首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Cr(VI) is most toxic heavy metal and second most widespread hazardous metal compound worldwide. Present work focused on Cr(VI) reduction from synthetic solutions and polluted samples by Achromobacter xylosoxidans SHB 204. It could tolerate Cr(VI) up to 1600 ppm and reduce 500 ppm with 4.5 chromium reductase enzyme units (U) having protein size 30 kDa. Changes in morphology of cells on interaction with Cr(VI) metal ion was also studied using SEM–EDX and FTIR. Microcosm studies in pollutant samples for Cr(VI) reduction and adsorption isotherm with biomass of bacterium was best fitted with Langmuir model along with kinetic studies. This study focuses on significance of Cr reduction from synthetic solutions and polluted samples by A. xylosoxidans SHB 204 and its potential for bioremediation.  相似文献   

2.
Species of Trichoderma are widely recognized for their biocontrol abilities, but seldom studied collectively, for their plant growth promotion, abiotic stress tolerance and bioremediation properties. Our study is a concentrated effort to establish the potential of native isolate Trichoderma harzianum KSNM (T103) to tolerate biotic (root pathogens) and abiotic stresses [high salt (100–1000 mM); heavy metal (chromium, nickel and zinc: 1–10 mM); pesticides: malathion (100–600 ppm), carbofuran (100–600 ppb)], along with its ability to support plant growth. In vitro growth promotion assays with T103 treated Vigna radiata, Vigna mungo and Hordeum vulgare confirmed ‘non-species specific’ growth promotion effects of T103. At lower metal concentration, T103 treatment was found to completely negate the impact of metal stress [60 % increase in radicle length (RL) with no significant decrease in %germination (%G)]. Even at 10 mM metal, T103 inoculation gave 80 % increase in %G and >50 % increase in RL. In vitro experiments confirmed high metal reduction capacity (47 %-Cr, 35 %-Ni and 42 %-Zn) of T103 at concentrations as high as 4 mM. At maximum residual concentrations of malathion (440 ppm) and carbofuran (100 ppb) reported in agricultural soils, T103 maintained 80 and 100 % survivability, respectively. T103 treatment has improved %G and RL in all three hosts challenged with pesticide. Isolate T103 was found to effectively suppress growth of three major root pathogens: Macrophomina phaseolina (65.83 %) followed by Sclerotium rolfsii (19.33 %) and Fusarium oxysporum (19.18 %). In the light of these observations, native T. harzianum (T103) seems to be a competent biocontrol agent for tropical agricultural soils contaminated with residual pesticides and heavy metals.  相似文献   

3.
Bioreduction of the very toxic hexavalent chromium ion [Cr(VI)] to the non-toxic trivalent chromium ion [Cr(III)] is a key remediation process in chromium-contaminated sites. In this study, we investigated the bioreduction of Cr(VI) by Pseudomonas stutzeri L1 and Acinetobacter baumannii L2. The optimum pH (5–10), temperature (27, 37 and 60 °C) and initial chromium Cr(VI) concentration (100–1000 mg L?1) for Cr(VI) reduction by strains L1 and L2 were determined using the diphenylcarbazide method. In the presence of L1 and L2, the bioreduction rate of Cr(VI) was 40–97 and 84–99%, respectively. The bioreduction of Cr(VI) by L2 was higher, reaching up to 84%—than that by L1. The results showed that strain L2 was able to survive even if exposed to 1000 mg L?1 of Cr(VI) and that this tolerance to the effects of Cr(VI) was linked to the activity of soluble enzyme fractions. Overall, A. baumannii L2 would appear to be a potent Cr(VI)-tolerant candidate for the bioremediation of chromium (VI)-contaminated wastewater effluent.  相似文献   

4.
Heavy metals–organics mixture pollution is increasingly concerned and simultaneous removal of organic pollutants and heavy metals is becoming significant. In this study, a strain was isolated from the sediment of a tannery effluent outfalls, which can remove o-dichlorobenzene (o-DCB) and Cr(VI) simultaneously. The bacterial isolate was identified as Serratia marcescens by the 16S rRNA gene sequences. The strain removed about 90% of o-DCB and more than 80% of Cr(VI) at the concentration of 1.29 g L?1 o-DCB and 20 mg L?1 Cr(VI). In the presence of concomitant pollutant o-DCB, the optimal pH (8.0) and temperature (30 °C) were determined for Cr(VI) removal. Changes of the bacterial cells and intracellular black Cr(III) sediments were observed by the TEM auxiliary analysis. The results of the FTIR spectroscopy analysis indicated that hydroxyl, amide and polysaccharides were involved in the process of Cr(VI) removal.  相似文献   

