首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Evidence is presented for the existence of a relatively high-potential regulatory centre in the NAD-dependent hydrogenase from the hydrogen oxidizing bacterium Alcaligenes eutrophus Z1. Reduction of the hydrogenase to the redox potentials lower than -100 mV converts the enzyme into a catalytically active state that is remarkably stable to oxidants. Once activated, the enzyme does not loose its activity on intensive oxygenation for at least 3 hours. A novel hydrogenase ESR signal with a wide temperature optimum and a approximately -100 mV midpoint redox potential was detected. We suggest that the reduction of this redox centre trigger conformational changes in the inactive oxidized enzyme molecule, thus reorganizing the latter into the active one.  相似文献   

2.
A novel inactivation mechanism of the NAD-dependent hydrogenase from Alcaligenes eutrophus Z1 comprising redox-dependent steps is described. The model of the hydrogenase inactivation process is proposed which implies that the enzyme may exist in several forms which differ in their stability and spectral properties. One of these forms, existing within a limited (approximately -200 +/- 30 mV) potential range, undergoes a rapid and irreversible inactivation. The dissociation of the FMN prosthetic group from the apohydrogenase appears to be the main reason for the enzyme inactivation. The rationale for the enzyme stabilization under real operational conditions based on the chemical modification of the hydrogenase molecule is suggested.  相似文献   

3.
An electrochemical method of hydrogenase activity measurement is developed. It permits a new approach to the activation/inactivation process of the Desulfovibrio gigas hydrogenase. A monolayer of hydrogenase is grafted onto a glassy carbon electrode which is both the support of the enzyme and the detector of the activity. The physicochemical composition of the enzyme microenvironment is thus well defined and easily controlled by the electrode potential. Successive periods of inactivation and activation are applied to the same hydrogenase molecules, thus the activity can be correlated to the chronology of the experiments. We distinguish two kinds of activation/inactivation processes. The first one, already described for the enzyme stored for some months in aerobic conditions, is a slow activation by molecular hydrogen or a reducing medium (half-reaction time = 2 h). The second one is an anaerobic inactivation by an oxidizing potential. This first order inactivation (half-reaction time = 10 min) is fully reversible. This modulation of the activity level is controlled by an Ni(III)/Ni(II) redox couple (Eh = -455 mV/calomel-saturated KCl electrode at pH 8.3) involving one electron and one proton. This work proposes an explanation for the activation of the hydrogenase taking into account the participation of an [Fe-S] cluster and of the nickel atom.  相似文献   

4.
The main catalytic properties of the Hox type hydrogenase isolated from the Gloeocapsa alpicola cells have been studied. The enzyme effectively catalyzes reactions of oxidation and evolution of H2 in the presence of methyl viologen (MV) and benzyl viologen (BV). The rates of these reactions in the interaction with the physiological electron donor/acceptor NADH/NAD+ are only 3-8% of the MV(BV)-dependent values. The enzyme interacts with NADP+ and NADPH, but is more specific to NAD+ and NADH. Purification of the hydrogenase was accompanied by destruction of its multimeric structure and the loss of ability to interact with pyridine nucleotides with retained activity of the hydrogenase component (HoxYH). To show the catalytic activity, the enzyme requires reductive activation, which occurs in the presence of H2, and NADH accelerates this process. The final hydrogenase activity depends on the redox potential of the activation medium (E(h)). At pH 7.0, the enzyme activity in the MV-dependent oxidation of H2 increased with a decrease in E(h) from -350 mV and reached the maximum at E(h) of about -390 mV. However, the rate of H2 oxidation in the presence of NAD+ in the E(h) range under study was virtually constant and equal to 7-8% of the maximal rate of H2 oxidation in the presence of MV.  相似文献   

5.
This report elucidates the distinctions of redox properties between two uptake hydrogenases in Escherichia coli. Hydrogen uptake in the presence of mediators with different redox potential was studied in cell-free extracts of E. coli mutants HDK103 and HDK203 synthesizing hydrogenase 2 or hydrogenase 1, respectively. Both hydrogenases mediated H(2) uptake in the presence of high-potential acceptors (ferricyanide and phenazine methosulfate). H(2) uptake in the presence of low-potential acceptors (methyl and benzyl viologen) was mediated mainly by hydrogenase 2. To explore the dependence of hydrogen consumption on redox potential of media in cell-free extracts, a chamber with hydrogen and redox ( E(h)) electrodes was used. The mutants HDK103 and HDK203 exhibited significant distinctions in their redox behavior. During the redox titration, maximal hydrogenase 2 activity was observed at the E(h) below -80 mV. Hydrogenase 1 had maximum activity in the E(h) range from +30 mV to +110 mV. Unlike hydrogenase 2, the activated hydrogenase 1 retained activity after a fast shift of redox potential up to +500 mV by ferricyanide titration and was more tolerant to O(2). Thus, two hydrogenases in E. coli are complementary in their redox properties, hydrogenase 1 functioning at higher redox potentials and/or at higher O(2) concentrations than hydrogenase 2.  相似文献   

