6A beta 1 integrins are typical laminin receptors but that their affinity and activation dependence for binding to various laminin isoforms differ considerably.  相似文献   

2.
Integrins alpha3beta1 and alpha6beta1 are two major laminin receptors expressed on the surface of mammalian cells. Interactions of cells with laminins through these integrins play important roles in cell adhesion, differentiation, motility, and matrix assembly. To determine the binding specificity and affinity of these integrins toward various types of laminins at the level of direct protein-protein interactions, we purified integrins alpha3beta1 and alpha6beta1 from human placenta, and examined their binding to a panel of laminin isoforms, each containing distinct alpha chains (i.e., laminin-1, laminin-2/4, laminin-5, laminin-8, and laminin-10/11). Integrin alpha3beta1 showed clear specificity for laminin-5 and laminin-10/11, with no significant binding to laminin-1, laminin-2/4, and laminin-8. In contrast, integrin alpha6beta1 showed a broad spectrum of specificity, with apparent binding affinity in the following order: laminin-10/11 > laminin-5 > laminin-1 > laminin-2/4 congruent with laminin-8. Integrin titration assays demonstrated that laminin-10/11 was the most preferred ligand among the five distinct laminin isoforms for both alpha3beta1 and alpha6beta1 integrins. Given that laminin-10/11 is the major basement membrane component of many adult tissues, the interaction of laminin-10/11 with these integrins should play a central role in the adhesive interactions of epithelial cells with underlying basement membranes.  相似文献   

3.
The interactions of cells with basement membranes are primarily mediated via the engagement of laminins by a group of integrin family proteins, including integrins alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4. To explore the ligand-binding specificities of these laminin-binding integrins, we produced these integrins, including two alpha7beta1 splice variants (alpha7X1beta1 and alpha7X2beta1), as soluble recombinant proteins and determined their binding specificities and affinities toward a panel of purified laminin isoforms containing distinct alpha chains. Among the five laminin-binding integrins investigated, alpha3beta1 and alpha6beta4 exhibited a clear specificity for laminin-332 (alpha3beta3gamma2) and laminin-511 (alpha5beta1gamma1)/521 (alpha5beta2gamma1), while integrin alpha6beta1 showed a broad specificity, binding to all laminin isoforms with a preference for laminin-111 (alpha1beta1gamma1), laminin-332 and laminin-511/521. The two alpha7beta1 variants were distinct from alpha3beta1, alpha6beta1 and alpha6beta4 in that they did not bind to laminin-332. alpha7X1beta1 bound to all laminins, except laminin-332, with a preference for laminin-211 (alpha2beta1gamma1)/221 (alpha2beta2gamma1) and laminin-511/521, while alpha7X2beta1 bound preferentially to laminin-111 and laminin-211/221. Laminin-511/521 was the most preferred ligand for all the laminin-binding integrins, except for alpha7X2beta1, whereas laminin-411 was the poorest ligand, capable of binding to alpha6beta1 and alpha7X1beta1 with only modest binding affinities. These comprehensive analyses of the interactions between laminin-binding integrins and a panel of laminins clearly demonstrate that the isoforms of both integrins and laminins differ in their binding specificities and affinities, and provide a molecular basis for better understanding of the adhesive interactions of cells with basement membranes of defined laminin compositions.  相似文献   

4.
Laminins, as basal membrane glycoproteins, are able to stimulate cell adhesion and migration, and to influence gene expression. The laminin molecule has a set of bioactive sites that interact with different integrin and nonintegrin receptors, and, as a result, the reaction of the same cell type to different laminin isoforms may be different. The aim of this study was to determine the contributions of both integrins with beta 1 and beta 4 chains and 67 kDa laminin receptor in the interaction of A431 cells with two laminin isoforms: laminin-1 and laminin-2/4. The obtained data show that integrin alpha 6 beta 4 is more specific for interaction with laminin-2/4 than with laminin-1 and takes part in the stage of attachment of A431 cells to laminin. 67 kDa receptor promotes cell spreading on laminin-2/4 and inhibits cell spreading on laminin-1. An assumption was made about the complex action of receptors for interaction of A431 cells with laminins ("integrin alpha 6 beta 4--67 kDa receptors" complex).  相似文献   

