首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We examined the energetic dependency of the biochemical and physiological responses of Thalassiosira pseudonana Hasle and Heimdal. Chaetoceros gracilis Schütt, Dunaliella tertiolecta Butcher, and Gymnodinium sanguineum Hirasaka to NH4+, NO3?, and urea by growing them at subsaturating and saturating photon flux (PF). At subsaturating PF, when energy was limiting, NO3? and NH4+ grown cells had similar growth rates and C and X quotas. Therefore, NO3? grown cells used up to 48% more energy than NH4+ grown cells to assimilate carbon and nitrogen. Based on our measurements of pigments, chlorophyll-a-specific in vivo absorption cross-section, and fluorescence-chlorophyll a?1, we suggest that NO3?, grown cells do not compensate for the greater energy requirements of NO3? reduction by trapping more light energy. At saturating PF, when energy is not limiting, the utilization of NO3?, compared to NH4+ resulted in lower growth rates and N quotas in Thalassiosira pseudonana and lower N quotas in Chaetoceros gracilis, suggesting enzymatic rather than energetic limitations to growth. The utilization of urea compared to Nh4+ resulted in lower growth rates in Chaetoceros gracilis and Gymnodinium sanguineum (saturating PF) and in lower N quotas in all species tested at both subsaturating and saturating PF. The high C:N ratios observed in all urea-grown species suggest that nitrogen assimilation may be limited by urea uptake or deamination and that symptoms of N limitation in microalgae may be induced by the nature of the N source in addition to the N supply rate. Our results provide new eridence that the maximum growth rates of microalgae may be limited by enzymatic processes associated with the assimilation of NO3?, or urea.  相似文献   

2.
A whole-plant model of C and N metabolism is presented for the juvenile stage. It is aimed at comparing the growth performance of (wild) plant species in a range of environments with respect to irradiance and availability of nitrate (NO3 -) and ammonium (NH4 +). State variables are the structural masses of leaves, stem and root, NO3 - concentrations in root and shoot, non-structural carbohydrate (C) densities in leaves, stem and root and non-structural organic N concentration in the whole plant. Explicit expressions for NO3 - influx, efflux, translocation and assimilation, and for NH4 + uptake and assimilation have been formulated in an accompanying paper. Photosynthetic rate is derived from electron-transport rate which depends on irradiance and chlorophyll concentration on a leaf-area basis. The latter is proportional to non-structural organic N concentration. Photosynthetic N is considered non-structural. Unique features of the model are the use of metabolite signals and the treatment of C allocation and balanced growth. Metabolite signals are dimensionless functions of non-structural compounds (NO3 -, C, organic N) and modify rate variables involved in N uptake and assimilation, C allocation and growth. Carbon allocation is driven by concentration differences of the cytosolic C pools in stem and root and is modified by the N status of the plant such that a high N status increases the apparent size of the shoot. Photosynthate is unloaded into C buffers which degrade at a constant specific rate. The sugar fluxes which arise from these buffers drive the growth rate of stem and root. No parameters are included for maximum specific growth or for activity or strength of sinks. Primary stem growth is proportional to growth of the leaf compartment: leaves arise from stems in a modular fashion. Leaves are autonomous with respect to their C balance. The model is presented as a system of differential equations which is integrated numerically. Parameter values, e.g., for uptake and assimilation capacities and costs of uptake, assimilation, maintenance and growth, are estimated for a grass species, Dactylis glomerata. Juvenile growth is simulated under optimal conditions with respect to irradiance and NO3 - availability and compared with literature data. Diurnal and daily patterns of C utilisation and respiration, expressed as percentages of gross photosynthetic rate, are discussed. The model satisfactorily simulates typical responses to nutrient and light limitation and pruning, such as redirected C allocation, adjusted root and leaf weight ratios and compensatory growth. A sensitivity analysis is included for selected parameters. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The effects of Fe deficiency on the marine cyanobacterium Synechococcus sp. were examined in batch cultures grown on nitrate or ammonium as a sole nitrogen source under two different irradiances. Fe-stressed cells showed lower chlorophyll a content and cellular C and N quotas. Light limitation increased the critical iron concentration below which both suppression of growth rate and changes in cellular composition were observed. At a limiting irradiance (26 μmol.m−2.s−1), this critical value was ∼10 nM, a 10 times increase compared to high-light cultures. Moreover, at low light the cellular chlorophyll a concentration was higher than at saturating light (110 μmol.m−2.s−1), this difference being most pronounced under Fe-stressed conditions. Cells grown on ammonium showed a lower half-saturation constant for Fe (Ks) compared to cells grown on nitrate, indicating Synechococcus sp. has the ability to grow faster on ammonium than on nitrate in a low Fe environment at high light. Consequently, in high-nutrient and low-chlorophyll regions where Fe limits new production, cyanobacteria most likely grow on regenerated ammonium, which requires less energy for assimilation. The Ks for growth on Fe at low light was significantly higher than at high light compared with the cells grown on the same N source, suggesting the cells require more Fe at low light. Therefore, if cells that are already Fe-limited also become light-limited, their iron stress level will increase even more. For cyanobacteria this is the first report of a study combining the interactions of Fe limitation, light limitation, and nitrogen source (NO3 vs. NH4+).  相似文献   

