首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Due to their high efficiency, specificity, and flexibility, programmable nucleases, such as those of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a (Cpf1) system, have greatly expanded the applicability of editing the genomes of various organisms. Genes from different gene families or genes with redundant functions in the same gene family can be examined by assembling multiple CRISPR RNAs (crRNAs) in a single vector. However, the activity and efficiency of CRISPR/Cas12a in the non‐vascular plant Physcomitrella patens are largely unknown. Here, we demonstrate that LbCas12a together with its mature crRNA can target multiple loci simultaneously in P. patens with high efficiency via co‐delivery of LbCas12a and a crRNA expression cassette in vivo. The mutation frequencies induced by CRISPR/LbCas12a at a single locus ranged from 26.5 to 100%, with diverse deletions being the most common type of mutation. Our method expands the repertoire of genome editing tools available for P. patens and facilitates the creation of loss‐of‐function mutants of multiple genes from different gene families.  相似文献   

2.
3.
4.
The Queensland fruit fly, Bactrocera tryoni (Froggatt), is a polyphagous horticultural pest in Australia that is capable of causing significant damage to more than 100 different host fruits and vegetables. Chemical applications and ecological control strategies, such as the sterile insect technique (SIT), are commonly used to suppress established populations and eradicate invasive outbreaks following migration. The recently published B. tryoni draft genome provides new opportunities to identify candidate genes for targeted genome modification in order to generate advanced genetic strains for management using sterile insect strategies. Here, we demonstrate CRISPR/Cas‐mediated mutagenesis in B. tryoni through generating a series of frame‐shift mutations in the ATP‐dependent binding cassette transporter, white, causing a classic white‐eye phenotype. This work establishes methods for CRISPR/Cas genome editing in tephritids and demonstrates its potential for developing genetic sexing strains which could be used for SIT‐based pest control.  相似文献   

5.
Clustered regularly interspaced short palindromic repeats‐associated protein 9 (CRISPR‐Cas9) is a revolutionary technology that enables efficient genomic modification in many organisms. Currently, the wide use of Streptococcus pyogenes Cas9 (SpCas9) primarily recognizes sites harbouring a canonical NGG protospacer adjacent motif (PAM). The newly developed VQR (D1135V/R1335Q/T1337R) variant of Cas9 has been shown to cleave sites containing NGA PAM in rice, which greatly expanded the range of genome editing. However, the low editing efficiency of the VQR variant remains, which limits its wide application in genome editing. In this study, by modifying the single guide RNA (sgRNA) structure and strong endogenous promoters, we significantly increased the editing efficiency of the VQR variant. The modified CRISPR‐Cas9‐VQR system provides a robust toolbox for multiplex genome editing at sites containing noncanonical NGA PAM.  相似文献   

6.
In gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. Gene replacement in the moss Physcomitrella patens is extremely efficient, but often large amounts of additional DNA are integrated at the target locus. A detailed analysis of recombination junctions of PpCOL2 gene knockout mutants shows that the integrated DNA can be highly rearranged. Our data suggest that the replaced sequences were excised by HR and became integrated back into the genome by non‐homologous end‐joining (NHEJ). RAD51‐mediated strand‐invasion and subsequent strand‐exchange is central to the two‐end invasion pathway, the major gene replacement pathway in yeast. In this pathway, integration is initiated by the free ends of a single replacement vector‐derived donor molecule which then integrates as an entity. Gene replacement in P. patens is entirely RAD51‐dependent suggesting the existence of a pathway mechanistically similar to two‐end invasion. However, invasion of the two ends does not seem to be stringently coordinated in P. patens. Actually, often only one fragment end became integrated by HR, or one‐sided integration of two independent donor fragments occurred simultaneously leading to a double‐strand break that is subsequently sealed by NHEJ and thus causes the observed rearrangements.  相似文献   

