首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Verticillium wilt (VW), caused by infection by Verticillium dahliae, is considered one of the most yield‐limiting diseases in cotton. To examine the genetic architecture of cotton VW resistance, we performed a genome‐wide association study (GWAS) using a panel of 299 accessions and 85 630 single nucleotide polymorphisms (SNPs) detected using the specific‐locus amplified fragment sequencing (SLAF‐seq) approach. Trait–SNP association analysis detected a total of 17 significant SNPs at P < 1.17 × 10–5 (P = 1/85 630, –log10P = 4.93); the peaks of SNPs associated with VW resistance on A10 were continuous and common in three environments (RDIG2015, RDIF2015 and RDIF2016). Haplotype block structure analysis predicted 22 candidate genes for VW resistance based on A10_99672586 with a minimum P‐value (–log10P = 6.21). One of these genes (CG02) was near the significant SNP A10_99672586 (0.26 Mb), located in a 372‐kb haplotype block, and its Arabidopsis AT3G25510 homologues contain TIR‐NBS‐LRR domains that may be involved in disease resistance response. Real‐time quantitative PCR and virus‐induced gene silencing (VIGS) analysis showed that CG02 was specific to up‐regulation in the resistant (R) genotype Zhongzhimian2 (ZZM2) and that silenced plants were more susceptible to V. dahliae. These results indicate that CG02 is likely the candidate gene for resistance against V. dahliae in cotton. The identified locus or gene may serve as a promising target for genetic engineering and selection for improving resistance to VW in cotton.  相似文献   

2.
With the Illumina BovineSNP50K BeadChip, we performed a genome‐wide association study (GWAS) for two pigmentation traits in a Chinese Holstein population: proportion of black (PB) and teat colour (TC). A case–control design was used. Cases were the cows with PB <0.30 (= 129) and TC <2 points (= 140); controls were those with PB >0.90 (= 58) and TC >4 points (= 281). The RM test of roadtrips (version 1.2) was applied to detect SNPs for the two traits with 42 883 and 42 741 SNPs respectively. A total of nine and 12 genome‐wide significant (< 0.05) SNPs associated with PB and TC respectively were identified. Of these, two SNPs for PB were located within the KIT and IGFBP7 genes, and the other four SNPs were 23~212 kb away from the PDGFRA gene on BTA6; nine SNPs associated with TC were located within or 21~78.8 kb away from known genes on chromosomes 4, 11, 22, 23 and 24. By combing through our GWAS results and the biological functions of the genes, we suggest that the KIT, IGFBP7, PDGFRA, MITF, ING3 and WNT16 genes are promising candidates for PB and TC in Holstein cattle, providing a basis for further investigation on the genetic mechanism of pigmentation formation.  相似文献   

3.
A genome‐wide association study (GWAS) was performed to identify markers and candidate genes for five semen traits in the Holstein bull population in China. The analyzed dataset consisted of records from 692 bulls from eight bull stations; each bull was genotyped using the Illumina BovineSNP50 BeadChip. Association tests between each trait and the 41 188 informative high‐quality SNPs were achieved with gapit software. In total, 19 suggestive significant SNPs, partly located within the reported QTL regions or within or close to the reported candidate genes, associated with five semen traits were detected. By combining our GWAS results with the biological functions of these genes, eight novel promising candidate genes, including ETNK1, PDE3A, PDGFRB, CSF1R, WT1, DSCAML1, SOD1 and RUNX2, were identified that potentially relate to semen traits. Our findings may provide a basis for further research on the genetic mechanism of semen traits and marker‐assisted selection of such traits in Holstein bulls.  相似文献   

4.
Gossypium hirsutum L. represents the largest source of textile fibre, and China is one of the largest cotton‐producing and cotton‐consuming countries in the world. To investigate the genetic architecture of the agronomic traits of upland cotton in China, a diverse and nationwide population containing 503 G. hirsutum accessions was collected for a genome‐wide association study (GWAS) on 16 agronomic traits. The accessions were planted in four places from 2012 to 2013 for phenotyping. The CottonSNP63K array and a published high‐density map based on this array were used for genotyping. The 503 G. hirsutum accessions were divided into three subpopulations based on 11 975 quantified polymorphic single‐nucleotide polymorphisms (SNPs). By comparing the genetic structure and phenotypic variation among three genetic subpopulations, seven geographic distributions and four breeding periods, we found that geographic distribution and breeding period were not the determinants of genetic structure. In addition, no obvious phenotypic differentiations were found among the three subpopulations, even though they had different genetic backgrounds. A total of 324 SNPs and 160 candidate quantitative trait loci (QTL) regions were identified as significantly associated with the 16 agronomic traits. A network was established for multieffects in QTLs and interassociations among traits. Thirty‐eight associated regions had pleiotropic effects controlling more than one trait. One candidate gene, Gh_D08G2376, was speculated to control the lint percentage (LP). This GWAS is the first report using high‐resolution SNPs in upland cotton in China to comprehensively investigate agronomic traits, and it provides a fundamental resource for cotton genetic research and breeding.  相似文献   