4.
When NH4 + or NO3 ? was supplied to NO3 ? ‐stressed cells of the microalga Dunaliella tertiolecta Butcher, immediate transient changes in chl a fluorescence were observed over several minutes that were not seen in N‐replete cells. These changes were predominantly due to nonphotochemical fluorescence quenching. Fluorescence changes were accompanied by changes in photosynthetic oxygen evolution, indicating interactions between photosynthesis and N assimilation. The magnitude of the fluorescence change showed a Michaelis‐Menten relationship with half‐saturation concentration of 0.5 μM for NO3 ? and 10 μM for NH4 + . Changes in fluorescence responses were characterized in D. tertiolecta both over 5 days of N starvation and in cells cultured at a range of NO3 ? ‐limited growth rates. Variation in responses was more marked in starved than in limited cells. During N starvation, the timing and onset of the fluorescence responses were different for NO3 ? versus NH4 + and were correlated with changes in maximum N uptake rate during N starvation. In severely N‐starved cells, the major fluorescence response to NO3 ? disappeared, whereas the response to NH4 + persisted. N‐starved cells previously grown with NH4 + alone showed fluorescence responses with NH4 + but not NO3 ? additions. The distinct responses to NO3 ? and NH4 + may be due to the differences between regulation of the uptake mechanisms for the two N sources during N starvation. This method offers potential for assessing the importance of NO3 ? or NH4 + as an N source to phytoplankton populations and as a diagnostic tool for N limitation.  相似文献   

5.
Atmospheric CO2 enrichment is expected to often benefit plant growth, despite causing global warming and nitrogen (N) dilution in plants. Most plants primarily procure N as inorganic nitrate (NO3?) or ammonium (NH4+), using membrane‐localized transport proteins in roots, which are key targets for improving N use. Although interactive effects of elevated CO2, chronic warming and N form on N relations are expected, these have not been studied. In this study, tomato (Solanum lycopersicum) plants were grown at two levels of CO2 (400 or 700 ppm) and two temperature regimes (30 or 37°C), with NO3? or NH4+ as the N source. Elevated CO2 plus chronic warming severely inhibited plant growth, regardless of N form, while individually they had smaller effects on growth. Although %N in roots was similar among all treatments, elevated CO2 plus warming decreased (1) N‐uptake rate by roots, (2) total protein concentration in roots, indicating an inhibition of N assimilation and (3) shoot %N, indicating a potential inhibition of N translocation from roots to shoots. Under elevated CO2 plus warming, reduced NO3?‐uptake rate per g root was correlated with a decrease in the concentration of NO3?‐uptake proteins per g root, reduced NH4+ uptake was correlated with decreased activity of NH4+‐uptake proteins and reduced N assimilation was correlated with decreased concentration of N‐assimilatory proteins. These results indicate that elevated CO2 and chronic warming can act synergistically to decrease plant N uptake and assimilation; hence, future global warming may decrease both plant growth and food quality (%N).  相似文献   