7.
Flowering is an indication of the transition from vegetative growth to reproductive growth and has considerable effects on the life cycle of soya bean (Glycine max). In this study, we employed the CRISPR/Cas9 system to specifically induce targeted mutagenesis of GmFT2a, an integrator in the photoperiod flowering pathway in soya bean. The soya bean cultivar Jack was transformed with three sgRNA/Cas9 vectors targeting different sites of endogenous GmFT2a via Agrobacterium tumefaciens‐mediated transformation. Site‐directed mutations were observed at all targeted sites by DNA sequencing analysis. T1‐generation soya bean plants homozygous for null alleles of GmFT2a frameshift mutated by a 1‐bp insertion or short deletion exhibited late flowering under natural conditions (summer) in Beijing, China (N39°58′, E116°20′). We also found that the targeted mutagenesis was stably heritable in the following T2 generation, and the homozygous GmFT2a mutants exhibited late flowering under both long‐day and short‐day conditions. We identified some ‘transgene‐clean’ soya bean plants that were homozygous for null alleles of endogenous GmFT2a and without any transgenic element from the T1 and T2 generations. These ‘transgene‐clean’ mutants of GmFT2a may provide materials for more in‐depth research of GmFT2a functions and the molecular mechanism of photoperiod responses in soya bean. They will also contribute to soya bean breeding and regional introduction.  相似文献   

8.
In recent years, the type II CRISPR system has become a widely used and robust technique to implement site‐directed mutagenesis in a variety of species including model and crop plants. However, few studies manipulated metabolic pathways in plants using the CRISPR system. Here, we introduced the pYLCRISPR/Cas9 system with one or two single‐site guide RNAs to target the tomato phytoene desaturase gene. An obvious albino phenotype was observed in T0 regenerated plants, and more than 61% of the desired target sites were edited. Furthermore, we manipulated the γ‐aminobutyric acid (GABA) shunt in tomatoes using a multiplex pYLCRISPR/Cas9 system that targeted five key genes. Fifty‐three genome‐edited plants were obtained following single plant transformation, and these samples represented single to quadruple mutants. The GABA accumulation in both the leaves and fruits of genomically edited lines was significantly enhanced, and the GABA content in the leaves of quadruple mutants was 19‐fold higher than that in wild‐type plants. Our data demonstrate that the multiplex CRISPR/Cas9 system can be exploited to precisely edit tomato genomic sequences and effectively create multisite knockout mutations, which could shed new light on plant metabolic engineering regulations.  相似文献   

9.
10.
CRISPR/Cas9‐based strategies are widely used for genome editing in many organisms, including zebrafish. Although most applications consist in introducing double strand break (DSB)‐induced mutations, it is also possible to use CRISPR/Cas9 to enhance homology directed repair (HDR) at a chosen genomic location to create knock‐ins with optimally controlled precision. Here, we describe the use of CRISPR/Cas9‐targeted DSB followed by HDR to generate zebrafish transgenic lines where exogenous coding sequences are added in the nefma gene, in frame with the endogenous coding sequence. The resulting knock‐in embryos express the added gene (fluorescent reporter or KalTA4 transactivator) specifically in the populations of neurons that express nefma, making them convenient tools for research on these populations.  相似文献   

11.
12.
Knockout of genes with CRISPR/Cas9 is a newly emerged approach to investigate functions of genes in various organisms. We demonstrate that CRISPR/Cas9 can mutate endogenous genes of the ascidian Ciona intestinalis, a splendid model for elucidating molecular mechanisms for constructing the chordate body plan. Short guide RNA (sgRNA) and Cas9 mRNA, when they are expressed in Ciona embryos by means of microinjection or electroporation of their expression vectors, introduced mutations in the target genes. The specificity of target choice by sgRNA is relatively high compared to the reports from some other organisms, and a single nucleotide mutation at the sgRNA dramatically reduced mutation efficiency at the on‐target site. CRISPR/Cas9‐mediated mutagenesis will be a powerful method to study gene functions in Ciona along with another genome editing approach using TALE nucleases.  相似文献   