5.
The Tibetan chicken (TBC), an indigenous chicken breed of the Tibetan Plateau, has adapted to its hypoxic, high‐altitude environment over hundreds of years. The objective of this study was to identify the polymorphisms and genes associated with adaptation to hypoxia in this chicken breed. In the present study, samples were collected during days 18–21 of the incubation period from both surviving chicks and dead embryos, all of which were hatched under hypoxic conditions. A genome‐wide association study was conducted using the Illumina iSelect 60K SNP array with a case–control design, in which the case group consisted of the dead chicken embryos (= 54) and controls were the surviving chicks (= 82). Four significant SNPs were detected at the genome‐wide level (< 0.05), and the results indicated that fork head box G1 (FOXG1) was the main candidate gene. The lead SNP NC_006092.4:g.33368893T>C was confirmed with a polymerase chain reaction‐restriction fragment length polymorphism analysis of 122 cases and 212 controls. A chi‐square test showed a significant association between NC_006092.4:g.33368893T>C and hatchability under hypoxic conditions (< 0.01). Our results revealed novel polymorphisms and a candidate gene associated with hypoxic adaptation, facilitating further study in this field.  相似文献   

6.
Z. Tan  K. Xing  T. Yang  Y. Pan  Y. Wang  S. Mi  D. Sun  C. Wang 《Animal genetics》2018,49(2):127-131
Using the PorcineSNP80 BeadChip, we performed a genome‐wide association study for seven reproductive traits, including total number born, number born alive, litter birth weight, average birth weight, gestation length, age at first service and age at first farrowing, in a population of 1207 Large White pigs. In total, we detected 12 genome‐wide significant and 41 suggestive significant SNPs associated with six reproductive traits. The proportion of phenotypic variance explained by all significant SNPs for each trait ranged from 4.46% (number born alive) to 11.49% (gestation length). Among them, 29 significant SNPs were located within known QTL regions for swine reproductive traits, such as corpus luteum number, stillborn number and litter size, of which one QTL region associated with litter size contained the ALGA0098819 SNP for total number born. Subsequently, we found that 376 functional genes contained or were near these significant SNPs. Of these, 14 genes—BHLHA15, OCM2, IL1B2, GCK, SMAD2, HABP2, PAQR5, GRB10, PRELID2, DMKN, GPI, GPIHBP1, ADCY2 and ACVR2B—were considered important candidates for swine reproductive traits based on their critical roles in embryonic development, energy metabolism and growth development. Our findings contribute to the understanding of the genetic mechanisms for reproductive traits and could have a positive effect on pig breeding programs.  相似文献   

7.
Brown fibre cotton is an environmental‐friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine‐mapped the brown fibre region, Lc1, and dissected it into 2 loci, qBF‐A07‐1 and qBF‐A07‐2. The qBF‐A07‐1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF‐A07‐1 and qBF‐A07‐2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF‐A07‐1 and qBF‐A07‐2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome‐wide association study (GWAS) and found that qBF‐A07‐2 negatively affects fibre yield and quality through an epistatic interaction with qBF‐A07‐1. This study sheds light on the genetics of fibre colour and lint‐related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton.  相似文献   

8.
Ecological and environmental heterogeneity can produce genetic differentiation in highly mobile species. Accordingly, local adaptation may be expected across comparatively short distances in the presence of marked environmental gradients. Within the European continent, wolves (Canis lupus) exhibit distinct north–south population differentiation. We investigated more than 67‐K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves from four previously identified population clusters (northcentral Europe n = 32, Carpathian Mountains n = 7, Dinaric‐Balkan n = 9, Ukrainian Steppe n = 11). Our analyses combined identification of outlier loci with findings from genome‐wide association study of individual genomic profiles and 12 environmental variables. We identified 353 candidate SNP loci. We examined the SNP position and neighboring megabase (1 Mb, one million bases) regions in the dog (C. lupus familiaris) genome for genes potentially under selection, including homologue genes in other vertebrates. These regions included functional genes for, for example, temperature regulation that may indicate local adaptation and genes controlling for functions universally important for wolves, including olfaction, hearing, vision, and cognitive functions. We also observed strong outliers not associated with any of the investigated variables, which could suggest selective pressures associated with other unmeasured environmental variables and/or demographic factors. These patterns are further supported by the examination of spatial distributions of the SNPs associated with universally important traits, which typically show marked differences in allele frequencies among population clusters. Accordingly, parallel selection for features important to all wolves may eclipse local environmental selection and implies long‐term separation among population clusters.  相似文献   

