共查询到20条相似文献,搜索用时 0 毫秒
1.
CRISPR/Cas系统几乎存在于所有的细菌和古菌中,是用来抵御外来病毒和噬菌体入侵的获得性免疫防御机制。2012年起CRISPR/Cas9被改造为基因编辑工具,并衍生出一系列高效、便捷的基因编辑工具,迅速在基础理论、基因诊断和临床治疗等研究领域中得到广泛应用。然而,CRISPR/Cas9也存在细胞毒性、脱靶效应和基因插入困难等一些亟待解决的问题,在一定程度上限制了CRISPR/Cas9的应用。Cpf1是2015年报道的一种新型CRISPR效应蛋白,具有许多与Cas9不同的特性,有利于克服CRISPR/Cas9应用中的一些限制。本文综述了近两年来对CRISPR/Cpf1的研究进展和应用,并对其应用前景和发展方向进行了展望。 相似文献
2.
Tien Van Vu Velu Sivankalyani Eun‐Jung Kim Duong Thi Hai Doan Mil Thi Tran Jihae Kim Yeon Woo Sung Minwoo Park Yang Jae Kang Jae‐Yean Kim 《Plant biotechnology journal》2020,18(10):2133-2143
Genome editing via the homology‐directed repair (HDR) pathway in somatic plant cells is very inefficient compared with error‐prone repair by nonhomologous end joining (NHEJ). Here, we increased HDR‐based genome editing efficiency approximately threefold compared with a Cas9‐based single‐replicon system via the use of de novo multi‐replicon systems equipped with CRISPR/LbCpf1 in tomato and obtained replicon‐free but stable HDR alleles. The efficiency of CRISPR/LbCpf1‐based HDR was significantly modulated by physical culture conditions such as temperature and light. Ten days of incubation at 31 °C under a light/dark cycle after Agrobacterium‐mediated transformation resulted in the best performance among the tested conditions. Furthermore, we developed our single‐replicon system into a multi‐replicon system that effectively increased HDR efficiency. Although this approach is still challenging, we showed the feasibility of HDR‐based genome editing of a salt‐tolerant SlHKT1;2 allele without genomic integration of antibiotic markers or any phenotypic selection. Self‐pollinated offspring plants carrying the HKT1;2 HDR allele showed stable inheritance and germination tolerance in the presence of 100 mm NaCl. Our work may pave the way for transgene‐free editing of alleles of interest in asexually and sexually reproducing plants. 相似文献
3.
4.
5.
Xixun Hu Xiangbing Meng Qing Liu Jiayang Li Kejian Wang 《Plant biotechnology journal》2018,16(1):292-297
Clustered regularly interspaced short palindromic repeats‐associated protein 9 (CRISPR‐Cas9) is a revolutionary technology that enables efficient genomic modification in many organisms. Currently, the wide use of Streptococcus pyogenes Cas9 (SpCas9) primarily recognizes sites harbouring a canonical NGG protospacer adjacent motif (PAM). The newly developed VQR (D1135V/R1335Q/T1337R) variant of Cas9 has been shown to cleave sites containing NGA PAM in rice, which greatly expanded the range of genome editing. However, the low editing efficiency of the VQR variant remains, which limits its wide application in genome editing. In this study, by modifying the single guide RNA (sgRNA) structure and strong endogenous promoters, we significantly increased the editing efficiency of the VQR variant. The modified CRISPR‐Cas9‐VQR system provides a robust toolbox for multiplex genome editing at sites containing noncanonical NGA PAM. 相似文献
6.