6.
Nitrogen assimilation was studied in the deciduous, perennial climber Clematis vitalba. When solely supplied with NO3 in a hydroponic system, growth and N-assimilation characteristics were similar to those reported for a range of other species. When solely supplied with NH4+, however, nitrate reductase (NR) activity dramatically increased in shoot tissue, and particularly leaf tissue, to up to three times the maximum level achieved in NO3 supplied plants. NO3 was not detected in plant material that had been solely supplied with NH4+, there was no NO3 contamination of the hydroponic system, and the NH4+-induced activity did not occur in tobacco or barley grown under similar conditions. Western Blot analysis revealed that the induction of NR activity, either by NO3 or NH4+, was matched by NR and nitrite reductase protein synthesis, but this was not the case for the ammonium assimilation enzyme glutamine synthetase. Exposure of leaf disks to N revealed that NO3 assimilation was induced in leaves directly by NO3 and NH4+ but not glutamine. Our results suggest that the NH4+-induced potential for NO3 assimilation occurs when externally sourced NH4+ is assimilated in the absence of any NO3 assimilation. These data show that the potential for nitrate assimilation in C. vitalba is induced by a nitrogenous compound in the absence of its substrate and suggest that NO3 assimilation in C. vitalba may have a significant role beyond the supply of reduced N for growth.  相似文献   

7.
Water stress and nitrogen (N) availability are the main constraints limiting yield in durum wheat (Triticum turgidum L. var. durum). This work investigates the combined effects of N source (ammonium–NH4+, nitrate–NO3 or a mixture of both–NH4+:NO3) and water availability (well‐watered vs. moderate water stress) on photosynthesis and water‐use efficiency in durum wheat (cv. Korifla) flag leaves grown under controlled conditions, using gas exchange, chlorophyll fluorescence and stable carbon isotope composition (δ13C). Under well‐watered conditions, NH4+‐grown plants had lower net assimilation rates (A) than those grown with the other two N forms. This effect was mainly due to lower stomatal conductance (gs). Under moderate water stress, differences among N forms were not significant, because water regime (WR) had a stronger effect on gs and A than did N source. Consistent with lower gs, δ13C and transpiration efficiency (TE) were the highest in NH4+ leaves in both water treatments. These results indicate higher water‐use efficiency in plants fertilized with NH4+ due to stomatal limitation on photosynthesis. Moreover, leaf δ13C is an adequate trait to assess differences in photosynthetic activity and water‐use efficiency caused by different N sources. Further, the effect of these growing conditions on the nitrogen isotope composition (δ15N) of flag leaves and roots was examined. Water stress increased leaf δ15N in all N forms. In addition, leaf δ15N increased as root N decreased and as leaf δ13C became less negative. Regardless of WR, the leaf δ15N of NO3‐grown plants was lowest. Based on stepwise and canonical discriminant analyses, we conclude that plant δ15N together with δ13C and other variables may reflect the conditions of N nutrition and water availability where the plants were grown. Thus well‐watered plants grown with NH4+:NO3 resembled those grown with NO3, whereas under water stress they were closer to plants grown with NH4+.  相似文献   

