首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Purple acid phosphatases belong to metallo-phosphatase family. Intracellular phosphatases are crucial for phosphorus (P) distribution in the cell and are highly induced in phosphorus-deprived conditions in the soil. Disparate PAP isoforms exist within discrete subcellular compartments in Setaria italica and their expression in P deprived conditions fosters phosphorus amelioration. We isolated the SiPAP18 gene and developed the homology SiPAP18 protein model based on the crystal structure of the Kidney bean PvPAP (PDB ID: 2QFP) as template (sequence similarity 42.7%) using Modeller 9.12 with adequate validation. Structure model analysis shows the significance of five conserved signatures with seven metal-paired amino acid residues during P-deprivation induced phosphorus amelioration.  相似文献   

3.
Lung SC  Leung A  Kuang R  Wang Y  Leung P  Lim BL 《Phytochemistry》2008,69(2):365-373
Phytases are enzymes that catalyze liberation of inorganic phosphates from phytate, the major organic phosphorus in soil. Tobacco (Nicotiana tabacum) responds to phosphorus starvation with an increase in extracellular phytase activity. By a three-step purification scheme, a phosphatase with phytase activity was purified 486-fold from tobacco root exudates to a specific activity of 6,028 nkat mg(-1) and an overall yield of 3%. SDS-PAGE revealed a single polypeptide of 64 kDa, thus indicating apparent homogeneity of the final enzyme preparation. Gel filtration chromatography suggested that the enzyme was a ca. 56 kDa monomeric protein. De novo sequencing by tandem mass spectrometry resulted in a tryptic peptide sequence that shares high homology with several plant purple acid phosphatases. The identity of the enzyme was further confirmed by molybdate-inhibition assay and cDNA cloning. The purified enzyme exhibited pH and temperature optima at 5.0-5.5 and 45 degrees C, respectively, and were found to have high affinities for both p-nitrophenyl phosphate (pNPP; K(m)=13.9 microM) and phytate (K(m)=14.7 microM), but a higher kcat for pNPP (2,056 s(-1)) than phytate (908 s(-1)). Although a broad specificity of the enzyme was observed for a range of physiological substrates in soil, maximum activity was achieved using mononucleotides as substrates. We conclude that the phytase activity in tobacco root exudates is exhibited by a purple acid phosphatase and its catalytic properties are pertinent to its role in mobilizing organic P in soil.  相似文献   

4.
Experimental measurements of phosphorus (P) uptake and the forms of soil P depleted from an Ultisol by 6 upland rice cultivars are reported. In both P-fertilized and-unfertilized soil, the majority of P taken up was solubilized from a 0.1 M NaOH-soluble pool by root-induced changes. The soil pH within 4 mm of the roots was lowered by up to 0.5 units (from 4.6), but this by itself could not account for the P solubilized, and nor could increased phosphatase activity near the roots. The possible role of root-released low molecular weight organic acid anions in P solubilization is discussed. No significant differences in the extent of solubilization by a given root mass could be detected between cultivars. In P-unfertilized soil, but not in P-fertilized soil, there were significant differences between cultivars in internal P efficiency as measured by shoot dry weight per unit total plant P. In unfertilized soil, root growth and P uptake were strongly correlated with the P content of the seeds from which the plants were grown.  相似文献   

5.
A carboxyl-terminal peptide sequence (“osteostatin”) from parathyroid hormone related protein has been shown to have an inhibitory effect on osteoclastic bone resorption—an action opposite to its amino-terminal sequence. In this study, we proposed that inhibition of osteoclastic bone resorption by osteostatin was associated with reduction of tartrate resistant acid phosphatase (TRAcP) activity in osteoclasts. Our results have indicated that osteostatin reduced TRAcP activity in a dose dependent manner. This effect of osteostatin was both sensitive (half maximal effect approximately 5 × 10?13 M) and potent (maximum inhibition approximately 50% of control). In the first 90 min of treatment, however, reduction of TRAcP activity was erratic but became persistent and progressive when the time course was extended. Moreover, throughout the experimental period the levels of TRAcP activity in the culture medium had fallen significantly. It appears that osteostatin has a biphasic effect on TRAcP activity, inhibiting its secretion and either suppressing its synthesis or increasing its degradation. In addition, osteostatin induced rapid cellular retraction of both human and rat cultured osteoclasts, which was morphologically distinct from that produced by calcitonin.  相似文献   

