首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil fertilization is a common practice in modern agriculture, undertaken to prevent nutrient deficiency in crops. However, fertilization is costly and causes environmental pollution. The cultivation of plants that tolerate low nutrient supplies may circumvent this problem. Here, we report the generation of Arabidopsis thaliana plants that tolerate boron (B)-deficient conditions due to the overexpression of BOR1, an efflux B transporter that is required for efficient xylem loading of B. In several independently generated transgenic plants expressing BOR1 or BOR1-GFP under the control of the cauliflower mosaic virus 35S RNA promoter, root-to-shoot translocation of B was enhanced and shoot growth was greater under B-limiting conditions compared with wild-type plants. In addition, the transgenic plants showed increased translocation of B, especially to the shoot apex, and set seed normally under B-limiting conditions, under which wild-type plants failed to set seed. This study therefore reports plants that show improved seed yields compared with wild-type under nutrient-deficient conditions as a result of increased production of an essential mineral nutrient transporter.  相似文献   

2.
3.
4.
Plant analysis can diagnose boron (B) deficiency when the standards used have been properly developed by establishing that a close relationship exists between B concentration in a plant part and its physiological function. The purpose of the present study was to demonstrate the importance of choosing the growing immature leaves for B deficiency diagnosis and for establishing critical B concentrations for the diagnosis of B deficiency in oilseed rape (Brassica napus). In Experiment 1, the plants were subject to seven levels of B supply using programmed nutrient addition, for the estimation of critical B concentrations in plant parts for shoot growth. In Experiment 2, the plants were treated with two levels of B supply in solution: 10 (+B) and 0 (-B) M B, for the estimation of functional B requirements for leaf elongation. The results showed that critical B concentrations varied amongst the plant parts sampled and decreased with leaf age. As B taken up by roots is largely phloem-immobile, B concentrations in mature leaves are physiologically irrelevant to plant B status at the time of sampling, giving rise to a significant over- or underestimation of the B requirement for plant growth. By contrast, a growing, immature leaf, in this case the youngest open leaf (YOL), was the most reliable plant part for B deficiency diagnosis. Critical B concentrations developed from both methods were comparable-i.e. 10–14 mg B kg–1 dry matter in the YOL at vegetative growth stages up to stem elongation.  相似文献   

5.
Here, we describe the characteristics of a Brassica napus male sterile mutant 7365A with loss of the BnMs3 gene, which exhibits abnormal enlargement of the tapetal cells during meiosis. Later in development, the absence of the BnMs3 gene in the mutant results in a loss of the secretory function of the tapetum, as suggested by abortive callose dissolution and retarded tapetal degradation. The BnaC.Tic40 gene (equivalent to BnMs3) was isolated by a map-based cloning approach and was confirmed by genetic complementation. Sequence analyses suggested that BnaC.Tic40 originated from BolC.Tic40 on the Brassica oleracea linkage group C9, whereas its allele Bnms3 was derived from BraA.Tic40 on the Brassica rapa linkage group A10. The BnaC.Tic40 gene is highly expressed in the tapetum and encodes a putative plastid inner envelope membrane translocon, Tic40, which is localized into the chloroplast. Transmission electron microscopy (TEM) and lipid staining analyses suggested that BnaC.Tic40 is a key factor in controlling lipid accumulation in the tapetal plastids. These data indicate that BnaC.Tic40 participates in specific protein translocation across the inner envelope membrane in the tapetal plastid, which is required for tapetal development and function.  相似文献   

6.
7.
8.
Genetic improvement of seed yield per plant (SY) is one of the major objectives in Brassica napus breeding programme. SY, being a complex quantitative trait is directly and indirectly influenced by yield-component traits such as siliqua length (SL), number of seeds per siliqua (NSS), and thousand seed weight (TSW). Therefore, concurrent improvement in SL, NSS and TSW can lead to higher SY in B. napus. This study was conducted to identify significant SNPs and putative candidate genes governing SY and its component traits (SL, NSS, TSW). All these traits were evaluated in a diverse set of 200 genotypes representing diversity from wide geographical locations. Of these, a set of 125 genotypes were chosen based on pedigree diversity and multi-location trait variation for genotyping by sequencing (GBS). Best linear unbiased predictors (BLUPs) of all the traits were used for genome-wide association study (GWAS) with 85,126 SNPs obtained from GBS. A total of 16, 18, 27 and 18 SNPs were found to be significantly associated for SL, NSS, TSW and SY respectively. Based on linkage disequilibrium decay analysis, 150 kb genomic region flanking the SNP was used for the identification of underlying candidate genes for each test trait. Important candidate genes involved in phytohormone signaling (WAT1, OSR1, ARR8, CKX1, REM7, REM9, BG1) and seed storage proteins (Cruciferin) were found to have significant influence on seed weight and yield. Genes involved in sexual reproduction and fertilization (PERK7, PERK13, PRK3, GATA15, NFD6) were found to determine the number of seeds per siliqua. Several genes found in this study namely ATS3A, CKX1, SPL2, SPL6, SPL9, WAT1 showed pleiotropic effect with yield component traits. Significant SNPs and putative candidate genes identified for SL, NSS, TSW and SY could be used in marker-assisted breeding for improvement of crop yield in B. napus. Genotypes identified with high SL, NSS, TSW and SY could serve as donors in crop improvement programs in B. napus.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01060-9.  相似文献   