Recently, CRISPR‐Cas12a (Cpf1) from Prevotella and Francisella was engineered to modify plant genomes. In this report, we employed CRISPR‐LbCas12a (LbCpf1), which is derived from Lachnospiraceae bacterium ND2006, to edit a citrus genome for the first time. First, LbCas12a was used to modify the CsPDS gene successfully in Duncan grapefruit via Xcc‐facilitated agroinfiltration. Next, LbCas12a driven by either the 35S or Yao promoter was used to edit the PthA4 effector binding elements in the promoter (EBEPthA4‐CsLOBP) of CsLOB1. A single crRNA was selected to target a conserved region of both Type I and Type II CsLOBPs, since the protospacer adjacent motif of LbCas12a (TTTV) allows crRNA to act on the conserved region of these two types of CsLOBP. CsLOB1 is the canker susceptibility gene, and it is induced by the corresponding pathogenicity factor PthA4 in Xanthomonas citri by binding to EBEPthA4‐CsLOBP. A total of seven 35S‐LbCas12a‐transformed Duncan plants were generated, and they were designated as #D35s1 to #D35s7, and ten Yao‐LbCas12a‐transformed Duncan plants were created and designated as #Dyao1 to #Dyao10. LbCas12a‐directed EBEPthA4‐CsLOBP modifications were observed in three 35S‐LbCas12a‐transformed Duncan plants (#D35s1, #D35s4 and #D35s7). However, no LbCas12a‐mediated indels were observed in the Yao‐LbCas12a‐transformed plants. Notably, transgenic line #D35s4, which contains the highest mutation rate, alleviates XccΔpthA4:dCsLOB1.4 infection. Finally, no potential off‐targets were observed. Therefore, CRISPR‐LbCas12a can readily be used as a powerful tool for citrus genome editing. 相似文献
7.
8.
9.
Production of low‐Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR‐Cas system 下载免费PDF全文
Manuel Nieves‐Cordones Sonia Mohamed Keitaro Tanoi Natsuko I. Kobayashi Keiko Takagi Aurore Vernet Emmanuel Guiderdoni Christophe Périn Hervé Sentenac Anne‐Aliénor Véry 《The Plant journal : for cell and molecular biology》2017,92(1):43-56
The occurrence of radiocesium in food has raised sharp health concerns after nuclear accidents. Despite being present at low concentrations in contaminated soils (below μm ), cesium (Cs+) can be taken up by crops and transported to their edible parts. This plant capacity to take up Cs+ from low concentrations has notably affected the production of rice (Oryza sativa L.) in Japan after the nuclear accident at Fukushima in 2011. Several strategies have been put into practice to reduce Cs+ content in this crop species such as contaminated soil removal or adaptation of agricultural practices, including dedicated fertilizer management, with limited impact or pernicious side‐effects. Conversely, the development of biotechnological approaches aimed at reducing Cs+ accumulation in rice remain challenging. Here, we show that inactivation of the Cs+‐permeable K+ transporter OsHAK1 with the CRISPR‐Cas system dramatically reduced Cs+ uptake by rice plants. Cs+ uptake in rice roots and in transformed yeast cells that expressed OsHAK1 displayed very similar kinetics parameters. In rice, Cs+ uptake is dependent on two functional properties of OsHAK1: (i) a poor capacity of this system to discriminate between Cs+ and K+; and (ii) a high capacity to transport Cs+ from very low external concentrations that is likely to involve an active transport mechanism. In an experiment with a Fukushima soil highly contaminated with 137Cs+, plants lacking OsHAK1 function displayed strikingly reduced levels of 137Cs+ in roots and shoots. These results open stimulating perspectives to smartly produce safe food in regions contaminated by nuclear accidents. 相似文献
10.
Debin Zhang Amjad Hussain Hakim Manghwar Kabin Xie Shengsong Xie Shuhong Zhao Robert M. Larkin Ping Qing Shuangxia Jin Fang Ding 《Plant biotechnology journal》2020,18(8):1651-1669
Over the last three decades, the development of new genome editing techniques, such as ODM, TALENs, ZFNs and the CRISPR‐Cas system, has led to significant progress in the field of plant and animal breeding. The CRISPR‐Cas system is the most versatile genome editing tool discovered in the history of molecular biology because it can be used to alter diverse genomes (e.g. genomes from both plants and animals) including human genomes with unprecedented ease, accuracy and high efficiency. The recent development and scope of CRISPR‐Cas system have raised new regulatory challenges around the world due to moral, ethical, safety and technical concerns associated with its applications in pre‐clinical and clinical research, biomedicine and agriculture. Here, we review the art, applications and potential risks of CRISPR‐Cas system in genome editing. We also highlight the patent and ethical issues of this technology along with regulatory frameworks established by various nations to regulate CRISPR‐Cas‐modified organisms/products. 相似文献
11.
