首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bread wheat (Triticum aestivum) is a hexaploid species with A, B, and D ancestral genomes. Most bread wheat genes are present in the genome as triplicated homoeologous genes (homoeologs) derived from the ancestral species. Here, we report that both genetic and epigenetic alterations have occurred in the homoeologs of a wheat class E MADS box gene. Two class E genes are identified in wheat, wheat SEPALLATA (WSEP) and wheat LEAFY HULL STERILE1 (WLHS1), which are homologs of Os MADS45 and Os MADS1 in rice (Oryza sativa), respectively. The three wheat homoeologs of WSEP showed similar genomic structures and expression profiles. By contrast, the three homoeologs of WLHS1 showed genetic and epigenetic alterations. The A genome WLHS1 homoeolog (WLHS1-A) had a structural alteration that contained a large novel sequence in place of the K domain sequence. A yeast two-hybrid analysis and a transgenic experiment indicated that the WLHS1-A protein had no apparent function. The B and D genome homoeologs, WLHS1-B and WLHS1-D, respectively, had an intact MADS box gene structure, but WLHS1-B was predominantly silenced by cytosine methylation. Consequently, of the three WLHS1 homoeologs, only WLHS1-D functions in hexaploid wheat. This is a situation where three homoeologs are differentially regulated by genetic and epigenetic mechanisms.  相似文献   

2.
Polyploidization is an important evolutionary force in plant speciation and diversification. Retention and elimination of homoeologs derived by polyploidization are prevalent, whereas the evolutionary details of some duplicated genes in closely related natural polyploids are largely unknown. In the present study, we used an important regulatory gene (R) that encodes a bHLH protein in the anthocyanin metabolism pathway to demonstrate divergent evolutionary fates of homoeologs among four related Oryza allotetraploids. The BBCC genome species O. punctata Kotschy ex Steud. maintained both of its homoeologs, whereas three CCDD genome species (O. alta Swallen, O. grandiglumis (Döll) Prod., and O. latifolia Desv.) lost their C subgenome homoeologous copies. In addition, the evolutionary rates of the homoeologs in the polyploids were equivalent to their corresponding homologs in diploids. We also found a slightly higher level of nucleotide diversity inR for the C subgenome homoeolog than for the B subgenome counterpart in O. punctata. After comparing the two types of polyploids, we conclude that inconsistent evolutionary patterns of R in these polyploids are probably associated with different evolutionary time, asymmetrical subgenome evolutionary dynamics, and unique demographical characteristics of these species.  相似文献   

3.
Bread wheat is an allohexaploid with genome composition AABBDD. Phytochrome C is a gene involved in photomorphogenesis that has been used extensively for phylogenetic analyses. In wheat, the PhyC genes are single copy in each of the three homoeologous genomes and map to orthologous positions on the long arms of the group 5 chromosomes. Comparative sequence analysis of the three homoeologous copies of the wheat PhyC gene and of some 5 kb of upstream region has demonstrated a high level of conservation of PhyC, but frequent interruption of the upstream regions by the insertion of retroelements and other repeats. One of the repeats in the region under investigation appeared to have inserted before the divergence of the diploid wheat genomes, but was degraded to the extent that similarity between the A and D copies could only be observed at the amino acid level. Evidence was found for the differential presence of a foldback element and a miniature inverted-repeat transposable element (MITE) 5′ to PhyC in different wheat cultivars. The latter may represent the first example of an active MITE family in the wheat genome. Several conserved non-coding sequences were also identified that may represent functional regulatory elements. The level of sequence divergence (Ks) between the three wheat PhyC homoeologs suggests that the divergence of the diploid wheat ancestors occurred some 6.9 Mya, which is considerably earlier than the previously estimated 2.5–4.5 Mya. Ka/Ks ratios were <0.15 indicating that all three homoeologs are under purifying selection and presumably represent functional PhyC genes. RT-PCR confirmed expression of the A, B and D copies. The discrepancy in evolutionary age of the wheat genomes estimated using sequences from different parts of the genome may reflect a mosaic origin of some of the Triticeae genomes.  相似文献   

