首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Winter wheat, grown under greenhouse conditions, was protected four times with a cell suspension of Aureobasidium pullulans var. pullulans during the growing season. After harvest, the distribution and survival rates of the studied biocontrol agent were analyzed under a scanning electron microscope. The abundance of filamentous fungi, yeasts, pseudomonads and Azotobacter bacteria was determined by inoculation onto selective agar media. A. pullulans produced mostly unicellular chlamydospores on the surface and in the brush of kernels. Multicellular blastospore conglomerates secreted extracellular polymeric substances (EPS), and their biofilms were found in the brush and crease of kernels. The application of a cell suspension of A. pullulans with the density of 104 CFU to winter wheat spikes, repeated four times, inhibited the growth of pseudomonads, Azotobacter bacteria and filamentous fungi.  相似文献   

2.
3.
Azotobacter species, free-living nitrogen-fixing bacteria, have been used as biofertilizers to improve the productivity of non-leguminous crops, including rice, due to their various plant growth-promoting traits. The purposes of this study were to characterize Azotobacter species isolated from rice rhizospheres in Taiwan and to determine the relationship between the species diversity of Azotobacter and soil properties. A total of 98 Azotobacter isolates were isolated from 27 paddy fields, and 16S rRNA gene sequences were used to identify Azotobacter species. The characteristics of these Azotobacter strains were analyzed including carbon source utilization and plant growth-promoting traits such as nitrogen fixation activity, indole acetic acid production, phosphate-solubilizing ability, and siderophore secretion. Of the 98 strains isolated in this study, 12 were selected to evaluate their effects on rice growth. Four species of Azotobacter were identified within these 98 strains, including A. beijerinckii, A. chroococcum, A. tropicalis, and A. vinelandii. Of these four species, A. chroococcum was predominant (51.0%) but A. beijerinckii had the highest level of nucleotide diversity. Strains within individual Azotobacter species showed diverse profiles in carbon source utilization. In addition, the species diversity of Azotobacter was significantly related to soil pH, Mn, and Zn. Members of the same Azotobacter species showed diverse plant growth-promoting traits, suggesting that the 98 strains isolated in this study may not equally effective in promoting rice growth. Of the 12 strains evaluated, A. beijerinckii CHB 461, A. chroococcum CHB 846, and A. chroococcum CHB 869 may be used to develop biofertilizers for rice cultivation because they significantly promoted rice growth. This study contributes to the selection of suitable Azotobacter strains for developing biofertilizer formulations and soil management strategies of Azotobacter for paddy fields.  相似文献   

4.
As a result of search for species and strains of entomopathogenic fungi and bacteria virulent to migratory locust (Locusta migratoria migratoria L.), combinations were found which cause high mortality of insect in a short time interval. Four or five days after the L. migratoria had been infected with Beauveria bassiana (Bals.) Vuill and Metarhizium anisopliae (Metsch.) Sorokin a sharp increase in nymphas’ mortality was observed, reaching 95–100% on the 13th to 17th day after inoculation. The mortality of L. migratoria after infection with Pseudomonas sp. bacteria was approximately 30–50% on the 3rd to 7th day of the experiment. Later deaths of the locusts were not observed. When we made synchronous inoculation with fungi and bacteria, the rate of nymphas’ mortality was higher in comparison with monoinfections, and LT50 was about three days. Microbiological analysis of the dead insects showed that both pathogens could coexist in the locust. To determine the antagonism between Pseudomonas and fungi on a synthetic nutrient medium, the blocking method was used. We showed that the fungi do not affect the development of the bacterium, and the Pseudomonas has an insignificant effect on the fungi growth.  相似文献   