6.
The specific activity of the periplasmic hydrogenase from Desulfovibrio gigas is increased approximately 10-fold in the H2 utilization assay with benzyl viologen by several hours of incubation under an atmosphere of H2. After a variable lag phase during which residual traces of O2 are removed, the reversible activation is exponential. The extent of activation is dependent on pH and the redox potential of the incubation medium. A tentative model based on the existence of a monoelectronic redox center is proposed as shown in the following equation: (formula; see text) The potential of this redox couple was determined to be -310 mV (pH = 7; T = 298 K) versus the normal hydrogen electrode.  相似文献   

7.
The redox behaviour of the Ni(III)/Ni(II) transition in hydrogenase from Chromatium vinosum is described and compared with the redox behaviour of the nickel ion in the F420-nonreducing hydrogenase from Methanobacterium thermoautotrophicum. Analogous to the situation in the oxidised hydrogenase of Desulfovibrio gigas (Fernandez, V.M., Hatchikian, E.C., Patil, D.S. and Cammack, R. (1986) Biochim. Biophys. Acta 883, 145-154), the C. vinosum enzyme can also exist in two forms: the 'unready' form (EPR characteristics of Ni(III): gx,y,z = 2.32, 2.24, 2.01) and the 'ready' form (EPR characteristics Ni(III): gx,y,z = 2.34, 2.16, 2.01). Like in the oxidised enzyme of M. thermoautotrophicum the Ni(III)/Ni(II) transition for the unready form titrated completely reversible (both at pH 6.0 and pH 8.0). In contrast, the reversibility of the Ni(III)/Ni(II) transition in the ready enzyme was strongly dependent on pH and temperature. At pH 6.0 and 2 degrees C reduction of Ni(III) in ready enzyme was completely irreversible, whereas at pH 8.0 and 30 degrees C Ni(III) in both ready and unready enzyme titrated with E0' = -115 mV (n = 1). Hampered redox equilibration between the ready enzyme and the mediating dyes is interpreted in terms of an obstruction of the electron transfer from nickel at the active site to the artificial electron acceptors in solution. The origin of this obstruction might be related to possible changes in the protein structure induced by the activation process. The E0'-value of the Ni(III)/Ni(II) equilibrium was pH sensitive (-60 mV/delta pH) indicating that reduction of nickel is coupled to a protonation. A similar pH-dependence was observed for the titration of the spin-spin interaction of Ni(III) and a special form of the [3Fe-4S]+ cluster (E0' = +150 mV, pH 8.0, 30 degrees C). Redox equilibration of this coupling was extremely sensitive to pH and temperature. The uncoupled [3Fe-4S]+ cluster titrated pH-independently with E0' = -10 mV (pH 8.0, 30 degrees C).  相似文献   

8.
The midpoint potentials of the changes in the electron spin resonance (ESR) spectra in the region of g = 2 in hydrogenase II from Chromatium vinosum were estimated by redox titrations. As the enzyme was progressively reduced, the g = 2.02 signal increased, while the satellite lines at g = 1.98 etc. decreased. At still lower potentials the signal at g = 2.02 decreased. The midpoint potentials of the two processes were estimated to be + 100 mV and - 20 mV, respectively, at pH 8.5. The first potential showed significant pH-dependence. The titration data fitted to n = 1 curves with reasonable reversibility. The enzyme activity showed no significant changes in this potential range. The results are discussed in relation to the interaction of the iron-sulphur cluster with nickel.  相似文献   