8.
Lolium perenne L. cv. 23 (perennial ryegrass) plants were grown in flowing solution culture and acclimatized over 49 d to low root temperature (5°C) prior to treatment at root temperatures of 3, 5, 7 and 9°C for 41 d with common air temperature of 20/15°C day/night and solution pH 5·0. The effects of root temperature on growth, uptake and assimilation of N were compared with N supplied as either NH4 or NO3 at 10 mmol m?3. At any given temperature, the relative growth rate (RGR) of roots exceeded that of shoots, thus the root fraction (Rf) increased with time. These effects were found in plants grown with the two N sources. Plants grown at 3 and 5°C had very high dry matter contents as reflected by the fresh weight: freeze-dried weight ratio. This ratio increased sharply, especially in roots at 7 and 9°C. Expressed on a fresh weight basis, there was no major effect of root temperature on the [N] of plants receiving NHJ but at any given temperature, the [N] in plants grown with NHJ was significantly greater than in those grown with NO3. The specific absorption rate (SAR) of NH+4 was greater at all temperatures than SAR-NO3. In plants grown with NH+, 3–5% of the total N was recovered as NH+4, whereas in those grown with NO?3 the unassimilated NO?3 rose sharply between 7 and 9°C to become 14 and 28% of the total N in shoots and roots, respectively. The greater assimilation of NH+4 lead to concentrations of insoluble reduced N (= protein) which were 125 and 20% greater, in roots and shoots, respectively, than in NO?3-grown plants. Plants grown with NH+4 had very much greater glutamine and asparagine concentrations in both roots and shoots, although other amino acids were more similar in Concentration to those in NO?3 grown plants. It is concluded that slow growth at low root temperature is not caused by restriction of the absorption or assimilation of either NH+4 or NO?3. The additional residual N (protein) in NH+4 grown plants may serve as a labile store of N which could support growth when external N supply becomes deficient.  相似文献   

9.
The effect of ectomycorrhizal association of Pinus pinaster with Hebeloma cylindrosporum was investigated in relation to the nitrogen source supplied as mineral (NH4+ or NO3?) or organic N (L ‐glutamate) and at 5 mol m?3. Plants were grown for 14 and 16 weeks with mineral and organic N, respectively, and samples were collected during the last 6 weeks of culture. Total fungal biomass was estimated using glucosamine amount and its viability was assessed using the glucosamine to ergosterol ratio. Non‐mycorrhizal plants grew better with NH4+ than with NO3? and grew very slowly when supplied with L ‐glutamate. The presence of the fungus decreased the growth of the host plant with mineral N whereas it increased it with L ‐glutamate. Whatever the N source, most of the living fungal biomass was associated with the roots, whereas the main part of the total biomass was assayed outside the root. The form of mineral N did not significantly affect N accumulation rates over the 42 d in control plants. In mycorrhizal plants grown on either N source, the fungal tissues developing outside of the root were always the main N sink. The ectomycorrhizal association did not change 15NH4+ uptake rate by roots, suggesting that the growth decrease of the host‐plant was related to the carbon cost for fungal growth and N assimilation rather than to a direct effect on NH4+ acquisition. In contrast, in NO3?‐grown plants, in addition to draining carbon for NO3? reduction the fungus competed with the root for NO3? uptake. With NH4+ or NO3? feeding, although mycorrhizal association improved N accumulation in shoots, we concluded that it was unlikely that the fungus had supplied the plant with N. In L ‐glutamate‐grown plants, the presence of the fungus increased the proportion of glutamine in the xylem sap and improved both N nutrition and the growth rate of the host plant.  相似文献   

10.
The aim of this research was to test whether NH4 + and NO3 affect the growth, P demand, cell composition and N2 fixation of Cylindrospermopsis raciborskii under P limitation. Experiments were carried out in P-limited (200 μg l−1 PO4-P) chemostat cultures of C. raciborskii using an inflowing medium containing either 4,000 μg l−1 NH4-N, 4,000 μg l−1 NO3-N or no combined N. The results showed the cellular N:P and C:P ratios of C. raciborskii decreased towards the Redfield ratio with increasing dilution rate (D) due to the alleviation of P limitation. The cellular C:N and carotenoids:chlorophyll-a ratios also decreased with D, predominantly as a result of an increase in the chlorophyll-a and N content. The NH4 + and NO3 supply reduced the P maintenance cell quota of C. raciborskii. Consequently, the biomass yield of the N2-grown culture was significantly lower. The maximum specific growth rate of N2-grown culture was also the lowest observed. It is suggested that these differences in growth parameters were caused by the P and energy requirement for heterocyte formation, nitrogenase synthesis and N2 fixation. N2 fixation was partially inhibited by NO3 and completely inhibited by NH4 +. It was probably repressed through the high N content of cells at high dissolved N concentrations. These results indicate that C. raciborskii is able to grow faster and maintain a higher biomass under P limitation where a sufficient supply of NH4 + or NO3 is maintained. Information gained about the species-specific nutrient and pigment stoichiometry of C. raciborskii could help to access the degree of nutrient limitation in water bodies. Handling editor: Luigi Naselli-Flores  相似文献   