5.
Laminin-integrin interactions can in some settings activate the extracellular signal-regulated kinases (ERKs) but the control mechanisms are poorly understood. Herein, we studied ERK activation in response to two laminins isoforms (-1 and -10/11) in two epithelial cell lines. Both cell lines expressed beta1-containing integrins and dystroglycan but lacked integrin alpha6beta4. Antibody perturbation assays showed that both cell lines bound to laminin-10/11 via the alpha3beta1and alpha6beta1 integrins. Although laminin-10/11 was a stronger adhesion complex than laminin-1 for both cell lines, both laminins activated ERK in only one of the two cell lines. The ERK activation was mediated by integrin alpha6beta1 and not by alpha3beta1 or dystroglycan. Instead, we found that dystroglycan-binding domains of both laminin-1 and -10/11 suppressed integrin alpha6beta1-mediated ERK activation. Moreover, the responding cell line expressed the two integrin alpha6 splice variants, alpha6A and alpha6B, whereas the nonresponding cell line expressed only alpha6B. Furthermore, ERK activation was seen in cells transfected with the integrin alpha6A subunit, but not in alpha6B-transfected cells. We conclude that laminin-1 and -10/11 share the ability to induce ERK activation, that this is regulated by integrin alpha6Abeta1, and suggest a novel role for dystroglycan-binding laminin domains as suppressors of this activation.  相似文献   

6.
7.
To examine the function of the alpha 6 beta 4 integrin we have determined its ligand-binding ability and overexpressed two potentially dominant negative mutant beta 4 subunits, lacking either the cytoplasmic or extracellular domain, in bladder epithelial 804G cells. The results of cell adhesion and radioligand-binding assays showed that alpha 6 beta 4 is a receptor for several laminin isoforms, including laminin 1, 2, 4, and 5. Overexpression of the tail-less or head-less mutant beta 4 subunit did not suppress alpha 6 beta 4-mediated adhesion to laminins, as both types of transfectants adhered to these ligands in the presence of blocking anti-beta 1 antibodies as well as the controls. However, immunofluorescence experiments indicated that the endogenous alpha 6 beta 4 integrin and other hemidesmosomal markers were not concentrated in hemidesmosomes in cells overexpressing tail- less beta 4, while the distribution of these molecules was not altered in cells overexpressing the head-less subunit. Electron microscopic studies confirmed that cells overexpressing tail-less beta 4 had a drastically reduced number of hemidesmosomes, while cells expressing the head-less subunit had a normal number of these structures. Thus, expression of a tail-less, but not a head-less mutant beta 4 subunit leads to a dominant negative effect on hemidesmosome assembly without suppressing initial adhesion to laminins. We conclude that the alpha 6 beta 4 integrin binds to several laminins and plays an essential role in the assembly and/or stability of hemidesmosomes, that alpha 6 beta 4- mediated adhesion and hemidesmosome assembly have distinct requirements, and that it is possible to use a dominant negative approach to selectively interfere with a specific function of an integrin.  相似文献   

8.
To identify the laminin isoforms of the basement membranes that could be implicated in the extravasation process of neoplastic lymphocytes, a number of purified laminins and one native renal laminin complex were comparatively investigated for their ability to promote migration of neoplastic lymphocytes in vitro. The identity/composition of a human placental laminin complex was asserted by combining immunochemical assays, sequence determination of tryptic peptides, and ultrastructural analysis to be composed predominantly of laminin-10 in which the coiled-coil C-terminal regions and the G globular domain of the alpha5 chain were preserved intact despite the enzymatic treatment used for its isolation. Lymphoma and leukemic cell lines failed to migrate towards laminin-4, -9, -11, moved poorly in response to laminin-1, -2/4, -5 and the renal laminin complex, but markedly locomoted towards the subendothelial laminin-8 and -10. The motility-promoting interaction with these latter laminins was interchangeably mediated by the alpha3beta1 and alpha6beta1 integrins. Lymphocyte locomotion on laminins assayed in the presence of cytokines was either reduced or enhanced suggesting that local cytokine milieu could further influence motility response.  相似文献   