5.
In plants, ROS signaling and increase in activities of antioxidants are among defense responses. The present study describes the oxidative stress profiling in model host plant tomato (Solanum lycopersicum L.), during an invasion of the wilt pathogen Fusarium oxysporum f. sp. lycopersici with or without seed priming with Pseudomonas isolates M80, M96 and T109. Tomato seeds were primed with known Pseudomonas isolates M80, M96 and T109 and the forty-day- old plants were challenged with spores of F. oxysporum under greenhouse conditions. Leaf samples were collected at 0, 24, 48 72 and 96 h post fungal challenge and analysed for systemic level of oxidative stress parameters including total phenolics, proline, hydrogen peroxide, lipid peroxidation and enzymatic antioxidants. Disease incidence in the plants under greenhouse conditions was also calculated. Results revealed that priming with Pseudomonas isolates resulted in reduced oxidative stress in the host, during pathogen invasion. M80-priming showed highest antioxidative protection to the host plants during F. oxysporum invasion. The observed reduction in hydrogen peroxide and lipid peroxidation in primed plants was in agreement with the increased activities of the corresponding antioxidant enzymes. Greenhouse results showed that the highest wilt disease symptoms were with M80-priming followed by M96 and T109. The present study gives substantial evidences on the oxidative stress mitigation in response to Pseudomonas-priming on the model tomato-Fusarium interaction system.  相似文献   

6.
OsGW7 (also known as OsGL7) is homologous to the Arabidopsis thaliana gene that encodes LONGIFOLIA protein, which regulates cell elongation, and is involved in regulating grain length in rice. However, our knowledge on its ortholog in wheat, TaGW7, is limited. In this study, we identified and mapped TaGW7 in wheat, characterized its nucleotide and protein structures, predicted the cis-elements of its promoter, and analysed its expression patterns. The GW7 orthologs in barley (HvGW7), rice (OsGW7), and Brachypodium distachyon (BdGW7) were also identified for comparative analyses. TaGW7 mapped onto the short arms of group 2 chromosomes (2AS, 2BS, and 2DS). Multiple alignments indicated GW7 possesses five exons and four introns in all but two of the species analysed. An exon–intron junction composed of introns 3–4 and exons 4–5 was highly conserved. GW7 has a conserved domain (DUF 4378) and two neighbouring low complexity regions. GW7 was mainly expressed in wheat spikes and stems, in barley seedling crowns, and in rice anthers and embryo-sacs during early development. Drought and heat significantly increased and decreased GW7 expression in wheat, respectively. In barley, GW7 was significantly down-regulated in paleae and awns but up-regulated in seeds under drought treatment and down-regulated under Fusarium and stem rust inoculation. In rice, OsGW7 expression differed significantly under drought treatments. Collectively, these results provide insights into GW7 structure and expression in wheat, barley and rice. The GW7 sequence structure and expression data are the foundation for manipulating GW7 and uncovering its roles in plants.  相似文献   

7.
Pseudomonas sp., which occupy a variety of ecological niches, have been widely studied for their versatile metabolic capacity to promote plant growth, suppress microbial pathogens, and induce systemic resistance in plants. In this study, a Pseudomonas sp. strain p21, which was isolated from tomato root endophytes, was identified as having antagonism against Aspergillus niger. Further analysis showed that this strain had the ability to biosynthesise siderophores and was less effective in inhibiting the growth of A. niger with the supplementation of Fe3+ in the agar medium. Genomic sequencing and the secondary metabolite cluster analysis demonstrated that Pseudomonas sp. p21 harboured 2 pyoverdine biosynthetic gene clusters, which encode compounds with predicted core structures and two variable tetra-peptide or eleven-peptide chains. The results indicated that siderophore-mediated competition for iron might be an important mechanism in Pseudomonas suppression of the fungal pathogen A. niger and in microbe-pathogen-plant interactions.  相似文献   

8.
Tomato (Solanum lycopersicum) is a model crop plant for the study of fruit ripening and disease resistance. Here we present a systemic study on in planta transformation of tomato with Agrobacterium tumefaciens strain LBA4404 harboring pCAMBIA1303 binary vector bearing HPTII as a plant selectable marker and mGFP/GUS fusion as the reporter gene. We attempted the transformation of tomato at different developmental stages viz. during seed germination, seedling growth, and floral bud development. The imbibition of seeds with Agrobacterium suspension led to seed mortality. The vacuum infiltration of seedlings with Agrobacterium suspension led to sterility in surviving plants. Successful transformation could be achieved either by dipping of developing floral buds in the Agrobacterium suspension or by injecting Agrobacterium into the floral buds. Most floral buds subjected to dip as well as to injection either aborted or had arrested development. The pollination of surviving floral buds with pollen from wild-type plants yielded fruits bearing seeds. A transformation efficiency of 0.25–0.50% was obtained on floral dips/floral injections. Transgenic plants were selected by screening seedlings for hygromycin resistance. The presence of the transgene in genomic DNA was confirmed by Southern blot analysis and expression of the reporter gene up to the T4 generation. The amenability of tomato for in planta transformation simplifies the generation of transgenic tomato plants obviating intervening tissue culture.  相似文献   