11.
The response of the tubers to NO3 was studied in comparison to the other organs of Solanum tuberosum var. Sava, with special focus on: (a) whether tubers are capable of primary N assimilation; (b) whether N assimilation is stimulated by NO3; and (c) whether primary N assimilation in tubers is important for tuber growth. NO3 reduction via nitrate reductase (NR; EC 1.6.6.1) and NH4+ assimilation via glutamine synthetase (GS; EC 6.3.1.2) occurred predominantly in the shoots, but up to 20% was contributed by the tubers under low‐NO3 conditions. NR activation was highest in tubers (up to 90%) and declined in all organs with increasing NO3 supply. NR and GS activity responded with a decline in tubers and roots as opposed to an increase in the shoots. This corresponded to relative organ growth: growth of tubers and roots was stimulated relative to that of shoots at a limiting NO3 supply. Absolute growth of all organs was stimulated by NO3, whereas tuber number declined. The concentration of N compounds increased with NO3 supply in all organs: NO3 increased most dramatically in the shoots (81‐fold), free amino acids most markedly in the tubers (three‐fold). The amount of patatin and of the 22 kDa protein complex in the tuber reached a minimum when the amount of Rubisco in the shoot reached maximum as a response to NO3 supply. Tuber sucrose and starch increased by 40%, whereas glucose and fructose declined two‐fold as plant N status increased. It is concluded that tubers are potentially N autotroph organs with capacity for de novo synthesis of amino acids. Primary N assimilation in tubers, however, declines with increasing NO3 supply and is not of major importance for tuber growth.  相似文献   

12.
A clone of Spartium junceum (Spanish broom) was used to evaluate the consequence of different soil nitrogen regimes on growth and assimilation of leaves and stems. Nitrogen limitation caused a general reduction in aboveground growth, and NO3- limitation resulted in a greater reduction in leaf area compared to stem area. Supplemental soil nitrogen, from NH4+, caused increased growth and a greater increase in stem area compared to leaf area. Excess NH4+ caused decreased growth of leaves and stems. Under nitrogen-limiting conditions, a greater amount of nitrogen was in stems than in leaves, particularly on a surface area basis. Both stem and leaf assimilation were reduced under limiting nitrogen, but the net effect was an increase in the stem contribution to daily carbon gain compared to a decrease for leaves. Stem and leaf assimilation had similar linear relationships with tissue nitrogen concentration. Nitrogen use efficiency increased under nitrogen limitation. Thus, as the proportion of whole plant nitrogen in the stems increased compared to that in leaves at low nitrogen availability, the nitrogen use efficiency increased.  相似文献   

13.
Changes in the size of intracellular nitrogen pools and the potential feedback by these pools on maximum N uptake (NH4+ and NO3?) rates were determined for Chaetomorpha linum (Müller) Kützing grown sequentially under nutrient-saturating and nutrient-limiting conditions. The size of individual pools in N-sufficient algae could be ranked as residual organic N (RON) comprised mainly of amino acids and amino compounds > protein N > NO3? > NH4+ > chlorophyll N. When the external N supply was removed, growth rates remained high and individual N pools were depleted at exponential rates that reflected both dilution of existing pools by the addition of new biomass from growth and movement between the pools. Calculated fluxes between the tissue N pools showed that the protein pool increased throughout the N depletion period and thus did not serve a storage function. RON was the largest storage reserve; nitrate was the second largest, but more temporary, storage pool that was depleted within 10 days. Upon N resupply, the RON pool increased 3 × faster than either the inorganic or protein pools, suggesting that protein synthesis was the rate-limiting step in N assimilation and caused a buildup of intermediate storage compounds. Maximum uptake rates for both NH4+ and NO3? varied inversely with macroalgal N status and appeared to be controlled by changes in small intracellular N pools. Uptake of NO3? showed an initial lag phase, but the initial uptake of NH4+ was enhanced and was present only when the intracellular NH4+ pool was depleted in the absence of an external N supply. A strong negative correlation between the RON pool size and maximum assimilation uptake rates for both NH4+ and NO3? suggested a feedback control on assimilation uptake by the buildup and depletion of organic compounds. Enhanced uptake and the accumulation of N as simple organic compounds or nitrate both provide a temporary mechanism to buffer against the asynchrony of N supply and demand in C. linum.  相似文献   

