首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Fusarium oxysporum f. sp. lycopersici (FOL) induces resistance in pepper against the airborne pathogen Botrytis cinerea and the soil‐borne pathogen Verticillium dahliae. However, its practical use is limited due to its pathogenicity to other crops. In this study we tested several fractions of a heat‐sterilised crude FOL‐elicitor preparation to protect pepper against B. cinerea and V. dahliae. Only the protein‐free insoluble fraction of the preparation reduced B. cinerea infection. However, none of the fractions reduce V. dahliae symptoms. The insoluble protein‐free fraction induced expression of defence genes in the plant, namely a chitinase (CACHI2), a peroxidase (CAPO1), a sesquiterpene cyclase (CASC1) and a basic PR1 (CABPR1). Even though the CASC1 gene was not induced directly after treatment with the insoluble fraction in the leaves, it was induced after B. cinerea inoculation, showing a priming effect. The insoluble protein‐free FOL‐elicitor protected pepper against the airborne pathogen through a mechanism that involves induced responses in the plant, but different to the living FOL.  相似文献   

4.
DEFORMED ROOT AND LEAVES1 (DRL1) is an Arabidopsis homologue of the yeast TOXIN TARGET4 (TOT4)/KILLER TOXIN‐INSENSITIVE12 (KTI12) protein that is physically associated with the RNA polymerase II‐interacting protein complex named Elongator. Mutations in DRL1 and Elongator lead to similar morphological and molecular phenotypes, suggesting that DRL1 and Elongator may functionally overlap in Arabidopsis. We have shown previously that Elongator plays an important role in both salicylic acid (SA)‐ and jasmonic acid (JA)/ethylene (ET)‐mediated defence responses. Here, we tested whether DRL1 also plays a similar role as Elongator in plant immune responses. Our results show that, although DRL1 partially contributes to SA‐induced cytotoxicity, it does not play a significant role in SA‐mediated expression of PATHOGENESIS‐RELATED genes and resistance to the virulent bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. In contrast, DRL1 is required for JA/ET‐ and necrotrophic fungal pathogen Botrytis cinerea‐induced defence gene expression and for resistance to B. cinerea and Alternaria brassicicola. Furthermore, unlike the TOT4/KTI12 gene which, when overexpressed in yeast, confers zymocin resistance, a phenotype of the tot4/kti12 mutant, overexpression of DRL1 does not change B. cinerea‐induced defence gene expression and resistance to this pathogen. Finally, DRL1 contains an N‐terminal P‐loop and a C‐terminal calmodulin (CaM)‐binding domain and is a CaM‐binding protein. We demonstrate that both the P‐loop and the CaM‐binding domain are essential for the function of DRL1 in B. cinerea‐induced expression of PDF1.2 and ORA59, and in resistance to B. cinerea, suggesting that the function of DRL1 in plant immunity may be regulated by ATP/GTP and CaM binding.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
The measurement of disease development is integral in studies on plant–microbe interactions. To address the need for a dynamic and quantitative disease evaluation, we developed PathTrack©, and used it to analyse the interaction of plants with Botrytis cinerea. PathTrack© is composed of an infection chamber, a photography unit and software that produces video files and numerical values of disease progression. We identified a previously unrecognized infection stage and determined numerical parameters of pathogenic development. Using these parameters, we identified differences in disease dynamics between seemingly similar B. cinerea pathogenicity mutants, and revealed new details on plant susceptibility to the fungus. We showed that the difference between the lesion expansion rate on leaves and colony spreading rate on artificial medium reflects the levels of the plant immune system, suggesting that this parameter can be used to quantify plant defence. Our results shed new light and reveal new details of the interaction between the model necrotrophic pathogen B. cinerea and plants. The concept that we present is universal and may be applied to facilitate the study of various types of plant–pathogen association.  相似文献   

13.
14.
Aims: The aim was to produce and characterize an aerated compost tea (ACT) that suppressed growth of the plant pathogen Botrytis cinerea. Methods and Results: Three different open‐windrow composts were sampled weekly from the early secondary mesophilic stage until maturity. Each 10 kg of compost sample was extracted in 30 l of aerated water for 24, 48 or 72 h. Relative to water, all batches of ACT applied to detached bean leaflets reduced lesion development following single‐point inoculations of B. cinerea. There was a significant linear, inverse relationship between the internal windrow temperature of compost (≤51°C) used to prepare ACT and the extent of lesion development. Bacterial diversity in ACTs from one windrow was highest using compost sampled at 48°C. The compost weight‐to‐water volume ratios of 1 : 3, 1 : 10 or 1 : 30, using compost sampled from a fourth windrow at 50°C, also produced ACTs that reduced the growth of B. cinerea on bean leaflets. The ‘1 : 3’ ACT, and to a lesser degree the same ACT filtered to remove micro‐organisms, inhibited the germination of B. cinerea conidia. Conclusions: ACT produced using the methods reported here suppressed the growth of B. cinerea on bean leaflets, with an abundant and diverse microbial community likely to contribute to pathogen suppression. Significance and Impact of the Study: This is the first report of the use of immature compost to produce a pathogen‐suppressive ACT, suggesting that compost stage is an important production variable.  相似文献   