TALEN‐mediated targeted mutagenesis produces a large variety of heritable mutations in rice 下载免费PDF全文
Hui Zhang Feng Gou Jinshan Zhang Wenshan Liu Qianqian Li Yanfei Mao José Ramón Botella Jian‐Kang Zhu 《Plant biotechnology journal》2016,14(1):186-194
CRISPR/Cas9 and TALEN are currently the two systems of choice for genome editing. We have studied the efficiency of the TALEN system in rice as well as the nature and inheritability of TALEN‐induced mutations and found important features of this technology. The N287C230 TALEN backbone resulted in low mutation rates (0–6.6%), but truncations in its C‐terminal domain dramatically increased efficiency to 25%. In most transgenic T0 plants, TALEN produced a single prevalent mutation accompanied by a variety of low‐frequency mutations. For each independent T0 plant, the prevalent mutation was present in most tissues within a single tiller as well as in all tillers examined, suggesting that TALEN‐induced mutations occurred very early in the development of the shoot apical meristem. Multigenerational analysis showed that TALEN‐induced mutations were stably transmitted to the T1 and T2 populations in a normal Mendelian fashion. In our study, the vast majority of TALEN‐induced mutations (~81%) affected multiple bases and ~70% of them were deletions. Our results contrast with published reports for the CRISPR/Cas9 system in rice, in which the predominant mutations affected single bases and deletions accounted for only 3.3% of the overall mutations. 相似文献
12.
13.
I. Lamas‐Toranzo A. Martínez‐Moro E. OCallaghan G. Milln‐Blanca J.M. Snchez P. Lonergan P. Bermejo‐lvarez 《Molecular reproduction and development》2020,87(5):542-549
Targeted knock‐in (KI) can be achieved in embryos by clustered regularly interspaced short palindromic repeats (CRISPR)‐assisted homology directed repair (HDR). However, HDR efficiency is constrained by the competition of nonhomologous end joining. The objective of this study was to explore whether CRISPR‐assisted targeted KI rates can be improved in bovine embryos by exposure to the HDR enhancer RS‐1. In vitro produced zygotes were injected with CRISPR components (300 ng/µl Cas9 messenger RNA and 100 ng/µl single guide RNA against a noncoding region) and a single‐stranded DNA (ssDNA) repair template (100 ng/µl). ssDNA template contained a 6 bp XbaI site insert, allowing targeted KI detection by restriction analysis, flanked by 50 bp homology arms. Following microinjection, zygotes were exposed to 0, 3.75, or 7.5 µM RS‐1 for 24 hr. No differences were noted between groups in terms of development or genome edition rates. However, targeted KI rates were doubled in the group exposed to 7.5 µM RS‐1 compared to the others (52.8% vs. 25% and 23.1%, for 7.5, 0, and 3.75 µM, respectively). In conclusion, transient exposure to 7.5 µM RS‐1 enhances targeted KI rates resulting in approximately half of the embryos containing the intended mutation, hence allowing direct KI generation in embryos. 相似文献
14.
15.
16.
Discovery of rice essential genes by characterizing a CRISPR‐edited mutation of closely related rice MAP kinase genes 下载免费PDF全文
Bastian Minkenberg Kabin Xie Yinong Yang 《The Plant journal : for cell and molecular biology》2017,89(3):636-648
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 nuclease (Cas9) system depends on a guide RNA (gRNA) to specify its target. By efficiently co‐expressing multiple gRNAs that target different genomic sites, the polycistronic tRNA‐gRNA gene (PTG) strategy enables multiplex gene editing in the family of closely related mitogen‐activated protein kinase (MPK) genes in Oryza sativa (rice). In this study, we identified MPK1 and MPK6 (Arabidopsis AtMPK6 and AtMPK4 orthologs, respectively) as essential genes for rice development by finding the preservation of MPK functional alleles and normal phenotypes in CRISPR‐edited mutants. The true knock‐out mutants of MPK1 were severely dwarfed and sterile, and homozygous mpk1 seeds from heterozygous parents were defective in embryo development. By contrast, heterozygous mpk6 mutant plants completely failed to produce homozygous mpk6 seeds. In addition, the functional importance of specific MPK features could be evaluated by characterizing CRISPR‐induced allelic variation in the conserved kinase domain of MPK6. By simultaneously targeting between two and eight genomic sites in the closely related MPK genes, we demonstrated 45–86% frequency of biallelic mutations and the successful creation of single, double and quadruple gene mutants. Indels and fragment deletion were both stably inherited to the next generations, and transgene‐free mutants of rice MPK genes were readily obtained via genetic segregation, thereby eliminating any positional effects of transgene insertions. Taken together, our study reveals the essentiality of MPK1 and MPK6 in rice development, and enables the functional discovery of previously inaccessible genes or domains with phenotypes masked by lethality or redundancy. 相似文献
17.