9.
By preparative polyacrylamide gel electrophoresis at pH 8.5, and in the absence of nickel ions, two types of subunit dimers of the NAD-linked hydrogenase from Nocardia opaca 1b were separated and isolated, and their properties were compared with each other as well as with the properties of the native enzyme. The intact hydrogenase contained 14.3 +/- 0.4 labile sulphur, 13.6 +/- 1.1 iron and 3.8 +/- 0.1 nickel atoms and approximately 1 FMN molecule per enzyme molecule. The oxidized hydrogenase showed an absorption spectrum with maxima (shoulders) at 380 nm and 420 nm and an electron spin resonance (ESR) spectrum with a signal at g = 2.01. The midpoint redox potential of the Fe-S cluster giving rise to this signal was +25 mV. In the reduced state, hydrogenase gave characteristic low-temperature (10-20 K) and high-temperature (greater than 40 K) ESR spectra which were interpreted as due to [4Fe-4S] and [2Fe-2S] clusters, respectively. The midpoint redox potentials of these clusters were determined to be -420 mV and -285 mV, respectively. The large hydrogenase dimer, consisting of subunits with relative molecular masses Mr, of 64000 and 31000, contained 9.9 +/- 0.4 S2- and 9.3 +/- 0.5 iron atoms per protein molecule. This dimer contained the FMN molecule, but no nickel. The absorption and ESR spectra of the large dimer were qualitatively similar to the spectra of the whole enzyme. This dimer did not show any hydrogenase activity, but reduced several electron acceptors with NADH as electron donor (diaphorase activity). The small hydrogenase dimer, consisting of subunits with Mr of 56000 and 27000, was demonstrated to have substantially different properties. For iron and labile sulphur average values of 3.9 and 4.3 atoms/dimer molecule have been determined, respectively. The dimer contained, in addition, about 2 atoms of nickel and was free of flavins. In the oxidized state this dimer showed an absorption spectrum with a broad band in the 400-nm region and a characteristic ESR signal at g = 2.01. The reduced form of the dimer was ESR-silent. The small dimer alone was diaphorase-inactive and did not reduce NAD with H2, but it displayed high H2-uptake activities with viologen dyes, methylene blue and FMN, and H2-evolving activity with reduced methyl viologen. Hydrogen-dependent NAD reduction was fully restored by recombining both subunit dimers, although the reconstituted enzyme differed from the original in its activity towards artificial acceptors and the ESR spectrum in the oxidized state.  相似文献   

10.
Reductive titration curves of flavodoxin from Desulfovibrio vulgaris displayed two one-electron steps. The redox potential E-2 for the couple oxidized flavodoxin/flavodoxin semiquinone was determined by direct titration with dithionite. E-2 was -149 plus or minus 3 mV (pH 7.78, 25 degrees C). The redox potential E-1 for the couple flavodoxin semiquinone/fully reduced flavodoxin was deduced from the equilibrium concentration of these species in the presence of hydrogenase and H-2. E-1 was -438 plus or minus 8 mV (pH 7.78, 25 degrees C). Light-absorption and fluorescence spectra of flavodoxin in its three redox states have been recorded. Both the rate and extent of reduction of flavodoxin semiguinone with dithionite were found to depend on pH. An equilibrium between the semiquinone and hydroquinone forms occurred at pH values close to the neutrality, even in the presence of a large excess of dithionite, suggesting an ionization in fully reduced flavodoxin with a pK-a = 6.6. The association constants K for the three FMN redox forms with the apoprotein were deduced from the value of K (K = 8 times 10-7 M-1) measured with oxidized EMN at pH 7.0. Oxidized flavodoxin was found to comproportionate with the fully reduced protein (k-comp = 4.3 times 10-3 M-1 times s-1, pH 9.0, 22 degrees C) and with reduced free FMN (K-comp = 44 M-1 times s-1, pH 8.1, 20 degrees C). Fast oxidation of reduced flavodoxin occurred in the presence of O-2. Slower oxidation of semiquinone was dependent on pH in a drastic way.  相似文献   

11.
The redox potentials of flavocytochromes c (FC) from Chromatium vinosum and Chlorobium thiosulfatophilum have been studied as a function of pH. Chlorobium FC has a single heme which has a redox potential of +98 mV at pH 7 (N = 1) that is independent of pH between 6 and 8. The average two-electron redox potential of the flavin extrapolated to pH 7 is +28 mV and decreases 35 mV/pH between pH 6 and 7. The anionic form of the flavin semiquinone is stabilized above pH 6. The redox potential of Chromatium FC is markedly lower than for Chlorobium. The two hemes in Chromatium FC appear to have a redox potential of 15 mV at pH 7 (N = 1), although they reside in very different structural environments. The hemes of Chromatium FC have a pH-dependent redox potential, which can be fit in the simplest case by a single ionization with pK = 7.05. The flavin in Chromatium FC has an average two-electron redox potential of -26 mV at pH 7 and decreases 30 mV/pH between pH 6 and 8. As with Chlorobium, the anionic form of the flavin semiquinone of Chromatium FC is stabilized above pH 6. The unusually high redox potential of the flavin, a stabilized anion radical, and sulfite binding to the flavin in both Chlorobium and Chromatium FCs are characteristics shared by the flavoprotein oxidases. By analogy with glycolate oxidase and lactate dehydrogenase for which there are three-dimensional structures, the properties of the FCs are likely to be due to a positively charged amino acid side chain in the vicinity of the N1 nitrogen of the flavin.  相似文献   