5.
Metal ions are known selective agents for antibiotic resistance and frequently accumulate in natural environments due to the anthropogenic activities. However, the action of metals that cause the antibiotic resistance is not known for all bacteria. The present work is aimed to investigate the co-selection of metals and antibiotic resistance in Comamonas acidovorans. Tolerance profile of 16 metals revealed that the strain could tolerate high concentrations of toxic metals i.e., Cr (710 ppm), As (380 ppm), Cd (320 ppm), Pb (305 ppm) and Hg (205 ppm). Additionally, metal tolerant phenotypes were subjected to antibiotic resistance profiling; wherein several metal tolerant phenotypes (Cr 1.35-fold; Co-1.33 fold; Mn-1.29 fold) were resistant, while other metal tolerant phenotypes (Mg 1.32-fold; Hg 1.29-fold; Cu 1.28-fold) were susceptible than control phenotype. Metal accumulation may alter the metabolism of C. acidovorans that activates or inactivates the genes responsible for antibiotic resistance, resulting in the resistance and/or susceptibility pattern observed in metal resistant phenotypes.  相似文献   

6.
Chromium (Cr) is considered to be one of the major environmental hazards and poses a threat to both plant and animal health. Selenium (Se), however, has been recognized as an essential micronutrient in plants. To understand the role of Se(VI) in oxidative stress management and regulation of antioxidative defence mechanism against heavy metal stress, the seedlings of Brassica juncea L. were raised in Petri plates containing nutrient media supplemented with only with Se(VI) and Cr(VI), or their combination. It was observed that of Cr(VI) causes an increase in reactive oxygen species (ROS) in the seedlings leading to oxidative stress. Histological studies using confocal and visible microscopy confirmed the biochemical results. Supplementation of up to 4 µM of Se(VI) to media containing 300 µM of Cr(VI) reduced the contents of ROS and increased enzymatic and non-enzymatic antioxidants in the seedlings. At a concentration of 6 µM, however, Se(VI) was toxic. The results suggested that at appropriate concentrations, the exogenous application of Se(VI) enabled the B. juncea seedlings to counteract the effects of Cr(VI), thereby increasing the resistance of plants.  相似文献   

7.
Chromium (Cr) released from industrial units such as tanneries, textile and electroplating industries is detrimental to the surrounding ecosystems and human health. The focus of the present study was to check the Cr(VI) removal efficiency by marine-derived fungi from liquid broth. Amongst the three Cr(VI) tolerant isolates, #NIOSN-SK56-S19 (Aspergillus sydowii) showed Cr-removal efficiency of 0.01 mg Cr mg?1 biomass resulting in 26% abatement of total Cr with just 2.8 mg of biomass produced during the growth in 300 ppm Cr(VI). Scanning Electron Microscopy revealed aggregation of mycelial biomass with exopolysaccharide, while Electron Dispersive Spectroscopy showed the presence of Cr2O3 inside the biomass indicating presence of active Cr(VI) removal mechanisms. This was further supported when the Cr(VI) removal was monitored using DPC (1,5-diphenylcarbazide) method. The results of this study point to the potential of marine-derived fungal isolates for Cr(VI) removal.  相似文献   