9.
10.
Ding G  Zhao Z  Liao Y  Hu Y  Shi L  Long Y  Xu F 《Annals of botany》2012,109(4):747-759

Background and Aims

One of the key targets of breeding programmes in rapeseed (Brassica napus) is to develop high-yield varieties. However, the lack of available phosphorus (P) in soils seriously limits rapeseed production. The aim of this study was to dissect the genetic control of seed yield and yield-related traits in B. napus grown with contrasting P supplies.

Methods

Two-year field trials were conducted at one site with normal and low P treatments using a population of 124 recombinant inbred lines derived from a cross between ‘B104-2’ and ‘Eyou Changjia’. Seed yield, seed weight, seed number, pod number, plant height, branch number and P efficiency coefficient (PEC) were investigated. Quantitative trait locus (QTL) analysis was performed by composite interval mapping.

Key Results

The phenotypic values of most of the tested traits were reduced under the low P conditions. In total, 74 putative QTLs were identified, contributing 7·3–25·4 % of the phenotypic variation. Of these QTLs, 16 (21·6 %) were detected in two seasons and in the mean value of two seasons, and eight QTLs for two traits were conserved across P levels. Low-P-specific QTLs were clustered on chromosomes A1, A6 and A8. By comparative mapping between Arabidopsis and B. napus, 161 orthologues of 146 genes involved in Arabidopsis P homeostasis and/or yield-related trait control were associated with 45 QTLs corresponding to 23 chromosomal regions. Four gene-based markers developed from genes involved in Arabidopsis P homeostasis were mapped to QTL intervals.

Conclusions

Different genetic determinants were involved in controlling seed yield and yield-related traits in B. napus under normal and low P conditions. The QTLs detected under reduced P supply may provide useful information for improving the seed yield of B. napus in soils with low P availability in marker-assisted selection.  相似文献   

11.
12.
13.
14.
Summary. Objective: Chemo-therapeutic treatment of glioma patients has minor success. Little is known about mechanisms of a pronounced resistance of gliomas towards actual therapies, yet. ABC-1 belongs to the group of transporters known to be involved in the export of hydrophobic substances and vascular regulation. This study investigates an effect of both temozolomide (TMZ) treatment and/or irradiation on the expression of the ABC-1 transporter in human U87-MG glioma cells.Material and methods: In parallel experiments U87-MG cells underwent either irradiation (RT), chemo-treatment (CT) using TMZ, and combined chemo/radiation-treatment (CT/RT). After each treatment the cells were incubated either 2 or 24 hours at 37°C and counted before protein analysis using Western-Blot technique.Results and conclusions: An exponential growth of cellular density was observed for both untreated and irradiated cells being, however, about 2-times slower in irradiated compared to untreated cells. In contrast the density increase of chemo-treated cells as well as that of cells, which underwent the combined CT/RT treatment was of linear nature. ABC-1 expression was detected in untreated as well as treated cells. Increasing cell density and all kinds of treatment resulted in a considerably enhanced ABC-1 expression. CT treatment resulted in highly up-regulated ABC-1 expression especially in non-confluent cultures compared to untreated cells. Irradiation had a comparable or even higher inducible effect on the ABC-1 expression rates depending, however, on cell density. The highest expression rates were observed in cultures with high cellular density 2 hours after application of the combined treatment. Strong up-regulation of ABC-1 expression under both irradiation and chemo-treatment might be a clue to multidrug and irradiation cross-resistance mechanisms of malignant glioma cells converting the ABC-1 transporter into an attractive pharmacological target for a clinical breakthrough in the therapy of malignant gliomas.  相似文献   