14.
Nitrogen (N) limits plant productivity and its uptake and assimilation may be regulated by N source, N availability, and nitrate reductase activity (NRA). Knowledge of how these factors interact to affect N uptake and assimilation processes in woody angiosperms is limited. We fertilized 1-year-old, half-sib black walnut (Juglans nigra L.) seedlings with ammonium (NH4 +) [as (NH4)2SO4], nitrate (NO3 ) (as NaNO3), or a mixed N source (NH4NO3) at 0, 800, or 1,600 mg N plant−1 season−1. Two months following final fertilization, growth, in vivo NRA, plant N status, and xylem exudate N composition were assessed. Specific leaf NRA was higher in NO3 -fed and NH4NO3-fed plants compared to observed responses in NH4 +-fed seedlings. Regardless of N source, N addition increased the proportion of amino acids (AA) in xylem exudate, inferring greater NRA in roots, which suggests higher energy cost to plants. Root total NRA was 37% higher in NO3 -fed than in NH4 +-fed plants. Exogenous NO3 was assimilated in roots or stored, so no difference was observed in NO3 levels transported in xylem. Black walnut seedling growth and physiology were generally favored by the mixed N source over NO3 or NH4 + alone, suggesting NH4NO3 is required to maximize productivity in black walnut. Our findings indicate that black walnut seedling responses to N source and level contrast markedly with results noted for woody gymnosperms or herbaceous angiosperms.  相似文献   

15.
The negative effects of water stress on rice can be alleviated by NH4+ nutrition. However, the effects of mixed nitrogen (N) nutrition (NO3? + NH4+) on resistance to water stress are still not well known. To investigate the response of rice growth to water stress and its relationship with photosynthetic characteristics, a hydroponic experiment supplying different N forms was conducted. Compared with NO3? nutrition, mixed‐N and NH4+ nutrition greatly alleviated the reduction of leaf area, chlorophyll content, and photosynthesis under water stress, whilst subsequently maintaining higher biomass. In contrast, water stress inhibited the root‐shoot ratios in NH4+‐ and mixed‐N‐supplied plants, indicating reduced root growth and higher photosynthate availability to shoots. The following key observations were made: (1) a similar stomatal limitation and low proportion of activated Rubisco were observed among the three different N nutrition regimes; (2) increased mesophyll conductance in NH4+‐ and mixed‐N‐supplied plants simultaneously stimulated leaf photosynthesis and improved the water use efficiency and (3), the maximum carboxylation rate and actual photochemical efficiency of photosystem II in NH4+‐ and mixed‐N‐supplied plants were significantly higher than that in NO3?‐supplied plants, thus resulting in higher photochemical efficiency under water stress. In conclusion, mixed‐N and NH4+ nutrition may be used to develop strategies for improved water stress resistance and stimulated biomass production under conditions of osmotic stress and possibly drought.  相似文献   