12.
An analytical multienzyme system composed of NAD-dependent hydrogenase of Alcaligenes eutrophus, and reductase and luciferase from luminous bacteria was studied. The rate of luminescence increase of this system was found to be proportional to hydrogenase activity. The apparent Michaelis constants for NAD and hydrogen were determined (5 and 40 microM, respectively). The pH optimum is 7.5-9.0. Over the NAD concentration range from 20 to 100 microM, the rate of luminescence increase changed by less than 10%. At higher concentrations of NAD a monotonous decreasing of the rate of luminescence increase was observed. The proposed multienzyme system can be used for measuring the hydrogenase activity and hydrogen concentration. The high sensitivity to hydrogen (0.1 nmol in sample) and to hydrogenase (0.5 mU) and specificity of the system enable its application in the development of a biosensor for rapid detection of hydrogen in a medium.  相似文献   

13.
The properties of two redox quenchers of chlorophyll fluorescence in chloroplasts at room temperature have been investigated. (1) Redox titration of the fluorescence yield reveals two n = 1 components with Em7.8 at--45 and --247 mV, accounting for approx. 70 and 30% of the total yield, respectively. (2) Neutral red, a redox mediator often used at redox potentials below --300 mV, preferentially quenches the fluorescence controlled by the --247 mV component. Titrations using neutral red artifactually create an n = 2 quenching component with Em7.8 = --375 mV. (3) Analysis of fluorescence induction curves recorded at different redox potentials indicates that both the --45 and --247 mV components can be photochemically reduced. The reduction of the --247 mV component corresponds to a fast phase of the induction curve whilst the slower reduction of the 45 mV component accounts for the tail phase. (4) The excitation spectra for the fluorescence controlled by the two quenchers show small differences in the ratio of chlorophyll a and b. (5) Whereas the --247 mV component readily shows a 60 mV per pH unit dependency on solution pH, the ability of the --45 mV component to respond to pH change is restricted. (6) Triton Photosystem II particles contain both quenchers but the --247 mV component accounts for approx. 70% of the fluorescence and the high component has an Em7.8 of +48 mV. The relative merits of sequential and parallel models in explaining the presence of the two quenchers are considered.  相似文献   

14.
Thioredoxin is a small oxidation-reduction (redox) mediator protein. Its reduction by NADPH is catalyzed by the flavoenzyme thioredoxin reductase. Site-directed mutagenesis has provided forms of the reductase in which Cys135 and Cys138 have each been changed to a serine residue (Prongay, A. J., Engelke, D. R., and Williams, C. H., Jr. (1989) J. Biol. Chem. 264, 2656-2664). Cys135 and Cys138 form the redox-active disulfide in the oxidized enzyme. The redox properties of the two altered forms of Escherichia coli thioredoxin reductase have been determined from pH 6.0 to 9.0. Photoreduction of TRR(Ser135,Cys138) produces the blue, neutral semiquinone species, which disproportionates (Kf = 0.73) to an apparent maximum of 29% of the total enzyme as the semiquinone. In contrast, the semiquinone formed on TRR(Cys135,Ser138) during a photoreductive titration does not disproportionate and 70% of the enzyme is stabilized as the semiquinione. Reductive titrations have demonstrated that 1 mol of sodium dithionite (2 electrons)/mol of FAD is required to fully reduce TRR(Ser135,Cys138) whereas 2 mol of dithionite/mol of FAD are required to fully reduce TRR(Cys135,Ser138). The oxidation-reduction midpoint potentials for the 1-electron and 2-electron reductions of TRR(Ser135,Cys138) have been determined by NADH/NAD+ titrations in the presence of a mediator, benzyl viologen. The midpoint potential for the 2-electron reduction of TRR(Ser135,Cys138) is -280 mV, at pH 7.0 and 20 degrees C. Thus, the redox potential is similar to that of the FAD/FADH2 couple in the dithiol form of wild type enzyme, -270 mV (corrected to 20 degrees C) (O'Donnell, M. E., and Williams, C. H., Jr. (1983) J. Biol. Chem. 258, 13795-13805). The delta Em/delta pH is -57.1 mV, which corresponds to a proton stoichiometry of 2 H+/2 e-.A maximum of 19% of the enzyme forms a stable semiquinone species during the titration, and the potentials for the oxidized enzyme/semiquinone couple, E2, and the semiquinone/reduced enzyme couple, E1, are -306 and -256 mV, respectively, at pH 7.0 and 20 degrees C. These studies provide evidence that the residue at position 138 exerts a greater effect on the FAD than does the residue at position 135.  相似文献   