13.
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is severely damaging to the global citrus industry. Targeted editing of host disease‐susceptibility genes represents an interesting and potentially durable alternative in plant breeding for resistance. Here, we report improvement of citrus canker resistance through CRISPR/Cas9‐targeted modification of the susceptibility gene CsLOB1 promoter in citrus. Wanjincheng orange (Citrus sinensis Osbeck) harbours at least three copies of the CsLOB1G allele and one copy of the CsLOB1? allele. The promoter of both alleles contains the effector binding element (EBEPthA4), which is recognized by the main effector PthA4 of Xcc to activate CsLOB1 expression to promote citrus canker development. Five pCas9/CsLOB1sgRNA constructs were designed to modify the EBEPthA4 of the CsLOB1 promoter in Wanjincheng orange. Among these constructs, mutation rates were 11.5%–64.7%. Homozygous mutants were generated directly from citrus explants. Sixteen lines that harboured EBEPthA4 modifications were identified from 38 mutant plants. Four mutation lines (S2‐5, S2‐6, S2‐12 and S5‐13), in which promoter editing disrupted CsLOB1 induction in response to Xcc infection, showed enhanced resistance to citrus canker compared with the wild type. No canker symptoms were observed in the S2‐6 and S5‐13 lines. Promoter editing of CsLOB1G alone was sufficient to enhance citrus canker resistance in Wanjincheng orange. Deletion of the entire EBEPthA4 sequence from both CsLOB1 alleles conferred a high degree of resistance to citrus canker. The results demonstrate that CRISPR/Cas9‐mediated promoter editing of CsLOB1 is an efficient strategy for generation of canker‐resistant citrus cultivars.  相似文献   

14.
15.
The fast growth, ease of metabolic labelling and potential for feedstock and biofuels production make duckweeds not only an attractive model system for understanding plant biology, but also a potential future crop. However, current duckweed research is constrained by the lack of efficient genetic manipulation tools. Here, we report a case study on genome editing in a duckweed species, Lemna aequinoctialis, using a fast and efficient transformation and CRISPR/Cas9 tool. By optimizing currently available transformation protocols, we reduced the duration time of Agrobacterium‐mediated transformation to 5–6 weeks with a success rate of over 94%. Based on the optimized transformation protocol, we generated 15 (14.3% success rate) biallelic LaPDS mutants that showed albino phenotype using a CRISPR/Cas9 system. Investigations on CRISPR/Cas9‐mediated mutation spectrum among mutated L. aequinoctialis showed that most of mutations were short insertions and deletions. This study presents the first example of CRISPR/Cas9‐mediated genome editing in duckweeds, which will open new research avenues in using duckweeds for both basic and applied research.  相似文献   

16.
The ability to edit plant genomes through gene targeting (GT) requires efficient methods to deliver both sequence‐specific nucleases (SSNs) and repair templates to plant cells. This is typically achieved using Agrobacterium T‐DNA, biolistics or by stably integrating nuclease‐encoding cassettes and repair templates into the plant genome. In dicotyledonous plants, such as Nicotinana tabacum (tobacco) and Solanum lycopersicum (tomato), greater than 10‐fold enhancements in GT frequencies have been achieved using DNA virus‐based replicons. These replicons transiently amplify to high copy numbers in plant cells to deliver abundant SSNs and repair templates to achieve targeted gene modification. In the present work, we developed a replicon‐based system for genome engineering of cereal crops using a deconstructed version of the wheat dwarf virus (WDV). In wheat cells, the replicons achieve a 110‐fold increase in expression of a reporter gene relative to non‐replicating controls. Furthermore, replicons carrying CRISPR/Cas9 nucleases and repair templates achieved GT at an endogenous ubiquitin locus at frequencies 12‐fold greater than non‐viral delivery methods. The use of a strong promoter to express Cas9 was critical to attain these high GT frequencies. We also demonstrate gene‐targeted integration by homologous recombination (HR) in all three of the homoeoalleles (A, B and D) of the hexaploid wheat genome, and we show that with the WDV replicons, multiplexed GT within the same wheat cell can be achieved at frequencies of ~1%. In conclusion, high frequencies of GT using WDV‐based DNA replicons will make it possible to edit complex cereal genomes without the need to integrate GT reagents into the genome.  相似文献   