8.
Bacillus sp. strain MA04 a plant growth-promoting rhizobacteria (PGPR) showed hemolytic activity on blood agar plates, and the supernatant from liquid culture in nutrient broth at 24 h exhibited emulsification activity, suggesting the production of biosurfactants. In antagonist assays, the supernatant showed antifungal activity against phytopathogenic fungi such as Penicillium expansum, Fusarium stilboides, Sclerotium rolfsii y Rhizoctonia solani, finding a reduction of mycelial growth of all fungi tested, ranging from 35 to 69%, this activity was increased with time of culture, accomplishing percentages of inhibition up to 85% with supernatants obtained at 72 h. Then, the crude biorsurfactant (CB) was isolated from the supernatant in order to assay its antagonistic effect on the phytopathogens previously tested, finding an increase in the inhibition up to 97% at 500 mg/L of CB. The composition of CB was determined by infrared spectroscopy, identifying various functional groups related to lipopeptides, which were purified by high-performance liquid chromatography and analyzed by MALDI-TOF/TOF–MS, revealing a mixture of fengycins A and B whose high antifungal activity is been widely recognized. These results show that PGPR Bacillus sp. MA04 could also contribute to plant health status through the production of metabolites with antimicrobial activity.  相似文献   

9.

Objectives

To demonstrate biotransformation of toxic Cr(VI) ions into Cr2O3 nanoparticles by the yeast Schwanniomyces occidentalis.

Results

Reaction mixtures containing S. occidentalis NCIM 3459 and Cr(VI) ions that were initially yellow turned green after 48 h incubation. The coloration was due to the synthesis of chromium (III) oxide nanoparticles (Cr2O3NPs). UV–Visible spectra of the reaction mixtures showed peaks at 445 and 600 nm indicating 4A2g → 4T1g and 4A2g → 4T2g transitions in Cr2O3, respectively. FTIR profiles suggested the involvement of carboxyl and amide groups in nanoparticle synthesis and stabilization. The Cr2O3NPs ranged between 10 and 60 nm. Their crystalline nature was evident from the selective area electron diffraction and X-ray diffraction patterns. Energy dispersive spectra confirmed the chemical composition of the nanoparticles. These biogenic nanoparticles could find applications in different fields.

Conclusions

S. occidentalis mediated biotransformation of toxic Cr(VI) ions into crystalline extracellular Cr2O3NPs under benign conditions.
  相似文献   

10.
Hexavalent chromium is a contaminant highly mobile in the environment that is toxic for plants at low concentrations. In this work, the physiological response of Convolvulus arvensis and Medicago truncatula plants to Cr(VI) treatments was compared. C. arvensis is a potential Cr hyperaccumulator well adapted to semiarid conditions that biotransform Cr(VI) to the less toxic Cr(III). M. truncatula is a model plant well adapted to semiarid conditions with a well studied genetic response to heavy metal stress. The results demonstrated that C. arvensis is more tolerant to Cr toxicity and has a higher Cr translocation to the leaves. The inductively coupled plasma optical emission spectroscopy results showed that C. arvensis plants treated with 10 mg Cr(VI) L–1 accumulated 1512, 210, and 131 mg Cr kg–1 in roots, stems, and leaves, respectively. While M. truncatula plants treated with the same Cr(VI) concentration accumulated 1081, 331, and 44 (mg Cr kg–1) in roots, stems, and leaves, respectively. Enzymatic assays demonstrated that Cr(VI) decreased ascorbate peroxidase activity and increased catalase activity in M. truncatula, while an opposite response was found in C. arvensis. The x-ray absorption spectroscopy studies showed that both plant species reduced Cr(VI) to the less toxic Cr(III).  相似文献   

11.
Lactococcus lactis subsp lactis BSA (L. lactis BSA) was isolated from a commercial fermented product (BSA Food Ingredients, Montreal, Canada) containing mixed bacteria that are used as starter for food fermentation. In order to increase the bacteriocin production by L. lactis BSA, different fermentation conditions were conducted. They included different volumetric combinations of two culture media (the Man, Rogosa and Sharpe (MRS) broth and skim milk), agitation level (0 and 100 rpm) and concentration of commercial nisin (0, 0.15, and 0.30 µg/ml) added into culture media as stimulant agent for nisin production. During fermentation, samples were collected and used for antibacterial evaluation against Lactobacillus sakei using agar diffusion assay. Results showed that medium containing 50 % MRS broth and 50 % skim milk gave better antibacterial activity as compared to other medium formulations. Agitation (100 rpm) did not improve nisin production by L. lactis BSA. Adding 0.15 µg/ml of nisin into the medium-containing 50 % MRS broth and 50 % skim milk caused the highest nisin activity of 18,820 AU/ml as compared to other medium formulations. This activity was 4 and ~3 times higher than medium containing 100 % MRS broth without added nisin (~4700 AU/ml) and 100 % MRS broth with 0.15 µg/ml of added nisin (~6650 AU/ml), respectively.  相似文献   