9.
B. An  J. Xia  T. Chang  X. Wang  L. Xu  L. Zhang  X. Gao  Y. Chen  J. Li  H. Gao 《Animal genetics》2019,50(4):386-390
We performed a genome‐wide association study to identify candidate genes for body measurement traits in 463 Wagyu beef cattle typed with the Illumina Bovine HD 770K SNP array. At the genome‐wide level, we detected 18, five and one SNPs associated with hip height, body height and body length respectively. In total, these SNPs are within or near 11 genes, six of which (PENK, XKR4, IMPAD1, PLAG1, CCND2 and SNTG1) have been reported previously and five of which (CSMD3, LAP3, SYN3, FAM19A5 and TIMP3) are novel candidate genes that we found to be associated with body measurement traits. Further exploration of these candidate genes will facilitate genetic improvement in Chinese Wagyu beef cattle.  相似文献   

10.
X. Li  P. Xu  C. Zhang  C. Sun  X. Li  X. Han  M. Li  R. Qiao 《Animal genetics》2019,50(2):162-165
Pig umbilical hernia (UH) affects pig welfare and brings considerable economic loss to the pig industry. To date, the molecular mechanisms underlying pig UH are still poorly understood. To identify potential loci for susceptibility to this disease, we performed a genome‐wide association study in an Erhualian × Shaziling F2 intercross population. A total of 45 animals were genotyped using Illumina Porcine SNP60 BeadChips. We observed a SNP (rs80993347) located in the calpain‐9 (CAPN9) gene on Sus scrofa chromosome 14 that was significantly associated with UH (= 1.97 × 10?10). Then, we identified a synonymous mutation rs321865883 (g.20164T>C) in exon 10 of the CAPN9 gene that distinguished two affected individuals (CC) from their normal full‐sibs (TC). Finally, quantitative polymerase chain reaction was explored to investigate the mRNA expression profile of the CAPN9 gene in 12 tissues in Yorkshire pigs at different developmental stages (3, 90 and 180 days). CAPN9 showed high expression levels in the gastrointestinal tract at these three growth stages. The results of this study indicate that the CAPN9 gene might be implicated in UH. Further studies are required to establish a role of CAPN9 in pig UH.  相似文献   

11.
Improving immune capacity may increase the profitability of animal production if it enables animals to better cope with infections. Hematological traits play pivotal roles in animal immune capacity and disease resistance. Thus far, few studies have been conducted using a high‐density swine SNP chip panel to unravel the genetic mechanism of the immune capability in domestic animals. In this study, using mixed model‐based single‐locus regression analyses, we carried out genome‐wide association studies, using the Porcine SNP60 BeadChip, for immune responses in piglets for 18 hematological traits (seven leukocyte traits, seven erythrocyte traits, and four platelet traits) after being immunized with classical swine fever vaccine. After adjusting for multiple testing based on permutations, 10, 24, and 77 chromosome‐wise significant SNPs were identified for the leukocyte traits, erythrocyte traits, and platelet traits respectively, of which 10 reached genome‐wise significance level. Among the 53 SNPs for mean platelet volume, 29 are located in a linkage disequilibrium block between 32.77 and 40.59 Mb on SSC6. Four genes of interest are located within the block, providing genetic evidence that this genomic segment may be considered a candidate region relevant to the platelet traits. Other candidate genes of interest for red blood cell, hemoglobin, and red blood cell volume distribution width also have been found near the significant SNPs. Our genome‐wide association study provides a list of significant SNPs and candidate genes that offer valuable information for future dissection of molecular mechanisms regulating hematological traits.  相似文献   

12.
A genome‐wide association study (GWAS) was conducted on 15 milk production traits in Chinese Holstein. The experimental population consisted of 445 cattle, each genotyped by the GGP (GeneSeek genomic profiling)‐BovineLD V3 SNP chip, which had 26 151 public SNPs in its manifest file. After data cleaning, 20 326 SNPs were retained for the GWAS. The phenotypes were estimated breeding values of traits, provided by a public dairy herd improvement program center that had been collected once a month for 3 years. Two statistical models, a fixed‐effect linear regression model and a mixed‐effect linear model, were used to estimate the association effects of SNPs on each of the phenotypes. Genome‐wide significant and suggestive thresholds were set at 2.46E‐06 and 4.95E‐05 respectively. The two statistical models concurrently identified two genome‐wide significant (< 0.05) SNPs on milk production traits in this Chinese Holstein population. The positional candidate genes, which were the ones closest to these two identified SNPs, were EEF2K (eukaryotic elongation factor 2 kinase) and KLHL1 (kelch like family member 1). These two genes could serve as new candidate genes for milk yield and lactation persistence, yet their roles need to be verified in further function studies.  相似文献   