9.
In order to find biocontrol agents that are both efficient against Botrytis cinerea Pers. and adapted to tomato growing conditions in Algeria, 121 bacterial strains were collected from tomato plants and nearby soils in two Bejaia greenhouses. A total of 37 strains were selected based on their ability to grow on agar medium and on their different level of B. cinerea mycelial growth inhibition in dual-culture tests. These strains were identified at the species level and those that corresponded to potential pathogens for humans or mammals were discarded. Among the remaining 25 candidates, three strains were selected among the Pseudomonas genus for their significant protective efficacy against B. cinerea on tomato, their ability to grow at 15–25 °C and their inability to grow at 37 °C. These three strains significantly reduced the development of necrotic lesion and the sporulation of B. cinerea in a dose-dependent manner. This study constitutes a first step towards the biological control of B. cinerea in tomato greenhouses in Algeria.  相似文献   

10.
11.

Background and aims

Pseudomonas spp. have previously been isolated from lucerne nodules. The aims of this study were to: 1) investigate the microbiome within a lucerne nodule; and 2) assess the ability of two Pseudomonas spp. isolated from lucerne nodules to form nodules.

Methods

The microbial community within 27 lucerne nodules, collected from plants inoculated with Sinorhizobium meliloti as a seed coat or peat slurry and an uninoculated control, was identified using 16S rRNA based Illumina sequencing. Lucerne seedlings were inoculated with the two Pseudomonas spp. strains. The plants were grown in sterile conditions for 6 weeks and nodulation was assessed. 16S rRNA, nodC, nodA and nifH genes were amplified.

Results

Sinorhizobium was the dominant genus in nodules, comprising 90–99% of all sequences regardless of inoculation treatment. Overall, 9 other genera were identified, with each represented by <3% of the total sequences. Both Pseudomonas strains were able to form nodules with lucerne. From one of these strains, a nodC gene was detected.

Conclusion

Lucerne nodules contained a diverse assemblage of bacterial species, some of which were capable of forming nodules in the absence of rhizobia.
  相似文献   

12.
Streptococcus mitis from the oral cavity causes endocarditis and other systemic infections. Rising resistance against traditional antibiotics amongst oral bacteria further aggravates the problem. Therefore, antimicrobial and antibiofilm activities of zinc oxide and titanium dioxide nanoparticles (NPs) synthesized and characterized during this study against S. mitis ATCC 6249 and Ora-20 were evaluated in search of alternative antimicrobial agents. ZnO and TiO2-NPs exhibited an average size of 35 and 13 nm, respectively. The IC50 values of ZnO and TiO2-NPs against S. mitis ATCC 6249 were 37 and 77 µg ml?1, respectively, while the IC50 values against S. mitis Ora-20 isolate were 31 and 53 µg ml?1, respectively. Live and dead staining, biofilm formation on the surface of polystyrene plates, and extracellular polysaccharide production show the same pattern. Exposure to these nanoparticles also shows an increase (26–83 %) in super oxide dismutase (SOD) activity. Three genes, namely bapA1, sodA, and gtfB like genes from these bacteria were identified and sequenced for quantitative real-time PCR analysis. An increase in sodA gene (1.4- to 2.4-folds) levels and a decrease in gtfB gene (0.5- to 0.9-folds) levels in both bacteria following exposure to ZnO and TiO2-NPs were observed. Results presented in this study verify that ZnO-NPs and TiO2-NPs can control the growth and biofilm formation activities of these strains at very low concentration and hence can be used as alternative antimicrobial agents for oral hygiene.  相似文献   