15.
16.
17.
P. K. Farage  S. P. Long 《Planta》1991,185(2):279-286
The maximum quantum yield of CO2 uptake (), as a measure of light-limited photosynthetic efficiency, of a Brassica napus crop was measured on most days from mid-October until mid-April. During the winter, was decreased by up to 50%. From January to March, leaves exposed to direct sunlight on days with minimum air temperatures near or below 0° C showed significant reductions in . However, control leaves, artificially shaded from direct sunlight on these days, did not show any decrease. This provides statistical evidence for a light-dependent inhibition of CO2 uptake in the field, termed here photoinhibition. Recovery of during warmer interludes was slow, requiring approx. 2–3 d. Concurrent measurements of light interception by the crop canopy and dry-matter accumulation showed that the efficiency with which intercepted light was converted into dry matter varied, declin between January and March to 33% of the value recorded in the warmer autumn months. Conversion efficiency was significantly and positively correlated with quantum yield. In a closed crop canopy during winter, light will be limiting for photosynthesis for much of the time. Under these conditions depression of at the leaf level may contribute significantly to decreased dry-matter accumulation at the crop level, since the light-limited rate of CO2 uptake is likely to govern canopy photosynthetic rate.Abbreviations and Symbols C mean crop growth rate - Ec crop conversion efficiency - Fm, Fv maximum, variable chlorophyll fluorescence - L instantaneous leaf area index - PPFD photosynthetically active photon flux density - quantum yield of CO2 uptake for absorbed light P.K.F. was in receipt of a research studentship from the Science and Engineering Research Council.  相似文献   

18.
eIF4A is a highly conserved RNA‐stimulated ATPase and helicase involved in the initiation of mRNA translation. The Arabidopsis genome encodes two isoforms, one of which (eIF4A‐1) is required for the coordination between cell cycle progression and cell size. A T‐DNA mutant eif4a1 line, with reduced eIF4A protein levels, displays slow growth, reduced lateral root formation, delayed flowering and abnormal ovule development. Loss of eIF4A‐1 reduces the proportion of mitotic cells in the root meristem and perturbs the relationship between cell size and cell cycle progression. Several cell cycle reporter proteins, particularly those expressed at G2/M, have reduced expression in eif4a1 mutant meristems. Single eif4a1 mutants are semisterile and show aberrant ovule growth, whereas double eif4a1 eif4a2 homozygous mutants could not be recovered, indicating that eIF4A function is essential for plant growth and development.  相似文献   

19.
Dominant mutations in the Arabidopsis ETR1 gene block the ethylene signal transduction pathway. The ETR1 gene has been cloned and sequenced. Using the ETR1 cDNA as a probe, we identified a cDNA homologue (eTAE1) from tomato. eTAE1 contains an open reading frame encoding a polypeptide of 754 amino acid residues. The nucleic acid sequence for the coding sequence in eTAE1 is 74% identical to that for ETR1, and the deduced amino acid sequence is 81% identical and 90% similar. Genomic Southern blot analysis indicates that three or more ETR1 homologues exist in tomato. RNA blots show that eTAE1 mRNA is constitutively expressed in all the tissues examined, and its accumulation in leaf abscission zones was unaffected by ethylene, silver ions (an inhibitor of ethylene action) or auxin.  相似文献   

20.
While the transforming growth factor‐β1 (TGF‐β1) regulates the growth and proliferation of pancreatic β‐cells, its receptors trigger the activation of Smad network and subsequently induce the insulin resistance. A case‐control was conducted to evaluate the associations of the polymorphisms of TGF‐β1 receptor‐associated protein 1 (TGFBRAP1) and TGF‐β1 receptor 2 (TGFBR2) with type 2 diabetes mellitus (T2DM), and its genetic effects on diabetes‐related miRNA expression. miRNA microarray chip was used to screen T2DM‐related miRNA and 15 differential expressed miRNAs were further validated in 75 T2DM and 75 normal glucose tolerance (NGT). The variation of rs2241797 (T/C) at TGFBRAP1 showed significant association with T2DM in case‐control study, and the OR (95% CI) of dominant model for cumulative effects was 1.204 (1.060‐1.370), Bonferroni corrected P < 0.05. Significant differences in the fast glucose and HOMA‐β indices were observed amongst the genotypes of rs2241797. The expression of has‐miR‐30b‐5p and has‐miR‐93‐5p was linearly increased across TT, TC, and CC genotypes of rs2241797 in NGT, Ptrend values were 0.024 and 0.016, respectively. Our findings suggest that genetic polymorphisms of TGFBRAP1 may contribute to the genetic susceptibility of T2DM by mediating diabetes‐related miRNA expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号