15.
Redox properties and active center of phototrophic bacteria hydrogenases   总被引:2,自引:0,他引:2  
N A Zorin 《Biochimie》1986,68(1):97-101
It is shown that the activity of phototrophic bacteria hydrogenases depends on the redox potential (Eh) of the medium. Hydrogenase from the purple sulfur bacterium Thiocapsa roseopersicina strain BBS reversibly activates H2 at Eh less than -290 mV (pH 7.0). When Eh is increased from -290 to -170 mV, the enzyme is converted into an inactive form which is accompanied by one-electron oxidation of its Fe-S cluster. In contrast, the hydrogenases of the purple nonsulfur bacterium Rhodobacter capsulatus B10 and the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum exhibit maximum activity at Eh greater than -300 mV, favourable only for H2 uptake. When Eh decreases the activities of these enzymes drop dramatically; this accounts for their unidirectional effect directed mainly towards H2 uptake. Such dependence on Eh of activity of hydrogenases from these bacteria correlates with their physiological function in the metabolism of phototrophic bacteria, i.e. with the catalysis of the H2 uptake reaction. Hydrogenases from purple bacteria contain nickel and a single Fe-S cluster. Metal chelators do not affect the activity of these enzymes, which indicates that iron and nickel are tightly bound to the apoprotein. Sulfhydryl compounds irreversibly inactivate T. roseopersicina hydrogenase by 30-40% in the presence of sulfide. Acetylene and carbon monoxide are reversible inhibitors of the enzyme. EPR and inhibitory analysis indicate a direct interaction of H2 with the nickel ion in the active center of the T. roseopersicina hydrogenase.  相似文献   

16.
The reduction potentials of 22 yeast cytochrome c peroxidase (CcP) mutants were determined at pH 7.0 in order to determine the effect of both heme pocket and surface mutations on the Fe(III)/Fe(II) redox couple of CcP, as well as to determine the range in redox potentials that could be obtained through point mutations in the enzyme. Spectroscopic properties of the Fe(III) and Fe(II) forms of the mutant enzymes are also reported. The mutations include variants in the distal and proximal heme pockets as well as on the enzyme surface and involve single, double, and triple point mutations. A spectrochemical redox titration technique used in this study gave an E(0') value of -189 mV for yeast CcP compared to a previously reported value of -194 mV determined by potentiometry [C.W. Conroy, P. Tyma, P.H. Daum, J.E. Erman, Biochim. Biophys. Acta 537 (1978) 62-69]. Both positive and negative shifts in the reduction potential from that of the wild-type enzyme were observed, spanning a range of 113 mV. The His-52-->Asn mutation gave the most negative potential, -259 mV, while a triple mutant in which the three distal pocket residues, Arg-48, Trp-51, and His-52, were all converted to leucine residues gave the most positive potential, -146 mV.  相似文献   

17.
A soluble hydrogenase from the halophilic sulfate reducing bacterium Desulfovibrio salexigens, strain British Guiana (NCIB 8403) has been purified to apparent homogeneity with a final specific activity of 760 mumoles H2 evolved/min/mg (an overall 180-fold purification with 20% recovery yield). The enzyme is composed of two non-identical subunits of molecular masses 62 and 36 kDa, respectively, and contains approximately 1 Ni, 12-15 Fe and 1 Se atoms/mole. The hydrogenase shows a visible absorption spectrum typical of an iron-sulfur containing protein (A400/A280 = 0.275) and a molar absorbance of 54 mM-1cm-1 at 400 nm. In the native state (as isolated, under aerobic conditions), the enzyme is almost EPR silent at 100 K and below. However, upon reduction under H2 atmosphere a rhombic EPR signal develops at g-values 2.22, 2.16 and around 2.0, which is optimally detected at 40 K. This EPR signal is reminiscent of the nickel signal C (g-values 2.19, 2.16 and 2.02) observed in intermediate redox states of the well characterized D. gigas nickel containing hydrogenase and assigned to nickel by 61 Ni isotopic substitution (J.J.G. Moura, M. Teixeira, I. Moura, A.V. Xavier and J. Le Gall (1984), J. Mol. Cat., 23, 305-314). Upon longer incubation with H2 the "2.22" EPR signal decreases. During the course of a redox titration under H2, this EPR signal attains a maximal intensity around--380 mV. At redox states where this "2.22" signal develops (or at lower redox potentials), low temperature studies (below 10 K) reveals the presence of other EPR species with g-values at 2.23, 2.21, 2.14 with broad components at higher fields. This new signal (fast relaxing) exhibits a different microwave power dependence from that of the "2.22" signal, which readily saturates with microwave power (slow relaxing). Also at low temperature (8 K) typical reduced iron-sulfur EPR signals are concomitantly observed with gmed approximately 1.94. The catalytic properties of the enzyme were also followed by substrate isotopic exchange D2/H+ and H2 production measurements.  相似文献   