4.
5.
6.
Allopolyploidization is widespread and has played a major role in flowering plant diversification. Genomic changes are common consequences of allopolyploidization, but their mechanisms of occurrence and dynamics over time are still poorly understood. Coffea arabica, a recently formed allotetraploid, was chosen as a model to investigate genetic changes in allopolyploid using an approach that exploits next‐generation sequencing technologies. Genes affected by putative homoeolog loss were inferred by comparing the numbers of single‐nucleotide polymorphisms detected using RNA‐seq in individual accessions of C. arabica, and between accessions of its two diploid progenitor species for common sequence positions. Their physical locations were investigated and clusters of genes exhibiting homoeolog loss were identified. To validate these results, genome sequencing data were generated from one accession of C. arabica and further analyzed. Genomic rearrangements involving homoeologous exchanges appear to occur in C. arabica and to be a major source of genetic diversity. At least 5% of the C. arabica genes were inferred to have undergone homoeolog loss. The detection of a large number of homoeologous exchange events (HEEs) shared by all accessions of C. arabica strongly reinforces the assumption of a single allopolyploidization event. Furthermore, HEEs were specific to one or a few accessions, suggesting that HEE accumulates gradually. Our results provide evidence for the important role of HEE in allopolyploid genome evolution.  相似文献   

7.
Synthetic and natural allotetraploid Brassica napus (2n?=?38, AACC) have been widely used as a model to study the genetic changes associated with allopolyploidization; however, there has been little research on the homoeolog expression patterns and the roles of cis and trans regulation. Herein, homoeolog expression patterns were assessed by using RNA-seq for two interspecific hybrids (AnCo with the extracted A subgenome from natural B. napus, and ArCo with the A subgenome from extant B. rapa), synthetic and natural allopolyploids (CoCoArAr and AnAnCnCn), and the diploid parents. The ranges of homoeolog expression bias decreased after hybridization, whereas the extents of homoeolog expression bias and non-conserved expression, especially transgressive expression, increased over evolutionary time. Despite sharing the same C subgenome parent, these two hybrids showed different homolog expression patterns in many respects. In AnCo, the trans-regulatory factors from Co subgenome tended to cause downregulation of An subgenome homoeologs, but trans-regulatory factors from the An subgenome acted as both activators and repressors, and such asymmetric effects of trans-regulatory factors might explain why the homoeolog expression was biased toward the C subgenome after genome merger. No significant asymmetric effects of trans-regulatory factors were found in ArCo, which was consistent with the overall balanced expression of homoeologs. These results suggested that A subgenomes with different regulatory systems might act differently in modulating homoeolog expression after merger with the C subgenome, resulting in either balanced or unbalanced homoeolog expression biases.  相似文献   

8.
9.
BackgroundBread wheat is an allopolyploid species with a large, highly repetitive genome. To investigate the impact of selection on variants distributed among homoeologous wheat genomes and to build a foundation for understanding genotype-phenotype relationships, we performed population-scale re-sequencing of a diverse panel of wheat lines.ResultsA sample of 62 diverse lines was re-sequenced using the whole exome capture and genotyping-by-sequencing approaches. We describe the allele frequency, functional significance, and chromosomal distribution of 1.57 million single nucleotide polymorphisms and 161,719 small indels. Our results suggest that duplicated homoeologous genes are under purifying selection. We find contrasting patterns of variation and inter-variant associations among wheat genomes; this, in addition to demographic factors, could be explained by differences in the effect of directional selection on duplicated homoeologs. Only a small fraction of the homoeologous regions harboring selected variants overlapped among the wheat genomes in any given wheat line. These selected regions are enriched for loci associated with agronomic traits detected in genome-wide association studies.ConclusionsEvidence suggests that directional selection in allopolyploids rarely acted on multiple parallel advantageous mutations across homoeologous regions, likely indicating that a fitness benefit could be obtained by a mutation at any one of the homoeologs. Additional advantageous variants in other homoelogs probably either contributed little benefit, or were unavailable in populations subjected to directional selection. We hypothesize that allopolyploidy may have increased the likelihood of beneficial allele recovery by broadening the set of possible selection targets.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0606-4) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Hu Z  Yu Y  Wang R  Yao Y  Peng H  Ni Z  Sun Q 《Gene》2011,471(1-2):13-18
Most hexaploid wheat genes are present as triplicate homoeologs derived from the ancestral species. Previously, we isolated six wheat cDNAs with open reading frame, encoding methyl CpG-binding domain proteins (MBDs). In this study, the genomic and cDNA sequences of three TaMBD2 homoeologous genes were obtained and mapped on chromosomes 5A, 5B and 5D, respectively. These sequences showed a very high conservation in the coding region and the exon/intron structure, but the cDNA sequences are distinguishable by a 9-bp insertion in coding region and a size polymorphism in the 3'-untranslated region (UTR). The expression patterns of each homeologous gene in different tissues of various developmental stages and in response to abiotic stress were analyzed by using real-time PCR. Relative mRNA abundance of the three homoeologs varied considerably in different developmental stages from seedling to developing seeds. Most notably, TaMBD2-5B and TaMBD2-5D were highly responsive to salt stress and TaMBD2-5B was specifically upregulated by low temperature in the seedling leaves. These results provide further evidence for the expression variation of genes duplicated in allopolyploids. Moreover, the variation of TaMBD2 homoeologous gene expression in response to environmental stress may enable plants to better cope with stresses in their natural environments.  相似文献   