9.
Regulated adhesion of leukocytes to the extracellular matrix is essential for transmigration of blood vessels and subsequent migration into the stroma of inflamed tissues. Although beta(2)-integrins play an indisputable role in adhesion of polymorphonuclear granulocytes (PMN) to endothelium, we show here that beta(1)- and beta(3)-integrins but not beta(2)-integrin are essential for the adhesion to and migration on extracellular matrix molecules of the endothelial cell basement membrane and subjacent interstitial matrix. Mouse wild type and beta(2)-integrin null PMN and the progranulocytic cell line 32DC13 were employed in in vitro adhesion and migration assays using extracellular matrix molecules expressed at sites of extravasation in vivo, in particular the endothelial cell laminins 8 and 10. Wild type and beta(2)-integrin null PMN showed the same pattern of ECM binding, indicating that beta(2)-integrins do not mediate specific adhesion of PMN to the extracellular matrix molecules tested; binding was observed to the interstitial matrix molecules, fibronectin and vitronectin, via integrins alpha(5)beta(1) and alpha(v)beta(3), respectively; to laminin 10 via alpha(6)beta(1); but not to laminins 1, 2, and 8, collagen type I and IV, perlecan, or tenascin-C. PMN binding to laminins 1, 2, and 8 could not be induced despite surface expression of functionally active integrin alpha(6)beta(1), a major laminin receptor, demonstrating that expression of alpha(6)beta(1) alone is insufficient for ligand binding and suggesting the involvement of accessory factors. Nevertheless, laminins 1, 8, and 10 supported PMN migration, indicating that differential cellular signaling via laminins is independent of the extent of adhesion. The data demonstrate that adhesive and nonadhesive interactions with components of the endothelial cell basement membrane and subjacent interstitium play decisive roles in controlling PMN movement into sites of inflammation and illustrate that beta(2)-integrins are not essential for such interactions.  相似文献   

10.
The presence of many laminin receptors of the beta1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin alpha6beta4 and dystroglycan. We therefore tested the binding of a beta1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin alpha6Abeta4A variant. GD25 beta1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin alpha6 antibody, but not by a dystroglycan antibody. Hence, integrin alpha6Abeta4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin alpha6Abeta4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin alpha6Abeta4A.  相似文献   

11.
Laminin 5 regulates anchorage and motility of epithelial cells through integrins alpha6beta4 and alpha3beta1, respectively. We used targeted disruption of the LAMA3 gene, which encodes the alpha3 subunit of laminin 5 and other isoforms, to examine developmental functions that are regulated by adhesion to the basement membrane (BM). In homozygous null animals, profound epithelial abnormalities were detected that resulted in neonatal lethality, consistent with removal of all alpha3-laminin isoforms from epithelial BMs. Alterations in three different cellular functions were identified. First, using a novel tissue adhesion assay, we found that the mutant BM could not induce stable adhesion by integrin alpha6beta4, consistent with the presence of junctional blisters and abnormal hemidesmosomes. In the absence of laminin 5 function, we were able to detect a new ligand for integrin alpha3beta1 in the epidermal BM, suggesting that basal keratinocytes can utilize integrin alpha3beta1 to interact with an alternative ligand. Second, we identified a survival defect in mutant epithelial cells that could be rescued by exogenous laminin 5, collagen, or an antibody against integrin alpha6beta4, suggesting that signaling through beta1 or beta4 integrins is sufficient for survival. Third, we detected abnormalities in ameloblast differentiation in developing mutant incisors indicating that events downstream of adhesion are affected in mutant animals. These results indicate that laminin 5 has an important role in regulating tissue organization, gene expression, and survival of epithelium.  相似文献   

