首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylem vulnerability to cavitation differs between tree species according to their drought resistance, more xerophilous species being more resistant to xylem cavitation. Variability in xylem vulnerability to cavitation is also found within species, especially between in situ populations. The origin of this variability has not been clearly identified. Here we analyzed the response of xylem hydraulic traits of Populus tremula×Populus alba trees to three different soil water regimes. Stem xylem vulnerability was scored as the xylem water potential causing 12, 50 and 88% loss of conductivity (P12, P50 and P88). Vulnerability to cavitation was found to acclimate to growing conditions under different levels of soil water content, with P50 values of ?1.82, ?2.03 and ?2.45 MPa in well‐watered, moderately water‐stressed and severely water‐stressed poplars, respectively. The value of P12, the xylem tension at which cavitation begins, was correlated with the lowest value of midday leaf water potential (ψm) experienced by each plant, the difference between the two parameters being approximately 0.5 MPa, consistent with the absence of any difference in embolism level between the different water treatments. These results support the hypothesis that vulnerability to cavitation is a critical trait for resistance to drought. The decrease in vulnerability to cavitation under growing conditions of soil drought was correlated with decreased vessel diameter, increased vessel wall thickness and a stronger bordered pit field (t/b)2. The links between these parameters are discussed.  相似文献   

2.
Coordination of stem and leaf hydraulic traits allows terrestrial plants to maintain safe water status under limited water supply. Tropical rain forests, one of the world's most productive biomes, are vulnerable to drought and potentially threatened by increased aridity due to global climate change. However, the relationship of stem and leaf traits within the plant hydraulic continuum remains understudied, particularly in tropical species. We studied within‐plant hydraulic coordination between stems and leaves in three tropical lowland rain forest tree species by analyses of hydraulic vulnerability [hydraulic methods and ultrasonic emission (UE) analysis], pressure‐volume relations and in situ pre‐dawn and midday water potentials (Ψ). We found finely coordinated stem and leaf hydraulic features, with a strategy of sacrificing leaves in favour of stems. Fifty percent of hydraulic conductivity (P50) was lost at ?2.1 to ?3.1 MPa in stems and at ?1.7 to ?2.2 MPa in leaves. UE analysis corresponded to hydraulic measurements. Safety margins (leaf P50 – stem P50) were very narrow at ?0.4 to ?1.4 MPa. Pressure‐volume analysis and in situ Ψ indicated safe water status in stems but risk of hydraulic failure in leaves. Our study shows that stem and leaf hydraulics were finely tuned to avoid embolism formation in the xylem.  相似文献   

3.
Variation in resistance of xylem to embolism among flowers, leaves, and stems strongly influences the survival and reproduction of plants. However, little is known about the vulnerability to xylem embolism under drought stress and their relationships to the anatomical traits of pits among reproductive and vegetative organs. In this study, we investigated the variation in xylem vulnerability to embolism in peduncles, petioles, and stems in a woody plant, Magnolia grandiflora. We analyzed the relationships between water potentials that induced 50% embolism (P50) in peduncles, petioles, and stems and the conduit pit traits hypothesized to influence cavitation resistance. We found that peduncles were more vulnerable to cavitation than petioles and stems, supporting the hypothesis of hydraulic vulnerability segmentation that leaves and stems are prioritized over flowers during drought stress. Moreover, P50 was significantly correlated with variation in the dimensions of inter-vessel pit apertures among peduncles, petioles and stems. These findings highlight that measuring xylem vulnerability to embolism in reproductive organs is essential for understanding the effect of drought on plant reproductive success and mortality under drought stress.  相似文献   

4.
Xylem network structure and function have been characterized for many woody plants, but less is known about fern xylem, particularly in species endemic to climates where water is a limiting resource for months at a time. We characterized seasonal variability in soil moisture and frond water status in a common perennial fern in the redwood understory of a costal California, and then investigated the consequences of drought‐induced embolism on vascular function. Seasonal variability in air temperature and soil water content was minimal, and frond water potential declined slowly over the observational period. Our data show that Polystichum munitum was protected from significant drought‐induced hydraulic dysfunction during this growing season because of a combination of cavitation resistant conduits (Air‐seeding threshold (ASP) = ?1.53 MPa; xylem pressure inducing 50% loss of hydraulic conductivity (P50) = ?3.02 MPa) and a soil with low moisture variability. High resolution micro‐computed tomography (MicroCT) imaging revealed patterns of embolism formation in vivo for the first time in ferns providing insight into the functional status of the xylem network under drought conditions. Together with stomatal conductance measurements, these data suggest that P. munitum is adapted to tolerate drier conditions than what was observed during the growing season.  相似文献   

5.
Xylem structure and function are well described in woody plants, but the implications of xylem organization in less‐derived plants such as ferns are poorly understood. Here, two ferns with contrasting phenology and xylem organization were selected to investigate how xylem dysfunction affects hydraulic conductivity and stomatal conductance (gs). The drought‐deciduous pioneer species, Pteridium aquilinum, exhibits fronds composed of 25 to 37 highly integrated vascular bundles with many connections, high gs and moderate cavitation resistance (P50 = ?2.23 MPa). By contrast, the evergreen Woodwardia fimbriata exhibits sectored fronds with 3 to 5 vascular bundles and infrequent connections, low gs and high resistance to cavitation (P50 = ?5.21 MPa). Xylem‐specific conductivity was significantly higher in P. aqulinium in part due to its wide, efficient conduits that supply its rapidly transpiring pinnae. These trade‐offs imply that the contrasting xylem organization of these ferns mirrors their divergent life history strategies. Greater hydraulic connectivity and gs promote rapid seasonal growth, but come with the risk of increased vulnerability to cavitation in P. aquilinum, while the conservative xylem organization of W. fimbriata leads to slower growth but greater drought tolerance and frond longevity.  相似文献   