16.
Abstract. Field measurements of the growth rate of the red freshwater macroalga Lemanca mamillosa Kutz, in the Dighty Burn, together with measurements of water velocity, [CO2], [NO3], [NH3+ NH4+] and [phosphate], have been made between February and July. This period covers the growth of the erect gametophyte and later of the carposporophyte inside the gametophyte. Hydrodynamic studies in the laboratory on benzoic acid models of the gametophyte suggest an average in situ unstirred layer some 12 μm thick. For growth of the gametophyte, this estimated boundary layer thickness, together with the measured inorganic C transport pathway within the plant, suggest that growth is not significantly restricted by CO2 transport from the bulk phase to the plastids. δ13C measurements on source CO2 and on plant organic C bear this out. Habitat choice (low temperatures: CO2 enrichment from ground-water input: rapid water flow), plant morphology and anatomy (turbulence-generating ‘knobbles’ on the nodes; plastids close to the outside of the plant), and plant biochemistry (high CO2 affinity of the RUBISCO carboxylase; quite high carbonic anhydrase activity) are responsible for this lack of limitation by inorganic C transport in the growing gametophyte which lacks HCO3 transport and a CO2 concentrating mechanism. Transport through the boundary layer does not significantly restrict acquisition by the plant of N (probably as NH4+, despite the preponderance of NO3 in the environment) or of P (as orthophosphate) in the field. The membrane transporters, which have high substrate affinities (K½'s about 2 mmol NH4+ m-3 and < 2 mmol inorganic phosphate m?3), probably impose the major limitation. The development of the carposporophyte later in the season, and an increase in the thickness of the cortex of the gametophyte, result in an increased (less negative) δ13C, suggesting a significant diffusion limitation to CO2 transport. This conclusion is reinforced by consideration of the opposing effect on Δδ13 C of the decreased demand for products of phosphoenolpyruvate carboxylase activity as the N/C ratio decreases late in the growing season.  相似文献   

17.
Estimate of global yearly N assimilation by photolithotrophs are 417 Tmol N in the oceans and 167 Tmol on land and in freshwater, of which diazotrophy contributes 1 (sea) and 10 (land plus freshwater) Tmol N. More than half of the combined N assimilated (416 and 157 Tmol N year−1 in the sea and on land plus freshwater, respectively) is due to reduced N, i. e. organic N and, mainly, NH3/NH+4. Assimilation of reduced N amounts to up to 334 Tmol N year−1 in the oceans and at least 79 Tmol N year−1 in freshwater and on land. Reassimilation of NH3/NH+4 within the plant which is related to photorespiration is at least as great as primary NH3/NH+4 assimilation in the sea, and 8 times greater on land. The less frequently considered reassimilation of NH3/NH+4 that is related to phenyl-propanoid (mainly lignin) synthesis in land plants is similar (111 Tmol N) to the primary assimilation of NH3/NH+4 on land each year. Shoots of terrestrial plants have higher NH3 compensation partial pressures than most natural soils, and especially than have ocean-surface biota. However, gaseous transfer of NH3/NH+4 from land to the oceans is a negligible component of the global N cycle. Consideration of area-based N assimilation rates, diffusion distances and diffusion coefficients can rationalise why steady-state NH3/NH+4 concentrations in the sea are lower than in the soil solution. The possibility that photolithotrophs can catalyse the oxidation of NH3/NH+4, or organic N at the same redox level, to N2, N2O, NO, –NO2, NO, 2, NO2 or NO4+, is critically assessed. The tentative conclusions are that such oxidation probably occurs, but is not a major component of the global conversion of reduced N to N2 and more oxidized N species. More work is needed, especially to determine if NO generated from reduced N (conversion of arginine to citrulline plus NO) has a regulatory role in plants analogous to that established in metazoa. Relative to NO3 (or N2) as N sources, growth using NH3/NH+4 as N source has a number of potential advantages in terms of cost of other resources. Mechanistically predicted economies for NH+4 as N source are: (1) lower cost of photons used and, in transpiring plants, (2) less water lost per unit C assimilated, and (3) lower costs of catalytic Fe, Mn and Mo (unit C assimilated)−1 s−1, as well as (4) a higher maximum growth rate. The lower photon costs are frequently borne out by experimentation and the predicted higher maximum growth rates sometimes occur, while the predicted lower water costs are invariably contradicted. Few data are available for the cost of Fe, Mn or Mo as a function N source.  相似文献   