18.
Amino acid residues His and Cys of the NAD-dependent hydrogenase from the hydrogen-oxidizing bacterium Ralstonia eutropha H16 were chemically modified with specific reagents. The modification of His residues of the nonactivated hydrogenase resulted in decrease in both hydrogenase and diaphorase activities of the enzyme. Activation of NADH hydrogenase under anaerobic conditions additionally modified a His residue (or residues) significant only for the hydrogenase activity. The rate of decrease in the diaphorase activity was unchanged. The modification of thiol groups of the nonactivated enzyme did not affect the hydrogenase activity. The effect of thiol-modifying agents on the activated hydrogenase was accompanied by inactivation of both diaphorase and hydrogenase activities. The modification degree and changes in the corresponding catalytic activities depended on conditions of the enzyme activation. Data on the modification of cysteine and histidine residues of the hydrogenase suggested that the enzyme activation should be associated with significant conformational changes in the protein globule.  相似文献   

19.
The oxidation-reduction midpoint potential for the heme prosthetic group present in assimilatory nitrate reductase from Chlorella vulgaris has been determined by optical potentiometric titrations in the presence of dye mediators. At pH 7, the midpoint potential was determined to be -160 mV and corresponds to a reversible n = 1 redox process. The midpoint potential was unaltered by the use of NADH as reductant, unaffected by the presence of NAD+, cytochrome c, phosphate, cyanide, or alkaline pH. In addition, the redox potential of the heme was independent of modifications to the enzyme such as substitution of the molybdenum center with tungsten, or cleavage and separation of the enzyme into its flavin and heme/molybdenum domains. In contrast, the midpoint potential increased on decreasing the pH yielding a pH dependence of approximately 20 mV/pH unit within the range 5.5 to 7, suggesting the presence of a single, redox-associated, ionizable functional group on the protein with pKox = 5.8 and pKred = 6.1. At pH 7 and within the range 12 to 38 degrees C, the midpoint potential of the heme decreased by approximately 1 mV/degree. Values for delta S0 and delta H0 were calculated to be -25.6 e.u. and -4.0 kcal/mol.  相似文献   

20.
NADH:ubiquinone oxidoreductase (Complex I), the electron input enzyme in the respiratory chain of mitochondria and many bacteria, couples electron transport to proton translocation across the membrane. Complex I is a primary proton pump; although its proton translocation mechanism is yet to be known, it is considered radically different from any other mechanism known for redox-driven proton pumps: no redox centers have been found in its membrane domain where the proton translocation takes place. Here we studied the properties and the catalytic role of the enzyme-bound ubiquinone in the solubilized, purified Complex I from Escherichia coli. The ubiquinone content in the enzyme preparations was 1.3±0.1 per bound FMN residue. Rapid mixing of Complex I with NADH, traced optically, demonstrated that both reduction and re-oxidation kinetics of ubiquinone coincide with the respective kinetics of the majority of Fe-S clusters, indicating kinetic competence of the detected ubiquinone. Optical spectroelectrochemical redox titration of Complex I followed at 270-280nm, where the redox changes of ubiquinone contribute, did not reveal any transition within the redox potential range typical for the membrane pool, or loosely bound ubiquinone (ca. +50-+100mV vs. NHE, pH 6.8). The transition is likely to take place at much lower potentials (E(m) ≤-200mV). Such perturbed redox properties of ubiquinone indicate that it is tightly bound to the enzyme's hydrophobic core. The possibility of two ubiquinone-binding sites in Complex I is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号