6.
以低磷条件下根系分泌酸性磷酸酶活性有显著差异的两个基因型水稻中部51和Azucena为材料,通过琼脂培养试验研究它们在无菌条件下利用植酸钠(IHP)的情况以及接种土壤微生物对水稻利用植酸钠能力的影响.结果表明:以植酸钠为磷源生长的中部51和Azucena的植株地上部干物质量、吸磷量和磷浓度均显著低于以无机磷为磷源生长的植株,植酸钠处理的水稻植株地上部吸磷量和磷浓度也均显著高于无磷处理植株,表明无菌培养条件下水稻能部分利用植酸钠.低磷条件下两个基因型水稻根系分泌酸性磷酸酶活性显著高于正常供磷处理,且低磷条件下中部51根系分泌的酸性磷酸酶活性较高,这可能是无菌条件下中部51利用植酸钠的能力高于Azucena的机理之一.高水平植酸钠处理(0.96 mmol P·L-1)下两个基因型水稻植株地上部干物质量、磷含量及磷浓度均显著高于低水平植酸钠处理(0.16 mmol P·L-1),表明底物有效性可能是影响水稻利用植酸钠能力的限制因素之一.在低水平和高水平植酸钠处理下,接种土壤微生物对两个基因型水稻植株的地上部干物质量、磷含量及磷浓度均没有显著影响,表明在本试验中接种土壤微生物并不能显著提高水稻利用植酸钠的能力.  相似文献   

7.
Induction and secretion of acid phosphatases(APases) is thought to be an adaptive mechanism that helps plants survive and grow under phosphate(Pi) deprivation. In Arabidopsis, there are 29 purple acid phosphatase(AtPAP)genes. To systematically investigate the roles of different AtPAPs, we first identified knockout or knock‐down T‐DNA lines for all 29 AtPAP genes. Using these atpap mutants combined with in‐gel and quantitative APase enzyme assays,we demonstrated that AtPAP12 and AtPAP26 are two major intracellular and secreted APases in Arabidopsis while AtPAP10is mainly a secreted APase. On Pi‐deficient(P) medium or Pmedium supplemented with the organophosphates ADP and fructose‐6‐phosphate(Fru‐6‐P), growth of atpap10 was significantly reduced whereas growth of atpap12 was only moderately reduced, and growth of atpap26 was nearly equal to that of the wild type(WT). Overexpression of the AtPAP12 or AtPAP26 gene, however, caused plants to grow better on Por P medium supplemented with ADP or Fru‐6‐P. Interestingly, Pi levels are essentially the same for the WT and overexpressing lines, although these two types of plants have significantly different growth phenotypes. These results suggest that the APases may have other roles besides enhancing internal Pi recycling or releasing Pi from external organophosphates for plant uptake.  相似文献   

8.
The survival protein E (SurE) family was discovered by its correlation to stationary phase survival of Escherichia coli and various repair proteins involved in sustaining this and other stress-response phenotypes. In order to better understand this ancient and well-conserved protein family, we have determined the 2.0A resolution crystal structure of SurEalpha from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum (Pae). This first structure of an archaeal SurE reveals significant similarities to and differences from the only other known SurE structure, that from the eubacterium Thermatoga maritima (Tma). Both SurE monomers adopt similar folds; however, unlike the Tma SurE dimer, crystalline Pae SurEalpha is predominantly non-domain swapped. Comparative structural analyses of Tma and Pae SurE suggest conformationally variant regions, such as a hinge loop that may be involved in domain swapping. The putative SurE active site is highly conserved, and implies a model for SurE bound to a potential substrate, guanosine-5'-monophosphate (GMP). Pae SurEalpha has optimal acid phosphatase activity at temperatures above 90 degrees C, and is less specific than Tma SurE in terms of metal ion requirements. Substrate specificity also differs between Pae and Tma SurE, with a more specific recognition of purine nucleotides by the archaeal enzyme. Analyses of the sequences, phylogenetic distribution, and genomic organization of the SurE family reveal examples of genomes encoding multiple surE genes, and suggest that SurE homologs constitute a broad family of enzymes with phosphatase-like activities.  相似文献   