13.
The cold shock domain proteins (CSDPs) are small group of nucleic acid-binding proteins that act as RNA chaperones in growth regulation, development, and stress adaptation in plants. The functions of CSDPs have been studied in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), wheat (Triticum aestivum), and Chinese cabbage (Brassica rapa). To gain insight into the function of CSDPs in tomato (Solanum lycopersicum), we performed a genome-wide analysis of CSDPs through in silico characterization and expression profiling in different organs and in response to different abiotic stress and phytohormone treatments. We identified five non-redundant SlCSDP genes. The evolutionary analysis and phylogenetic classification indicated that tomato CSDPs are more closely related to potato than those of others. The five SlCSDP genes are distributed on four of the 12 tomato chromosomes and no segmental or tandem duplication events are detected among them. Expression analysis showed broad expression patterns with strong expression in fruit development and ripening. Expression of individual SlCSDP genes was significantly altered by stress and phytohormone treatments. SlCSDP2, SlCSDP3, and SlCSDP4 were highly induced by all four abiotic stresses and by phytohormone treatment in tomato. These findings provide a foundation for future research towards functional biological roles of CSDP gene in particular to develop tomato cultivars with large size, early ripening, and abiotic stress tolerance.  相似文献   

14.
Artemisia annua L. is mostly known for a bioactive metabolite, artemisinin, an effective sesquiterpene lactone used against malaria without any reputed cases of resistance. In this experiment, bioinoculants viz., Streptomyces sp. MTN14, Bacillus megaterium MTN2RP and Trichoderma harzianum Thu were applied as growth promoting substances to exploit full genetic potential of crops in terms of growth, yield, nutrient uptake and particularly artemisinin content. Further, multi-use of the bioinoculants singly and in combinations for the enhancement of antioxidant potential and therapeutic value was also undertaken which to our knowledge has never been investigated in context with microbial application. The results demonstrated that a significant (P < 0.05) increase in growth, nutrient uptake, total phenolic, flavonoid, free radical scavenging activity, ferric reducing antioxidant power, reducing power and total antioxidant capacity were observed in the A. annua treated with a combination of bioinoculants in comparison to control. Most importantly, an increase in artemisinin content and yield by 34 and 72 % respectively in the treatment having all the three microbes was observed. These results were further authenticated by the PCA analysis which showed positive correlation between plant macronutrients and antioxidant content with plant growth and artemisinin yield of A. annua. The present study thus highlights a possible new application of compatible bioinoculants for enhancing the growth along with antioxidant and therapeutic value of A. annua.  相似文献   

15.
The genus Pseudomonas is one of the most diverse and ecologically important groups of bacteria. Numerous representatives of the genus are found in microbial communities of all natural environments, including those closely associated with plants and animals. This ubiquitous distribution determines a necessity of their physiological and genetic adaptations. Molecular methods revealed that bacteria of the genus Pseudomonas were predominant in ulcerative lesions on the skin of Baikal yellowfin Cottocomephorus grewingkii (Dybowski, 1874). According to ribosomal phylogeny, cultivated Pseudomonas spp. isolated from both ulcerative lesions and the water column of Lake Baikal were grouped into the intrageneric cluster IG P. fluorescens. The topology of the phylogenetic tree based on the gene for outer membrane porin OprF generally coincided with that based on the 16S rRNA genes at the intrageneric level; however, it reflected ecological features of the strains of the genus Pseudomonas at the subgroup level. Screening of pathogenicity determinants detected the oprL, ecfX, fliC, and algD genes in the genomes of Pseudomonas spp. isolated from the ulcerative lesions of fish, whereas oprL and gyrB genes were determined in the strains isolated from the water column.  相似文献   

16.
Genetic diversity among 43 petroleum hydrocarbon-degrading Pseudomonas belonging to four different species and the type strain Pseudomonas aeruginosa MTCC1034 was assessed by using restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR)-amplified 16S–23S rDNA intergenic spacer regions (ISRs) polymorphism. PCR amplification from all Pseudomonas species yielded almost identical ISR amplicons of “?” 800 bp and in nested PCR of “?” 550 bp. The RFLP analysis with MboI and AluI revealed considerable intraspecific variations within the Pseudomonas species. The dendrogram constructed on the basis of the PCR-RFLP patterns of 16S–23S rDNA intergenic spacer regions differentiated all the species into seven different clusters.  相似文献   