15.
Botrytis cinerea is a pathogenic filamentous fungus, which infects more than 200 plant species. The enzymes secreted by B. cinerea play an important role in the successful colonization of a host plant. Some of the secreted enzymes are involved in the degradation of pectin, a major component of the plant cell wall. A total of 126 proteins secreted by B. cinerea were identified by growing the fungus on highly or partially esterified pectin, or on sucrose in liquid culture. Sixty‐seven common proteins were identified in each of the growth conditions, of which 50 proteins exhibited a SignalP motif. Thirteen B. cinerea proteins with functions related to pectin degradation were identified in both pectin growth conditions, while only four were identified in sucrose. Our results indicate it is unlikely that the activation of B. cinerea from the dormant state to active infection is solely dependent on changes in the degree of esterification of the pectin component of the plant cell wall. Further, these results suggest that future studies of the B. cinerea secretome in infections of ripe and unripe fruits will provide important information that will describe the mechanisms that the fungus employs to access nutrients and decompose tissues.  相似文献   

16.
17.
  • The prevention of Botrytis cinerea infection and the study of grape seedlessness are very important for grape industries. Finding correlated regulatory genes is an important approach towards understanding their molecular mechanisms.
  • Ethylene responsive factor (ERF) gene family play critical roles in defence networks and the growth of plants. To date, no large‐scale study of the ERF proteins associated with pathogen defence and ovule development has been performed in grape (Vitis vinifera L.). In the present study, we identified 113 ERF genes (VvERF) and named them based on their chromosome locations. The ERF genes could be divided into 11 groups based on a multiple sequence alignment and a phylogenetic comparison with homologues from Arabidopsis thaliana. Synteny analysis and Ka/Ks ratio calculation suggested that segmental and tandem duplications contributed to the expansion of the ERF gene family. The evolutionary relationships between the VvERF genes were investigated by exon–intron structure characterisation, and an analysis of the cis‐acting regulatory elements in their promoters suggested potential regulation after stress or hormone treatments.
  • Expression profiling after infection with the fungus, B. cinerea, indicated that ERF genes function in responses to pathogen attack. In addition, the expression levels of most ERF genes were much higher during ovule development in seedless grapes, suggesting a role in ovule abortion related to seedlessness.
  • Taken together, these results indicate that VvERF proteins are involved in responses to Botrytis cinerea infection and in grape ovule development. This information may help guide strategies to improve grape production.
  相似文献   

18.
Botrytis cinerea is the causative agent of grey mould on over 1000 plant species and annually causes enormous economic losses worldwide. However, the fungal factors that mediate pathogenesis of the pathogen remain largely unknown. Here, we demonstrate that a novel B. cinerea-specific pathogenicity-associated factor BcHBF1 (h yphal b ranching-related f actor 1), identified from virulence-attenuated mutant M8008 from a B. cinerea T-DNA insertion mutant library, plays an important role in hyphal branching, infection structure formation, sclerotial formation and full virulence of the pathogen. Deletion of BcHBF1 in B. cinerea did not impair radial growth of mycelia, conidiation, conidial germination, osmotic- and oxidative-stress adaptation, as well as cell wall integrity of the ∆Bchbf1 mutant strains. However, loss of BcHBF1 impaired the capability of hyphal branching, appressorium and infection cushion formation, appressorium host penetration and virulence of the pathogen. Moreover, disruption of BcHBF1 altered conidial morphology and dramatically impaired sclerotial formation of the mutant strains. Complementation of BcHBF1 completely rescued all the phenotypic defects of the ∆Bchbf1 mutants. During young hyphal branching, host penetration and early invasive growth of the pathogen, BcHBF1 expression was up-regulated, suggesting that BcHBF1 is required for these processes. Our findings provide novel insights into the fungal factor mediating pathogenesis of the grey mould fungus via regulation of its infection structure formation, host penetration and invasive hyphal branching and growth.  相似文献   

19.
The penetration process and defence reactions (hypersensitive response, oxidative burst and cell wall fortification) of Colletotrichum orbiculare were studied histochemically on pepper cultivar ‘A11’ (non‐host) and susceptible cucumber cultivar ‘Changchun Thorn’ (host). The results indicate that C. orbiculare could hardly penetrate the non‐host pepper leaves. It was papillae rather than hypersensitive response and H2O2 that played an important role in resisting the colonization and development of C. orbiculare on the non‐host pepper. The depolymerization of the actin microfilament weakened the papilla deposition of pepper and allowed successful penetration of the non‐adapted C. orbiculare, suggesting that the actin cytoskeleton of pepper is significant in preventing the invasion of the non‐host pathogen C. orbiculare.  相似文献   

20.
The objective was to reveal the effects of ozone treatment on quality maintenance and resistance to Botrytis cinerea and Penicillium expansum in kiwifruit during postharvest storage. Kiwifruits were treated with 79.44 ppm gaseous ozone for 1 hr once a day for 7 day at 0°C to determine the effects of ozone treatment on the quality and disease incidence caused by B. cinerea and P. expansum in vivo and the growth of B. cinerea and P. expansum in vitro. Ozone treatment significantly reduced the disease incidence of kiwifruit and inhibited the mycelial development and spore germination of B. cinerea and P. expansum. High levels of fruit firmness and titratable acidity were maintained in the ozone‐treated kiwifruit, and the activities of the defence‐related enzymes were remarkably enhanced. Therefore, ozone treatment may be an effective method to maintain the quality of kiwifruit and control its decay during postharvest storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号