9.
Gaume  Alain  Mächler  Felix  De León  Carlos  Narro  Luis  Frossard  Emmanuel 《Plant and Soil》2001,228(2):253-264
We investigated some mechanisms, which allow maize genotypes to adapt to soils which are low in available P. Dry matter production, root/shoot-ratio, root length and root exudation of organic acids and acid phosphatase were investigated in four maize genotypes grown under P-deficient and P-sufficient conditions in sterile hydroponic culture. A low-P tolerant, an acid-tolerant and a low-P susceptible genotype of maize were compared with a Swiss commercial cultivar. The study found increased root development and increased exudation of acid phosphatase under P-deficient conditions in all maize genotypes, except for the Swiss cultivar. Effects on root formation and acid phosphatase were greater for the low-P tolerant than for the low-P susceptible, and the acid soil tolerant genotypes. Organic acid contents in root tissues were increased under P deficiency and related to increased PEPC activity. However, the increase in contents was associated with an increase in exudation for the low-P tolerant genotype only. The low-P susceptible genotype was characterized by high organic acid content in roots and low organic acid exudation. The organic acids content in the phloem exudates of shoots was related to root exudation under different P supply, to the difference between lines in organic acids root content, but not to the low-P tolerance or susceptibility of maize genotypes.  相似文献   

10.
Purple acid phosphatases (PAPs) are binuclear metallo-hydrolases that have been isolated from various mammals, plants, fungi and bacteria. In mammals, PAP activity is associated with bone resorption and can lead to bone metabolic disorders such as osteoporosis; thus human PAP is an attractive target to develop anti-osteoporotic drugs. The aim of the present study was to investigate inhibitory effect of synthesized diethylalkylsulfonamido(4-methoxyphenyl)methyl)phosphonate/phosphonic acid derivatives as potential red kidney bean PAP (rkbPAP) inhibitors accompanied by experimental and molecular modeling assessments. Enzyme kinetic data showed that they are good rkbPAP inhibitors whose potencies improve with increasing alkyl chain length. Hexadecyl derivatives, as most potent compounds (Ki?=?1.1?µM), inhibit rkbPAP in the mixed manner, while dodecyl derivatives act as efficient noncompetitive inhibitor. Also, analysis by molecular modeling of the structure of the rkbPAP–inhibitor complexes reveals factors, which may be important for the determination of inhibition specificity.  相似文献   

11.
Caustis blakei produces an intriguing morphological adaptation by inducing dauciform roots in response to phosphorus (P) deficiency. We tested the hypothesis that these hairy, swollen lateral roots play a similar role to cluster roots in the exudation of organic chelators and ectoenzymes known to aid the chemical mobilization of sparingly available soil nutrients, such as P. Dauciform-root development and exudate composition (carboxylates and acid phosphatase activity) were analysed in C. blakei plants grown in nutrient solution under P-starved conditions. The distribution of dauciform roots in the field was determined in relation to soil profile depth and matrix. The percentage of dauciform roots of the entire root mass was greatest at the lowest P concentration ([P]) in solution, and was suppressed with increasing solution [P], while in the field dauciform roots were predominantely located in the upper soil horizons, and decreased with increasing soil depth. Citrate was the major carboxylate released in an exudative burst from mature dauciform roots, which also produced elevated levels of acid phosphatase activity. Malonate was the dominant internal carboxylate present, with the highest concentration in young dauciform roots. The high concentration of carboxylates and phosphatases released from dauciform roots, combined with their prolific distribution in the organic surface layer of nutrient-impoverished soils, provides an ecophysiological advantage for enhancing nutrient acquisition.  相似文献   

12.
开放式空气CO2浓度增高对水稻N素吸收利用的影响   总被引:14,自引:5,他引:14  
在大田栽培条件下 ,研究空气中CO2 浓度增高 (FACE) 2 0 0 μmol·mol-1对水稻N素吸收及其利用效率的影响 .结果表明 ,FACE处理使水稻不同生育时期的植株含N率显著下降 ;由于干物质生产量显著增大 ,FACE处理使水稻不同生育时期的N素累积量有所提高 ,但无显著影响 ;FACE处理能够显著提高移栽后 2 8d、抽穗期以及成熟期单位N素的干物质生产效率、单位N素的籽粒生产效率和显著提高水稻的N素收获指数 .高N处理的植株含N率、N素累积量均有所增加 ,但使N素生产效率呈现下降趋势 .  相似文献   