18.
Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to the production of wheat (Triticum aestivum). It is of great importance to identify new resistance genes for the generation of Bgt‐resistant or Bgt‐tolerant wheat varieties. Here, we show that the wheat copine genes TaBON1 and TaBON3 negatively regulate wheat disease resistance to Bgt. Two copies of TaBON1 and three copies of TaBON3, located on chromosomes 6AS, 6BL, 1AL, 1BL and 1DL, respectively, were identified from the current common wheat genome sequences. The expression of TaBON1 and TaBON3 is responsive to both pathogen infection and temperature changes. Knocking down of TaBON1 or TaBON3 by virus‐induced gene silencing (VIGS) induces the up‐regulation of defence responses in wheat. These TaBON1‐ or TaBON3‐silenced plants exhibit enhanced wheat disease resistance to Bgt, accompanied by greater accumulation of hydrogen peroxide and heightened cell death. In addition, high temperature has little effect on the up‐regulation of defence response genes conferred by the silencing of TaBON1 or TaBON3. Our study shows a conserved function of plant copine genes in plant immunity and provides new genetic resources for the improvement of resistance to powdery mildew in wheat.  相似文献   

19.
Copy numbers of four photosynthesis-related genes, PhyA, Ppc, RbcS and Lhcb1 *1, in wheat genomes were estimated by slot-blot analysis, and these genes were assigned to the chromosome arms of common wheat by Southern hybridization of DNA from an aneuploid series of the cultivar Chinese Spring. The copy number of PhyA was estimated to be one locus per haploid genome, and this gene was assigned to chromosomes 4AL, 4BS and 4DS. The Ppc gene showed a low copy number of small multigenes, and was located on the short arm of homoeologous group 3 chromosomes and the long arm of chromosomes of homoeologous group 7. RbcS consisted of a multigene family, with approximately 100 copies in the common wheat genome, and was located on the short arm of group 2 chromosomes and the long arm of group 5 chromosomes. Lhcb1 *1 also consisted of a multigene family with about 50 copies in common wheat. Only a limited number of restriction fragments (approximately 15%) were used to determine the locations of members of this family on the long arm of group 1 chromosomes owing to the multiplicity of DNA bands. The variability of hybridized bands with the four genes was less in polyploids, but was more in the case of multigene families. RFLP analysis of polyploid wheats and their presumed ancestors was carried out with probes of the oat PhyA gene, the maize Ppc gene, the wheat RbcS gene and the wheat Lhcb1 *1 gene. The RFLP patterns of common wheat most closely resembled those of T. Dicoccum (Emmer wheat), T. urartu (A genome), Ae. speltoides (S genome) and Ae. squarrosa (D genome). Diversification of genes in the wheat complex appear to have occurred mainly at the diploid level. Based on RFLP patterns, B and S genomes were clustered into two major groups. The fragment numbers per genome were reduced in proportion to the increase of ploidy level for all four genes, suggesting that some mechanism(s) might operate to restrict, and so keep to a minimum, the gene numbers in the polyploid genomes. However, the RbcS genes, located on 2BS, were more conserved (double dosage), indicating that the above mechanism(s) does not operate equally on individual genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号