17.
More than 20% of irrigated land has been influenced by salt stress, decreasing crop production. In this research, we investigated the effect of different levels of salinity (0, 50, 100 and 150 mM NaCl) and the efficiency of Piriformospora indica on growth, biochemical traits, antioxidative defense system in tomato (Solanum lycopersicum L.). NaCl stress reduced chlorophyll content, height and biomass of plants. Higher level of salinity (150 mM) declined the plant height by 22.65%, total dry weight by 56.44% and total chlorophyll by 44.34%, however, P. indica inoculation raised plant height by 43.47%, dry weight by 69.23% and total chlorophyll content by 48.09%. Salinity stress increased H2O2, malondialdehyde (MDA), superoxide anion and 1,1-diphenyl-2-picrylhydrazyl (DPPH) level in leaves and roots tomato seedlings. However, P. indica inoculation reduced H2O2, MDA and superoxide anion and enhanced DPPH compared to non-inoculated plants at all NaCl levels. The total phenol and flavonoids increased with NaCl treatment. On the other hand, the total phenolic and flavonoid increased more in P. indica inoculated plants compared to non-inoculated ones. Moreover, inoculation of P. indica implicated noteworthy improvement of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR) activity in tomato upon salinity. Notably, colonization with P. indica significantly improved the content of reduced ascorbic acid (AsA), glutathione (GSH) and redox ratio in the tomato plants under salinity resulting in reduced redox state. Our findings confirmed that salinity had negative effect on tomato seedling; however, P. indica inoculation increased tolerance to salinity by improving the content of phenolic compounds, non-enzymatic antioxidants, and increasing the activity of antioxidant enzymes.  相似文献   

18.
In wheat seeds, starch synthase I or the Waxy protein is an enzyme involved in amylose synthesis. The gene encoding this enzyme is Wx and in this study, eight novel Wx alleles were identified in three diploid Taeniatherum species. The variability of these alleles was evaluated, and their nucleotide sequences were compared with those of homologous alleles from wheat. Two types of Taeniatherum Wx alleles were detected in three diploid species Ta. caput-medusae, Ta. asperum, and Ta. crinitum. A phylogenetic analysis indicates that the Taeniatherum Wx alleles were more closely related to Wx alleles from Aegilops species with C, D, M, and U genomes than to Wx alleles of other species. These alleles represent a potential genetic resource that may be useful in wheat breeding programs.  相似文献   

19.
In this study, we investigated chitin hydrolysis by the bacteria inhabiting the ground of the Barents Sea. Four microbial cultures isolated from the ground were described as the genera of Rhodococcus sp., Bacillus sp., Pseudomonas sp., and Acinetobacter sp. Protein complexes with endochitinase and exochitinase activities were purified from the culture liquid. These microorganisms can participate in chitin degradation in sea water. The average molecular weight of the protein fraction with the chitinolytic activity constituted 92–135 kDa. The ratio of the endo-/exochitinase activities of the enzymatic systems was increased in the order Pseudomonas sp. < Bacillus sp. < Acinetobacter sp. < Rhodococcus sp.  相似文献   

20.
Three species of cecidomyiid midges (Diptera: Cecidomyiidae), whose larvae overwinter in the soil, can cause significant yield losses on wheat in Europe: the orange wheat blossom midge, Sitodiplosis mosellana (Géhin), the yellow wheat blossom midge, Contarinia tritici (Kirby), and the saddle gall midge, Haplodiplosis marginata (von Roser). The biological control of wheat midges by their parasitoids can contribute to reduce the midge populations. Soil samples were collected in several fields in Belgium in 2012–2014 in order to characterize the parasitism rates and parasitoid complexes in overwintering larvae. The parasitism rates varied greatly between the sampled fields: 3–100, 0–100 and 2% for S. mosellana, H. marginata and C. tritici, respectively. The parasitism rate was not related to the larval density of wheat midge. The three wheat midges have totally distinct parasitoid complexes in Belgium. Eight species (Hymenoptera: Pteromalidae and Platygastridae) were found as parasitoid of S. mosellana: Macroglenes penetrans (Kirby), Amblypasis tritici (Walker), Euxestonotus error (Fitch), Euxestonutus sp. Fouts, Leptacis sp. Foerster, Platygaster gracilipes (Huggert), Platygaster nisus Walker, and Platygaster tuberosula (Kieffer). According to their abundance, M. penetrans, E. error and P. tuberosula appeared as the main parasitoids of S. mosellana in Belgium. For the two other wheat midges, only one species of the family Platygastridae was found for each midge: Platygaster equestris (Spittler) for H. marginata and Synopeas myles (Walker) for C. tritici.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号