13.
Abstract. The fine structure of the bursa copulatrix of the virgin snails has been compared with that of mated snails. One of the noticeable changes after mating is an increase in the number of the Golgi and the secretory vesicles. Since some of the vesicles react positively for acid phosphatase it is suggested that this enzyme activity increases following mating. The bursa lumen of the virgin snail contains gel-like materials devoid of spermatozoa, however, following mating, the lumen is full of semen containing live spermatozoa and bacteria. The source of bacteria in the lumen is not known. Acid phosphatase activity is significantly higher in the luminal content of mated snails than in the virgin snails. The activity is higher in the lumen than in the epithelial cells, suggesting that the enzyme is secreted into the lumen where it is utilized for extracellular degradation of spermatozoa. Following mating, the spermatozoa are motile in the lumen of the bursa for ∼3–7 d, but become immobile and finally undergo extracellular digestion so that intact spermatozoa are not recognizable by day 10. The use of castrated snails in mating experiments suggest that individuals of Helisoma duryi reproduce by cross fertilization and that the bursa may act as the holding organ from where the spermatozoa are periodically transported to the carrefour over ∼7 d. At day 10 following mating, however, autosperms appear in the hermaphroditic duct awaiting the next mating.  相似文献   

14.

Background

Rice is the world''s most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots.

Scope

This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars.

Conclusions

Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars.  相似文献   

15.
Wheat seedlings exhibited a differential ability to utilize P from a range of organic P substrates when grown in agar culture under sterile conditions. Plants showed limited ability to obtain P from inositol hexaphosphate (IHP), whereas other monoester substrates such as glucose 1‐phosphate (G1P), were equivalent sources of P for plant growth as compared with inorganic phosphate (Pi). Poor utilization of IHP was exemplified by significantly lower rates of dry matter accumulation and reduced P content of tissues, which were generally not significantly different to control plants that were grown in the absence of added P. The inability of wheat seedlings to obtain P from IHP was not associated with poor substrate availability but was due to either insufficient root phytase activity or inappropriate localization of phytase within root tissues. Phytase activities of 4 and 24 mU g ? 1 root fresh weight (FW) were determined for crude root extracts prepared from plants that were grown with either adequate P or under deficient conditions, respectively. Similar levels of phytase activity (approximately 12 mU g ? 1 FW) were observed in assays using intact roots, although no secreted activity was detected. By comparison, a secreted acid phosphomonoesterase activity was observed, and activities of between 466 and 1029 mU phosphomonoesterase g ? 1 root FW were measured for intact roots. On the basis of the differences in enzyme activity, and the observed differences in the ability of wheat seedlings to utilize G1P and IHP, it is evident that low intrinsic levels of phytase activity in wheat roots is a critical factor that limits the ability of wheat to obtain P from phytate when supplied in agar under non‐limiting conditions. This hypothesis was further supported by the observation that the ability of wheat to obtain P from IHP was significantly improved when the seedlings were inoculated with a soil bacterium (Pseudomonas sp. strain CCAR59) that possesses phytase activity.  相似文献   

16.
The decapacitating fraction of human seminal plasma, which strongly interacts with concanavalin A, is constituted by high mannose-type N-linked glycoproteins, most of them of less than 44 kDa. Each component with apparent molecular mass of 30, 18, and 17 kDa respectively, as judged by SDS-PAGE, was submitted to "in gel" digestion with trypsin followed by HPLC separation of the peptides and sequencing. They were characterized at microscale as gp17, an aspartyl protease that possibly contributes to liquefaction of the seminal plasma coagulum, two fragments of human acid phosphatase (17 and 30 kDa, respectively), and a 17-kDa fragment of carboxypeptidase E. Neither the fragments of prostatic acid phosphatase nor that of carboxypeptidase E had been described before in the human seminal fluid. Very weak bands, of apparent molecular masses 44 and 52 kDa, are consistent with presence of small amounts of parent compounds, prostatic acid phosphatase and carboxypeptidase E.  相似文献   

17.
A genetic locus controlling the electrophoretic mobility of an acid phosphatase in mouse kidney is described. This locus, called acid phosphatase-kidney (Apk), is not expressed in erythrocytes, liver, spleen, heart, lung, brain, skeletal muscle, stomach, or testes. The product of Apk hydrolyzes the substrate naphthol AS-MX phosphoric acid but is not active on a-naphthylphosphate or 4-methylumbelliferylphosphate. It is not inactivated by 50 C for 1 hr, nor is its electrophoretic mobility altered by incubation with neuraminidase. The locus is invariant among 31 inbred strains (Apk a), with a variant allele (Apk m) observed only in Mus musculus molossinus. Codominant expression was observed in F1 hybrids of M. m. molossinus and inbred strains. Apk was mapped on Chr 10, near the neurological mutant waltzer (v).This work was supported by Contract NO1-ES42159 from the National Institute of Environmental Health Sciences and by Grant 1-476 from the National Foundation—March of Dimes. The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