18.
The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation 总被引:2,自引:0,他引:2
Hui Zhang Jinshan Zhang Pengliang Wei Botao Zhang Feng Gou Zhengyan Feng Yanfei Mao Lan Yang Heng Zhang Nanfei Xu Jian‐Kang Zhu 《Plant biotechnology journal》2014,12(6):797-807
The CRISPR/Cas9 system has been demonstrated to efficiently induce targeted gene editing in a variety of organisms including plants. Recent work showed that CRISPR/Cas9‐induced gene mutations in Arabidopsis were mostly somatic mutations in the early generation, although some mutations could be stably inherited in later generations. However, it remains unclear whether this system will work similarly in crops such as rice. In this study, we tested in two rice subspecies 11 target genes for their amenability to CRISPR/Cas9‐induced editing and determined the patterns, specificity and heritability of the gene modifications. Analysis of the genotypes and frequency of edited genes in the first generation of transformed plants (T0) showed that the CRISPR/Cas9 system was highly efficient in rice, with target genes edited in nearly half of the transformed embryogenic cells before their first cell division. Homozygotes of edited target genes were readily found in T0 plants. The gene mutations were passed to the next generation (T1) following classic Mendelian law, without any detectable new mutation or reversion. Even with extensive searches including whole genome resequencing, we could not find any evidence of large‐scale off‐targeting in rice for any of the many targets tested in this study. By specifically sequencing the putative off‐target sites of a large number of T0 plants, low‐frequency mutations were found in only one off‐target site where the sequence had 1‐bp difference from the intended target. Overall, the data in this study point to the CRISPR/Cas9 system being a powerful tool in crop genome engineering. 相似文献
19.
20.
Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene CsLOB1 promoter in citrus 下载免费PDF全文
Tiangang Lei Lanzhen Xu Yongrui He Liu Wu Lixiao Yao Xiuping Zou 《Plant biotechnology journal》2017,15(12):1509-1519
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is severely damaging to the global citrus industry. Targeted editing of host disease‐susceptibility genes represents an interesting and potentially durable alternative in plant breeding for resistance. Here, we report improvement of citrus canker resistance through CRISPR/Cas9‐targeted modification of the susceptibility gene CsLOB1 promoter in citrus. Wanjincheng orange (Citrus sinensis Osbeck) harbours at least three copies of the CsLOB1G allele and one copy of the CsLOB1? allele. The promoter of both alleles contains the effector binding element (EBEPthA4), which is recognized by the main effector PthA4 of Xcc to activate CsLOB1 expression to promote citrus canker development. Five pCas9/CsLOB1sgRNA constructs were designed to modify the EBEPthA4 of the CsLOB1 promoter in Wanjincheng orange. Among these constructs, mutation rates were 11.5%–64.7%. Homozygous mutants were generated directly from citrus explants. Sixteen lines that harboured EBEPthA4 modifications were identified from 38 mutant plants. Four mutation lines (S2‐5, S2‐6, S2‐12 and S5‐13), in which promoter editing disrupted CsLOB1 induction in response to Xcc infection, showed enhanced resistance to citrus canker compared with the wild type. No canker symptoms were observed in the S2‐6 and S5‐13 lines. Promoter editing of CsLOB1G alone was sufficient to enhance citrus canker resistance in Wanjincheng orange. Deletion of the entire EBEPthA4 sequence from both CsLOB1 alleles conferred a high degree of resistance to citrus canker. The results demonstrate that CRISPR/Cas9‐mediated promoter editing of CsLOB1 is an efficient strategy for generation of canker‐resistant citrus cultivars. 相似文献