12.
The potential of endophytic bacteria to act as biofertilizers and bioprotectants has been demonstrated, and considerable progress has been made in explaining their role in plant protection. In the present study, three endophytic bacterial strains (BHU 12, BHU 16 isolated from the leaves of Abelmoschus esculentus, and BHU M7 isolated from the leaves of Andrographis paniculata) were used which displayed high sequence similarity to Alcaligenes faecalis. The biofilm formation ability of these endophytic strains in the presence of okra root exudates confirms their chemotactic ability, an initial step for successful endophytic colonization. Further, reinoculation of spontaneous rifampicin-tagged mutants into okra seedlings revealed a CFU count above 105 cells g?1 of all three endophytic strains in root samples during the first 15 days of plant growth. The CFU count increased up to 1013 by 30 days of plant growth, followed by a gradual decline to approximately 1010 cells g?1 at 45 days of plant growth. Systemic endophytic colonization was further supported by 2, 3, 5-triphenyl tetrazolium chloride staining and fluorescence imaging of ds-RED expressing conjugants of the endophytic strains. The strains were further assessed for their plausible in vivo and in vitro plant growth-promoting and antagonistic abilities. Our results demonstrated that the endophytic strains BHU 12, BHU 16, and BHU M7 augmented plant biomass by greater than 40 %. Root and shoot lengths of okra plants when primed by BHU 12, BHU 16, and BHU M7 increased up to 34 and 14.5 %, respectively. The endophytic isolates also exhibited significant in vitro antagonistic potential against the collar rot pathogen Sclerotium rolfsii. In summary, our results demonstrate excellent potential of the three endophytic bacterial strains as biofertilizers and biocontrol agents, indicating the possibility for use in sustainable agriculture.  相似文献   

13.
Acute hexavalent chromium [Cr(VI)] compound exposure may lead to hepatotoxic and nephrotoxic effects. Cr(VI) reduction may generate reactive intermediates and radicals which might be associated with damage. We investigated effects of N-acetyl-l-cysteine (NAC) pre- or post-treatment on oxidative stress and accumulation of Cr in liver and kidney of Cr(VI)-exposed mice. Intraperitoneal potassium dichromate injection (20 mg Cr/kg) caused a significant elevation of lipid peroxidation in both tissues as compared to control (p < 0.05). Significant decreases in non-protein sulfhydryl (NPSH) level, as well as enzyme activities of catalase (CAT) and superoxide dismutase (SOD) along with significant accumulation of Cr in the tissues (p < 0.05) were of note. NAC pre-treatment (200 mg/kg, ip) provided a noticeable alleviation of lipid peroxidation (p < 0.05) in both tissues, whereas post-treatment exerted significant effect only in kidney. Similarly, Cr(VI)-induced NPSH decline was restored by NAC pre-treatment in both tissues (p < 0.05); however, NAC post-treatment could only replenish NPSH in liver (p < 0.05). Regarding enzyme activities, in liver tissue NAC pre-treatment provided significant restoration on Cr(VI)-induced CAT inhibition (p < 0.05), while SOD enzyme activity was regulated to some extent. In kidney, SOD activity was efficiently restored by both treatments (p < 0.05), whereas CAT enzyme alteration could not be totally relieved. Additionally, NAC pre-treatment in both tissues and post-treatment in liver exerted significant tissue Cr level decreases (p < 0.05). Overall, especially NAC pre-treatment seems to provide beneficial effects in regulating pro-oxidant/antioxidant balance and Cr accumulation caused by Cr(VI) in liver and kidney. This finding may be due to several mechanisms including extracellular reduction or chelation of Cr(VI) by readily available NAC.  相似文献   