17.
The Streptococcus‐derived CRISPR/Cas9 system is being widely used to perform targeted gene modifications in plants. This customized endonuclease system has two components, the single‐guide RNA (sgRNA) for target DNA recognition and the CRISPR‐associated protein 9 (Cas9) for DNA cleavage. Ubiquitously expressed CRISPR/Cas9 systems (UC) generate targeted gene modifications with high efficiency but only those produced in reproductive cells are transmitted to the next generation. We report the design and characterization of a germ‐line‐specific Cas9 system (GSC) for Arabidopsis gene modification in male gametocytes, constructed using a SPOROCYTELESS (SPL) genomic expression cassette. Four loci in two endogenous genes were targeted by both systems for comparative analysis. Mutations generated by the GSC system were rare in T1 plants but were abundant (30%) in the T2 generation. The vast majority (70%) of the T2 mutant population generated using the UC system were chimeras while the newly developed GSC system produced only 29% chimeras, with 70% of the T2 mutants being heterozygous. Analysis of two loci in the T2 population showed that the abundance of heritable gene mutations was 37% higher in the GSC system compared to the UC system and the level of polymorphism of the mutations was also dramatically increased with the GSC system. Two additional systems based on germ‐line‐specific promoters (pDD45‐GT and pLAT52‐GT) were also tested, and one of them was capable of generating heritable homozygous T1 mutant plants. Our results suggest that future application of the described GSC system will facilitate the screening for targeted gene modifications, especially lethal mutations in the T2 population.  相似文献   

18.
CRISPR/Cas9 is a powerful genome editing tool in many organisms, including a number of monocots and dicots. Although the design and application of CRISPR/Cas9 is simpler compared to other nuclease‐based genome editing tools, optimization requires the consideration of the DNA delivery and tissue regeneration methods for a particular species to achieve accuracy and efficiency. Here, we describe a public sector system, ISU Maize CRISPR, utilizing Agrobacterium‐delivered CRISPR/Cas9 for high‐frequency targeted mutagenesis in maize. This system consists of an Escherichia coli cloning vector and an Agrobacterium binary vector. It can be used to clone up to four guide RNAs for single or multiplex gene targeting. We evaluated this system for its mutagenesis frequency and heritability using four maize genes in two duplicated pairs: Argonaute 18 (ZmAgo18a and ZmAgo18b) and dihydroflavonol 4‐reductase or anthocyaninless genes (a1 and a4). T0 transgenic events carrying mono‐ or diallelic mutations of one locus and various combinations of allelic mutations of two loci occurred at rates over 70% mutants per transgenic events in both Hi‐II and B104 genotypes. Through genetic segregation, null segregants carrying only the desired mutant alleles without the CRISPR transgene could be generated in T1 progeny. Inheritance of an active CRISPR/Cas9 transgene leads to additional target‐specific mutations in subsequent generations. Duplex infection of immature embryos by mixing two individual Agrobacterium strains harbouring different Cas9/gRNA modules can be performed for improved cost efficiency. Together, the findings demonstrate that the ISU Maize CRISPR platform is an effective and robust tool to targeted mutagenesis in maize.  相似文献   

19.
Genome editing via the homology‐directed repair (HDR) pathway in somatic plant cells is very inefficient compared with error‐prone repair by nonhomologous end joining (NHEJ). Here, we increased HDR‐based genome editing efficiency approximately threefold compared with a Cas9‐based single‐replicon system via the use of de novo multi‐replicon systems equipped with CRISPR/LbCpf1 in tomato and obtained replicon‐free but stable HDR alleles. The efficiency of CRISPR/LbCpf1‐based HDR was significantly modulated by physical culture conditions such as temperature and light. Ten days of incubation at 31 °C under a light/dark cycle after Agrobacterium‐mediated transformation resulted in the best performance among the tested conditions. Furthermore, we developed our single‐replicon system into a multi‐replicon system that effectively increased HDR efficiency. Although this approach is still challenging, we showed the feasibility of HDR‐based genome editing of a salt‐tolerant SlHKT1;2 allele without genomic integration of antibiotic markers or any phenotypic selection. Self‐pollinated offspring plants carrying the HKT1;2 HDR allele showed stable inheritance and germination tolerance in the presence of 100 mm NaCl. Our work may pave the way for transgene‐free editing of alleles of interest in asexually and sexually reproducing plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号