18.
Carbon isotope composition (δ13C) was measured in a glasshouse experiment with N2-fixing and NO3- or NH4+-fed Casuarina equisetifolia Forst. & Forst plants, both under well-watered and drought conditions. The abundance of 13C was higher (more positive δ13C) for NH4+- than for NO3 -grown plants and was lowest for N2-fixing plants. NH4+-fed plants had more leaf area and dry weight and higher water use efficiency (on a biomass basis) than N2- and NO3-grown plants and had lower water consumption than plants supplied with NO3, either with high or low water supply. Specific leaf areas and leaf area ratios were higher with NH4+ than with NO3 or N2 as the N source. The difference observed in δ13C between plants grown with different N sources was higher than that predicted by theory and was not in the right direction (NH4+-grown plants with a more negative δ13C) to be explained by differences in plant composition and engagement of the various carboxylation reactions. The more positive δ13C in NH4+- than in NO3-grown plants is probably due to a decreased ratio of stomatal to carboxylation conductances, which accounts for the lower water cost of C assimilation in NH4+-grown plants.  相似文献   

19.
Since the recognition of iron‐limited high nitrate (or nutrient) low chlorophyll (HNLC) regions of the ocean, low iron availability has been hypothesized to limit the assimilation of nitrate by diatoms. To determine the influence of non‐steady‐state iron availability on nitrogen assimilatory enzymes, cultures of Thalassiosira weissflogii (Grunow) Fryxell et Hasle were grown under iron‐limited and iron‐replete conditions using artificial seawater medium. Iron‐limited cultures suffered from decreased efficiency of PSII as indicated by the DCMU‐induced variable fluorescence signal (Fv/Fm). Under iron‐replete conditions, in vitro nitrate reductase (NR) activity was rate limiting to nitrogen assimilation and in vitro nitrite reductase (NiR) activity was 50‐fold higher. Under iron limitation, cultures excreted up to 100 fmol NO2?·cell?1·d?1 (about 10% of incorporated N) and NiR activities declined by 50‐fold while internal NO2? pools remained relatively constant. Activities of both NR and NiR remained in excess of nitrogen incorporation rates throughout iron‐limited growth. One possible explanation is that the supply of photosynthetically derived reductant to NiR may be responsible for the limitation of nitrogen assimilation at the NO2? reduction step. Urease activity showed no response to iron limitation. Carbon:nitrogen ratios were equivalent in both iron conditions, indicating that, relative to carbon, nitrogen was assimilated at similar rates whether iron was limiting growth or not. We hypothesize that, diatoms in HNLC regions are not deficient in their ability to assimilate nitrate when they are iron limited. Rather, it appears that diatoms are limited in their ability to process photons within the photosynthetic electron transport chain which results in nitrite reduction becoming the rate‐limiting step in nitrogenassimilation.  相似文献   

20.
In the present study, we investigated whether growth and main nutrient ion concentrations of cabbage (Brassica campestris L.) could be increased when plants were subjected to different NH4^+/NO3- ratios. Cabbage seedlings were grown in a greenhouse in nutrient solutions with five NH4^+/NO3- ratios (1:0; 0.75:0.25; 0.5:0.5; 0.25:0.75; and 0:1). The results showed that cabbage growth was reduced by 87% when the proportion of NH4^+-N in the nutrient solution was more than 75% compared with a ratio NH4^+/NO3- of 0.5:0.5 35 d after transplanting, suggesting a possible toxicity due to the accumulation of a large amount of free ammonia in the leaves. When the NH4+/NO3- ratio was 0.5:0.5, fresh seedling weight, root length, and H2PO4- (P), K^+, Ca^2+, and Mg^2+ concentrations were all higher than those in plants grown under other NH4^+/NO3- ratios. The nitrate concentration in the leaves was the lowest in plants grown at 0.5: 0.5 NH4^+/NO3-. The present results indicate that an appropriate NH4^+/NO3- ratio improves the absorption of other nutrients and maintains a suitable proportion of N assimilation and storage that should benefit plant growth and the quality of cabbage as a vegetable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号