14.
Many phytopathogenic micro-organisms such as bacteria and fungi produce pectin methylesterases (PME) during plant invasion. Plants and insects also produce PME to degrade plant cell wall. In the present study, a thermostable pectin methylesterase (CtPME) from Clostridium thermocellum belonging to family 8 carbohydrate esterase (CE8) was cloned, expressed and purified. The amino acid sequence of CtPME exhibited similarity with pectin methylesterase from Erwinia chrysanthemi with 38% identity. The gene encoding CtPME was cloned into pET28a(+) vector and expressed using Escherichia coli BL21(DE3) cells. The recombinant CtPME expressed as a soluble protein and exhibited a single band of molecular mass approximately 35.2 kDa on SDS-PAGE gels. The molecular mass, 35.5 kDa of the enzyme, was also confirmed by MALDI-TOF MS analysis. Notably, highest protein concentration (11.4 mg/mL) of CtPME was achieved in auto-induction medium, as compared with LB medium (1.5 mg/mL). CtPME showed maximum activity (18.1 U/mg) against citrus pectin with >85% methyl esterification. The optimum pH and temperature for activity of CtPME were 8.5 and 50 °C, respectively. The enzyme was stable in pH range 8.0–9.0 and thermostable between 45 and 70 °C. CtPME activity was increased by 40% by 5 mM Ca2+ or Mg2+ ions. Protein melting curve of CtPME gave a peak at 80 °C. The peak was shifted to 85 °C in the presence of 5 mM Ca2+ ions, and the addition of 5 mM EDTA shifted back the melting peak to 80 °C. CtPME can be potentially used in food and textile industry applications.  相似文献   

15.
In the present investigation, five novel Cr(VI) reducing bacteria were isolated from tannery effluents and solid wastes and identified as Kosakonia cowanii MKPF2, Klebsiella pneumonia MKPF5, Acinetobacter gerneri MKPF7, Klebsiella variicola MKPF8 and Serratia marcescens MKPF12 by 16S rDNA gene sequence analysis. The maximum tolerance concentration of Cr(VI) as K2Cr2O7 of the bacterial isolates was varying up to 2000 mg/L. Among the investigated bacterial isolates, A. gerneri MKPF7 was best in terms of reduction rate. The optimum temperatures for growth and Cr(VI) reduction by the bacterial isolates were 35 and 40 °C, respectively except A. gerneri MKPF7 which grew and reduced Cr(VI) optimally at 40 °C. The optimum pH for growth and Cr(VI) reduction by K. cowanii MKPF2, A. gerneri MKPF7 and S. marcescens MKPF12 was 7.0 whereas the optimum pH for growth and Cr(VI) reduction by K. pneumoniae MKPF5 and K. variicola MKPF8 were 7.0, 8.0 and 6.0, 7.0, respectively. All the bacterial isolates showed maximum tolerance against Ni2+ and Zn2+ whereas minimum tolerance was observed against Hg2+ and Cd2+. The bacteria isolated in the present study thus can be used as eco-friendly biological expedients for the remediation and detoxification of Cr(VI) from the contaminated environments.  相似文献   

16.
Spirodela polyrrhiza, a fast-growing duckweed with high starch and low lignin content, shows promise as a feedstock for bioenergy. Abscisic acid (ABA) is a biological hormone that controls plant growth and stress response. The effects of different ABA concentrations (0, 1.0 × 10?5, 1.0 × 10?4, 1.0 × 10?3, 1.0 × 10?2, and 1.0 × 10?1 mg/L) on duckweed biomass growth, carbon dioxide fixation, formation of photosynthetic pigments (Chlorophyll a (Chla), Chlorophyll b (Chlb), and carotenoids), the activities of soluble starch synthase (SSS) and starch branching enzyme (SBE), and the starch content of biomass were investigated in this study. ABA at concentrations lower than 1.0 × 10?3 mg/L promoted carbon dioxide fixation, whereas it inhibited carbon dioxide fixation at concentrations over 1.0 × 10?3 mg/L. ABA enhanced SSS and SBE activities at concentrations lower than 1.0 × 10?2 mg/L. ABA treatment increased the content of Chla, Chlb, and carotenoids and resulted in the enhancement of starch content. Chla content gradually increased with the increasing concentration of ABA (1.0 × 10?5 to 1.0 × 10?2 mg/L). After culturing for 10 days, starch content in 1.0 × 10?2 mg/L ABA medium reached 35.3% of dry weight (DW), which was the highest level in this study. This suggests that there is a great potential to develop a technology to increase starch accumulation in duckweed which can be used as an alternative to corn, sugarcane, or other food crops as a starch source.  相似文献   