12.
Integrins are found in adhesion structures, which link the extracellular matrix to cytoskeletal proteins. Here, we attempt to further define the distribution of beta1 integrins in the context of their association with matrix proteins and other cell surface molecules relevant to the endocytic process. We find that beta1 integrins colocalize with fibronectin in fibrillar adhesion structures. A fraction of caveolin is also organized along these adhesion structures. The extracellular matrix protein laminin is not concentrated in these structures. The alpha4beta1 integrin exhibits a distinct distribution from other beta1 integrins after cells have adhered for 1 h to extracellular matrix proteins but is localized in adhesion structures after 24 h of adhesion. There are differences between the fibronectin receptors: alpha5beta1 integrins colocalize with adaptor protein-2 in coated pits, while alpha4beta1 integrins do not. This parallels our earlier observation that of the two laminin receptors, alpha1beta1 and alpha6beta1, only alpha1beta1 integrins colocalize with adaptor protein-2 in coated pits. Calcium chelation or inhibition of mitogen-activated protein kinase kinase, protein kinase C, or src did not affect localization of alpha1beta1 and alpha5beta1 integrins in coated pits. Likewise, the integrity of coated-pit structures or adhesion structures is not required for integrin and adaptor protein-2 colocalization. This suggests a robust and possibly constitutive interaction between these integrins and coated pits.  相似文献   

13.
The binding specificity of alpha7beta1 integrins for different laminin isoforms is defined by the X1 and X2 splice domains located in the beta-propeller domain of the alpha7 subunit. In order to gain insight into the mechanism of specific laminin-integrin interactions, we defined laminin-binding epitopes of the alpha7X1 and -X2 domains by single amino acid substitutions and domain swapping between X1 and X2. The interaction of mutated, recombinantly prepared alpha7X1beta1 and alpha7X2beta1 heterodimers with various laminin isoforms was studied by surface plasmon resonance and solid phase binding assays. The data show that distinct clusters of surface-exposed acidic residues located in different positions of the X1 and the X2 loops are responsible for the specific recognition of laminins. These residues are conserved between the respective X1 or X2 splice domains of the alpha7 chains of different species, some also in the corresponding X1/X2 splice domains of alpha6 integrin. Interestingly, ligand binding was also modulated by mutating surface-exposed hydrophobic residues (alpha7X1L205, alpha7X2Y208) at positions corresponding to the fibronectin binding synergy site in alpha5beta1 integrin. Mutations in X1 that affected binding to laminin-1 also affected binding to laminin-8 and -10, but not to the same extent, thus allowing conclusions on the specific role of individual surface epitopes in the selective recognition of laminin-1 versus laminins -8 and -10. The role of the identified epitopes was confirmed by molecular dynamics simulations of wild-type integrins and several inactivating mutations. The analysis of laminin isoform interactions with various X1/X2 chimaera lend further support to the key role of negative surface charges and pointed to an essential contribution of the N-terminal TARVEL sequence of the X1 domain for recognition of laminin-8 and -10. In conclusion, specific surface epitopes containing charged and hydrophobic residues are essential for ligand binding and define specific interactions with laminin isoforms.  相似文献   

14.
In this study, we used clone A, a human colon carcinoma cell line, to characterize those integrins that mediate colon carcinoma adhesion to laminin. Monoclonal antibodies specific for the human beta 1 subunit inhibited clone A adhesion to laminin. They also precipitated a complex of surface proteins that exhibited an electrophoretic behavior characteristic of alpha 2 beta 1 and alpha 3 beta 1. A monoclonal antibody specific for alpha 2 (PIH5) blocked clone A adhesion to laminin, as well as to collagen I. An alpha 3-specific antibody (P1B5) had no effect on clone A adhesion to laminin, even though it can block the adhesion of other cell types to laminin. Thus, the alpha 2 beta 1 integrin can function as both a laminin and collagen I receptor on clone A cells. Although these cells express alpha 3 beta 1, an established laminin receptor, they do not appear to use it to mediate laminin adhesion. In addition, the monoclonal antibody GoH3, which recognizes the alpha 6 integrin subunit, also inhibited carcinoma adhesion to laminin but not to fibronectin or collagen I. This antibody precipitated the alpha 6 subunit in association with the beta 4 subunit. There was no evidence of alpha 6 beta 1 association on these cells. In summary, the results obtained in this study indicate that multiple integrin alpha subunits, in association with two distinct beta subunits, are involved in colon carcinoma adhesion to laminin. Based on the behavior of alpha 3 beta 1 and alpha 2 beta 1, the results also suggest that cells can regulate the ability of a specific integrin to mediate adhesion.  相似文献   