13.
Plants produce structurally diverse secondary (specialized) metabolites to increase their fitness for survival under adverse environments. Several bioactive compounds for new drugs have been identified through screening of plant extracts. In this study, genome‐wide association studies (GWAS) were conducted to investigate the genetic architecture behind the natural variation of rice secondary metabolites. GWAS using the metabolome data of 175 rice accessions successfully identified 323 associations among 143 single nucleotide polymorphisms (SNPs) and 89 metabolites. The data analysis highlighted that levels of many metabolites are tightly associated with a small number of strong quantitative trait loci (QTLs). The tight association may be a mechanism generating strains with distinct metabolic composition through the crossing of two different strains. The results indicate that one plant species produces more diverse phytochemicals than previously expected, and plants still contain many useful compounds for human applications.  相似文献   

14.
15.
This study was designed to investigate the genetic basis of growth and egg traits in Dongxiang blue‐shelled chickens and White Leghorn chickens. In this study, we employed a reduced representation sequencing approach called genotyping by genome reducing and sequencing to detect genome‐wide SNPs in 252 Dongxiang blue‐shelled chickens and 252 White Leghorn chickens. The Dongxiang blue‐shelled chicken breed has many specific traits and is characterized by blue‐shelled eggs, black plumage, black skin, black bone and black organs. The White Leghorn chicken is an egg‐type breed with high productivity. As multibreed genome‐wide association studies (GWASs) can improve precision due to less linkage disequilibrium across breeds, a multibreed GWAS was performed with 156 575 SNPs to identify the associated variants underlying growth and egg traits within the two chicken breeds. The analysis revealed 32 SNPs exhibiting a significant genome‐wide association with growth and egg traits. Some of the significant SNPs are located in genes that are known to impact growth and egg traits, but nearly half of the significant SNPs are located in genes with unclear functions in chickens. To our knowledge, this is the first multibreed genome‐wide report for the genetics of growth and egg traits in the Dongxiang blue‐shelled and White Leghorn chickens.  相似文献   

16.
Cotton is widely cultivated globally because it provides natural fibre for the textile industry and human use. To identify quantitative trait loci (QTLs)/genes associated with fibre quality and yield, a recombinant inbred line (RIL) population was developed in upland cotton. A consensus map covering the whole genome was constructed with three types of markers (8295 markers, 5197.17 centimorgans (cM)). Six fibre yield and quality traits were evaluated in 17 environments, and 983 QTLs were identified, 198 of which were stable and mainly distributed on chromosomes 4, 6, 7, 13, 21 and 25. Thirty‐seven QTL clusters were identified, in which 92.8% of paired traits with significant medium or high positive correlations had the same QTL additive effect directions, and all of the paired traits with significant medium or high negative correlations had opposite additive effect directions. In total, 1297 genes were discovered in the QTL clusters, 414 of which were expressed in two RNA‐Seq data sets. Many genes were discovered, 23 of which were promising candidates. Six important QTL clusters that included both fibre quality and yield traits were identified with opposite additive effect directions, and those on chromosome 13 (qClu‐chr13‐2) could increase fibre quality but reduce yield; this result was validated in a natural population using three markers. These data could provide information about the genetic basis of cotton fibre quality and yield and help cotton breeders to improve fibre quality and yield simultaneously.  相似文献   

17.
18.
19.
Long‐term selection of goats for a certain production system and/or different environmental conditions will be reflected in the body morphology of the animals under selection. To investigate the variation contributing to different morphological traits and to identify genomic regions that are associated with body morphological traits in Sudanese goats, we genotyped 96 females belonging to four Sudanese goat breeds with the SNP52 BeadChip. After quality control of the data, the genome‐wide association study was performed using 95 goats and 24 027 informative single nucleotide polymorphisms (SNPs). Bicoastal diameter was significantly associated (LOD = 6.32) with snp10185‐scaffold1365‐620922 on chromosome 2. The minor allele has an additive effect, increasing the bicoastal diameter by 2.6 cm. A second significant association was found between body length and snp56482‐scaffold89‐467312 on chromosome 3 (LOD = 5.65). The minor allele is associated with increased body length. Additionally, five regions were suggestive for cannon bone, head width, rump length and withers height (LOD > 5). Only one gene (CNTNAP5) is located within the 1‐Mb region surrounding the significant SNP for bicoastal diameter on chromosome 2. The body length QTL on chromosome 3 harbors 49 genes. Further research is required to validate the observed associations and to prioritize candidate genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号