17.
In this study, the process of pyrite colonization and leaching by three iron-oxidizing Acidithiobacillus species was investigated by fluorescence microscopy, bacterial attachment, and leaching assays. Within the first 4–5 days, only the biofilm subpopulation was responsible for pyrite dissolution. Pyrite-grown cells, in contrast to iron-grown cells, were able to oxidize iron(II) ions or pyrite after 24 h iron starvation and incubation with 1 mM H2O2, indicating that these cells were adapted to the presence of enhanced levels of reactive oxygen species (ROS), which are generated on metal sulfide surfaces. Acidithiobacillus ferrivorans SS3 and Acidithiobacillus ferrooxidans R1 showed enhanced pyrite colonization and biofilm formation compared to A. ferrooxidans T. A broad range of factors influencing the biofilm formation on pyrite were also identified, some of them were strain-specific. Cultivation at non-optimum growth temperatures or increased ionic strength led to a decreased colonization of pyrite. The presence of iron(III) ions increased pyrite colonization, especially when pyrite-grown cells were used, while the addition of 20 mM copper(II) ions resulted in reduced biofilm formation on pyrite. This observation correlated with a different extracellular polymeric substance (EPS) composition of copper-exposed cells. Interestingly, the addition of 1 mM sodium glucuronate in combination with iron(III) ions led to a 5-fold and 7-fold increased cell attachment after 1 and 8 days of incubation, respectively, in A. ferrooxidans T. In addition, sodium glucuronate addition enhanced pyrite dissolution by 25 %.  相似文献   

18.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

19.
This study aimed to demonstrate the ways in which two chromium species, Cr (III) and Cr (VI), can affect various physiological and biochemical parameters in the plant Ceratophyllum demersum L., and to evaluate the single and combined impact of exposure concentration and duration. C. demersum was exposed to Cr (III) and Cr (VI) at a variety of concentrations (1, 2, 5, and 10 mM) and for differing durations (1, 2, 4, and 7 days), after which Cr accumulation, relative growth rate (RGR), malondialdehyde (MDA) content, electrical conductivity (EC), photosynthetic pigmentation, proline content and antioxidant enzyme activities were examined. The single and combined effects of exposure duration and Cr concentration on each parameter were determined using a two-way analysis of variance. For both the Cr (III) and Cr (VI) applications, it was observed that concentration had a significant effect on all parameters assessed. However, duration had no statistically significant effect on proline content in the Cr (III) application, or on MDA and protein content in the Cr (VI) application. It was determined that concentration exerted greater effects than duration for both Cr species studied. In addition, the results indicated that duration and concentration had a synergistic effect on variations of RGR, EC, protein content, and antioxidant enzyme activities in both the Cr (III) and Cr (VI) applications. These results may be useful when planning further phytoremediation and plant biotechnology studies.  相似文献   

20.
In view of the increase in global warming and carbon dioxide (CO2) concentrations, it is essential to investigate the influences of climate change on plant growth and water use in arid and semi-arid grassland species. Experiments were conducted to understand the ecophysiological response of four indigenous species to elevated CO2 in the semi-arid sandy grassland of central Inner Mongolia. Seedlings of the four species were grown for 8 weeks at four different consistently elevated CO2 concentrations in the environment-controlled growth chambers. All four elevated CO2 concentrations (400, 800, 1200, 1600 ppm) were found to result in decreased stomatal conductance (26–86%), decreased transpiration rate (21–80%), increased shoot water potential (1–42%) and increased water use efficiency (WUE) (10–412%) for two Artemisia species and Caragana korshinskii. Under our experimental conditions, the two Artemisia species and C. korshinskii would benefit more than Hedysarum laeve from exposure to elevated CO2 in terms of higher shoot water potential and WUE combined with lower stomatal conductance and transpiration rate. The results indicate that in a warmer, CO2-enriched future atmospheric environment, WUE in semi-arid grasslands may be higher than previously expected. Our findings will provide information for screening appropriate species for restoration of the degraded sandy grasslands in semi-arid areas under future climate change scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号