15.
The laminin-type globular (LG) domains of laminin alpha chains have been implicated in various cellular interactions that are mediated through receptors such as integrins, alpha-dystroglycan, syndecans, and the Lutheran blood group glycoprotein (Lu). Lu, an Ig superfamily transmembrane receptor specific for laminin alpha5, is also known as basal cell adhesion molecule (B-CAM). Although Lu/B-CAM binds to the LG domain of laminin alpha5, the binding site has not been precisely defined. To better delineate this binding site, we produced a series of recombinant laminin trimers containing modified alpha chains, such that all or part of alpha5LG was replaced with analogous segments of human laminin alpha1LG. In solid phase binding assays using a soluble Lu (Lu-Fc) composed of the Lu extracellular domain and human IgG1 Fc, we found that Lu bound to Mr5G3, a recombinant laminin containing alpha5 domains LN through LG3 fused to human laminin alpha1LG4-5. However, Lu/B-CAM did not bind other recombinant laminins containing alpha5LG3 unless alpha5LG1-2 was also present. A recombinant alpha5LG1-3 tandem lacking the laminin coiled coil (LCC) domain did not reproduce the activity of Lu/B-CAM binding. Therefore, proper structure of the alpha5LG1-3 tandem with the LCC domain was essential for the binding of Lu/B-CAM to laminin alpha5. Our results also suggest that the binding site for Lu/B-CAM on laminin alpha5 may overlap with that of integrins alpha3beta1 and alpha6beta1.  相似文献   

16.
For implantation and placentation to occur, mouse embryo trophoblast cells must penetrate the uterine stroma to make contact with maternal blood vessels. A major component of the uterine epithelial basement membrane and underlying stromal matrix with which they interact is the extracellular matrix protein laminin. We have identified integrin alpha 7 beta 1 as a major receptor for trophoblast-laminin interactions during implantation and yolk sac placenta formation. It is first expressed by trophectoderm cells of the late blastocyst and by all trophectoderm descendants in the early postimplantation embryo through E8.5, then disappears except in cells at the interface between the allantois and the ectoplacental plate. Integrin alpha 7 expression is a general characteristic of the early differentiation stages of rodent trophoblast, given that two different cultured trophoblast cell lines also express this integrin. Trophoblast cells interact with at least three different laminin isoforms (laminins 1, 2/4, and 10/11) in the blastocyst and in the uterus at the time of implantation. Outgrowth assays using function-blocking antibodies show that alpha 7 beta 1 is the major trophoblast receptor for laminin 1 and a functional receptor for laminins 2/4 and 10/11. When trophoblast cells are cultured on substrates of these three laminins, they attach and spread on all three, but show decreased proliferation on laminin 1. These results show that the alpha 7 beta 1 integrin is expressed by trophoblast cells and acts as receptor for several isoforms of laminin during implantation. These interactions are not only important for trophoblast adhesion and spreading but may also play a role in regulating trophectoderm proliferation and differentiation.  相似文献   

17.
An active involvement of blood-brain barrier endothelial cell basement membranes in development of inflammatory lesions in the central nervous system (CNS) has not been considered to date. Here we investigated the molecular composition and possible function of the extracellular matrix encountered by extravasating T lymphocytes during experimental autoimmune encephalomyelitis (EAE).Endothelial basement membranes contained laminin 8 (alpha4beta1gamma1) and/or 10 (alpha5beta1gamma1) and their expression was influenced by proinflammatory cytokines or angiostatic agents. T cells emigrating into the CNS during EAE encountered two biochemically distinct basement membranes, the endothelial (containing laminins 8 and 10) and the parenchymal (containing laminins 1 and 2) basement membranes. However, inflammatory cuffs occurred exclusively around endothelial basement membranes containing laminin 8, whereas in the presence of laminin 10 no infiltration was detectable. In vitro assays using encephalitogenic T cell lines revealed adhesion to laminins 8 and 10, whereas binding to laminins 1 and 2 could not be induced. Downregulation of integrin alpha6 on cerebral endothelium at sites of T cell infiltration, plus a high turnover of laminin 8 at these sites, suggested two possible roles for laminin 8 in the endothelial basement membrane: one at the level of the endothelial cells resulting in reduced adhesion and, thereby, increased penetrability of the monolayer; and secondly at the level of the T cells providing direct signals to the transmigrating cells.  相似文献   