18.
Changes in the specific and total activity of the lysosomal marker enzyme acid phosphatase (Acph) and in the amount of enzyme protein were examined in the fat body and the hemolymph from the last larval molt to the larval-pupal apolysis. The specific activity showed minor changes during the last larval period. In contrast, the total activity of the enzyme was low during the feeding period and higher during the wandering stage and strikingly increased at the time of puparium formation. We purified a protein having para-nitrophenyl phosphate phosphatase (Acph) activity and raised antisera against it. The amount of Acph protein in the fat body and hemolymph was examined using an ELISA. The specific Acph content showed little variation, but the total amount of the enzyme protein showed a stepwise increase in both organs during last larval stage and was markedly elevated in the pupal stage in the fat body. In contrast, a considerable decrease in the amount of Acph protein was observed in the hemolymph during this period. These data were in agreement with immunohistochemical observations showing an accumulation of the enzyme protein in fat body cells during the prepupal stage with a concomitant disappearance of the enzyme from the hemolymph. Inhibition of ecdysteroid secretion by water stress prevented the changes both in total enzyme activity and in the amount of Acph protein. However, Acph protein content and enzyme activity could be restored when the water stress was followed by a 20-hydroxyecdysone (20-HE) treatment. Taken together, our data show that Acph is secreted by fat body cells into the hemolymph during the larval stage, where it is stored in an inactive form. Increase in the 20-HE titer at the end of last larval stage reverses this process, and the enzyme is taken up by the fat body cells, where it becomes activated and appears in auto- and heterophagic vacuoles. Arch. Insect Biochem. Physiol. 34:369–390, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Spatial, vertical, and seasonal variations in phosphorus fractions and in alkaline phosphatase activity (APA) were investigated in sediments in a large-shallow eutrophic Chinese lake (Lake Taihu) in 2003–2004. The phosphorus content was highest in the most seriously polluted lake area. Iron-bound phosphorus (Fe(OOH)~P) dominated (47% on average) among the phosphorus fractions determined according to Golterman (Hydrobiologia 335:87–95, 1996). Notably, organically-bound P comprised a further significant additional portion (acid-soluble + hot NaOH-extractable organic P = 25%), which was highest at the most polluted sites. The Fe(OOH)~P content was the lowest in spring (April, 2004), suggesting that degradation of organic matter led to the release of iron-bound phosphates. Sediment APA showed a significant positive relationship with both organically-bound P and Fe(OOH)~P. Consequently, organically-bound P is an important portion of the sediment phosphorus in Lake Taihu. It is mainly derived from freshly-settled autochthonous particles and from external discharges. Organically-bound P induces APA and may lead to the release of bioavailable phosphates from the organic sediments, thereby accelerating lake eutrophication.  相似文献   

20.
The vertical distribution of the variables relevant to P forms in sediments were studied in a shallow Chinese freshwater lake (Lake Donghu) in 1997, 1998, 1999 and 2000, to assess the contribution of enzyme to P availability in sediment cores. Sediment P was fractionationd into iron-bound P, calcium-bound P, acid soluble organic P (ASOP) and hot NaOH extractable residual organic P. The former two species made the largest contribution to the sediment P pool. All P species exhibited significantly higher concentrations in different depths at Station I, compared with those found at Station II, except for ASOP. Coupled with these lower ASOP concentrations, the V max data of alkaline phosphatase, measured on the same samples, were significantly higher at station I. Taken together, ASOP were probably important in supplying the enzymatic substrate (Phosphatase Hydrolyzable Phosphorus, PHP) into interstitial water. Dissolved orthophosphate and PHP concentrations were highly heterogeneous , but peaked in subsurface, paralleled by higher V max and lower K m values of alkaline phosphatase, throughout the sediment core. Sediment in the eutrophic lake is not only enriched in available P (iron-bound P), or stores residual P, but also tends to release PHP, thereby inducing the production of alkaline phosphatase and releasing o-P into water column by enzymatic hydrolysis. The latter process may also occur in relatively deep sediment layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号