18.
The involvement of integrins in mediating interaction of cells to well-characterized proteolytic fragments (P1, E3, and E8) of laminin was assessed by antibody blocking studies. Cell adhesion to fragment P1 was affected by mAbs against the integrin beta 1 and beta 3 subunits and furthermore could be prevented completely by a synthetic peptide containing the Arg-Gly-Asp sequence. Because the beta 3 antibody-sensitive cell lines expressed the vitronectin receptor (alpha v beta 3) at high levels, the involvement of this receptor in cell adhesion to P1 is strongly suggested. Integrin-mediated cell adhesion to E3 is of low affinity and was inhibited by antibodies against the integrin beta 1 subunit. In contrast, adhesion of some cell types to E3 was not or only partially sensitive to inhibition by anti-integrin subunit antibodies. Cell adhesion to E8 was blocked completed by integrin alpha 6 or beta 1 antibodies. The alpha 6-specific antibody did not inhibit cell adhesion to E3 or P1. Furthermore, the antibody only blocked adhesion to laminin of those cells that adhered exclusively to the E8 fragment. In addition, expression of alpha 6 beta 1 was closely correlated with the ability of cells to bind to the E8 fragment of laminin. These results indicate that the alpha 6 beta 1 integrin is a specific receptor for the E8 fragment of laminin. Many cell types expressed, instead of or in addition to alpha 6 beta 1 the recently described integrin alpha 6 beta 4. Although the ligand of alpha 6 beta 4 was not identified, it must be different from that of alpha 6 beta 1, because cells that express alpha 6 beta 4, but not alpha 6 beta 1, do not adhere to E8, and cell adhesion to E8 was specifically blocked by beta 1 specific antibodies. In conclusion, the data indicate that distinct integrin receptors belonging to the beta 1 or beta 3 subfamily are involved in adhesion of cells to the various laminin fragments. Adhesion to E3 may also be brought about by other receptor molecules, possibly proteoglycans, not belonging to the integrin family.  相似文献   

19.
Vertebrate laminins and netrins share N-terminal domain structure, but appear to be only distantly related. Both families can be divided into different subfamilies on the basis of structural considerations. Recent observations suggest that specific laminin and netrin members have developmental functions that are highly conserved across species. Vertebrate laminin-1 (alpha1beta1gamma1) and laminin-10 (alpha5beta1gamma1), like the two Caenorhabditis elegans laminins, are embryonically expressed and are essential for basement membrane assembly. Basement membrane assembly is a cooperative process in which laminins polymerize through their LN domains and anchor to the cell surface through their G domains; this leads to cell signaling through integrins and dystroglycan (and possibly other receptors) recruited to the adherent laminin. Netrins may associate with this network through heterotypic LN domain interactions. Vertebrate netrin-1, like invertebrate UNC-6/netrins, is well known as an extracellular guidance cue that directs axon migration towards or away from the ventral midline. It also regulates cell adhesions and migrations, probably as a basement membrane component. Although sharing structural features, these two vertebrate protein families are quite distinct, having both retained members that mediate the ancestral developmental functions.  相似文献   

20.
Adhesion of keratinocytes in a wound outgrowth to laminin 5 in the basement membrane via integrins alpha6beta4 and alpha3beta1 is distinct from adhesion to dermal collagen via alpha2beta1 or to fibronectin via alpha5beta1. Leading cells in the outgrowth are distinguished from following keratinocytes by deposition of laminin 5, failure to communicate via gap junctions and sensitivity to toxin B, an inhibitor of RhoGTPase. Laminin 5 deposited by leading keratinocytes onto dermal collagen dominates over dermal ligands and changes the cell signals required for adhesion from collagen-dependent to laminin-5-dependent. Thus, deposition of laminin 5 can instruct keratinocytes to switch from an activated phenotype to a quiescent and integrated epithelial phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号