6.
三种锦鸡儿属植物水力结构特征及其干旱适应策略   总被引:1,自引:0,他引:1  
龚容  徐霞  田晓宇  江红蕾  李霞  关梦茜 《生态学报》2018,38(14):4984-4993
水分胁迫是干旱半干旱区限制植物生长的主要因素。以干旱半干旱区的3种锦鸡儿属植物为研究对象,从生态适应策略角度来分析3种锦鸡儿植物产生生态分离的原因。对三种锦鸡儿属植物茎干叶片的显微结构、生理功能(导水率、光合速率以及水分利用效率)进行测定,并统计了3种锦鸡儿植株的形态特征,如一、二级枝的直径、长度、末端叶面积。结果表明:三种锦鸡儿属植物都能形成较小的导管直径来适应旱生环境,但是在导水结构上又表现出一定的差异性。中间锦鸡儿的导管直径最小,次脉密度和最大净光合速率最大;柠条锦鸡儿的导管直径、叶片厚度和比叶重(LMA)最大。小叶锦鸡儿在导水率下降50%时的水势(P_(50))最大,水分胁迫时极易发生栓塞,但正是由于导管的栓塞降低了水分运输效率,使其在旱生环境中能够通过减少水分的供应来降低水分的丧失,从而保证自身生长的水分需求;而中间锦鸡儿则主要通过减小导管直径来适应旱生环境;柠条锦鸡儿的水分利用效率最高,抗栓塞能力最强,抗旱性最好,同时柠条锦鸡儿可以通过减少蒸腾面积来减少水分的丧失。植物的导管直径大小、叶片厚度、LMA、叶脉密度对植物导水速率、光合速率等生理功能都有一定的影响。  相似文献   

7.
We investigated functional coordination between branch hydraulic properties and leaf functional traits among nine miombo woodlands canopy tree species differing in habitat preference and phenology. Specifically, we were seeking to answer the question: are branch hydraulic properties coordinated with leaf functional traits linked to plant drought tolerance in seasonally dry tropical forests and what are the implications for species habitat preference? The hydraulic properties investigated in this study were stem area specific hydraulic conductivity (K S), Huber value (H v), and xylem cavitation vulnerability (??50). The leaf functional traits measured were specific leaf area (SLA), leaf dry matter content (LDMC), and mean leaf area (MLA). Generalists displayed significantly (P?<?0.05) higher cavitation resistance (??50) and SLA, but lower sapwood specific hydraulic conductivity (K S), leaf specific conductivity (K L), MLA, and LDMC than mesic specialists. Although MLA was uncorrelated with ??50, we found significant (P?<?0.05) positive and negative correlations between plant hydraulic properties and leaf functional traits linked to plant drought tolerance ability, indicating that the interactions between branch hydraulics and leaf functional traits related to plant drought tolerance ability may influence tree species habitat preference in water-limited ecosystems.  相似文献   

8.
Stomatal regulation of transpiration constrains leaf water potential (ΨL) within species-specific ranges that presumably avoid excessive tension and embolism in the stem xylem upstream. However, the hydraulic resistance of leaves can be highly variable over short time scales, uncoupling tension in the xylem of leaves from that in the stems to which they are attached. We evaluated a suite of leaf and stem functional traits governing water relations in individuals of 11 lowland tropical forest tree species to determine the manner in which the traits were coordinated with stem xylem vulnerability to embolism. Stomatal regulation of ΨL was associated with minimum values of water potential in branches (Ψbr) whose functional significance was similar across species. Minimum values of Ψbr coincided with the bulk sapwood tissue osmotic potential at zero turgor derived from pressure–volume curves and with the transition from a linear to exponential increase in xylem embolism with increasing sapwood water deficits. Branch xylem pressure corresponding to 50% loss of hydraulic conductivity (P 50) declined linearly with daily minimum Ψbr in a manner that caused the difference between Ψbr and P 50 to increase from 0.4 MPa in the species with the least negative Ψbr to 1.2 MPa in the species with the most negative Ψbr. Both branch P 50 and minimum Ψbr increased linearly with sapwood capacitance (C) such that the difference between Ψbr and P 50, an estimate of the safety margin for avoiding runaway embolism, decreased with increasing sapwood C. The results implied a trade-off between maximizing water transport and minimizing the risk of xylem embolism, suggesting a prominent role for the buffering effect of C in preserving the integrity of xylem water transport. At the whole-tree level, discharge and recharge of internal C appeared to generate variations in apparent leaf-specific conductance to which stomata respond dynamically.  相似文献   

9.
Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large‐scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem‐P50), leaf turgor loss point (TLP), cellular osmotic potential (πo), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought‐tolerant versus drought‐intolerant based on observed mortality rates, and subdivided into early‐ versus late‐successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem‐P50, TLP, and πo, but not ε, occurred at significantly higher water potentials for the drought‐intolerant PFT compared to the drought‐tolerant PFT; however, there were no significant differences between the early‐ and late‐successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density—a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought‐tolerant and drought‐intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry‐season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co‐occuring drought‐tolerant and drought‐intolerant tropical tree species promises to facilitate a much‐needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forests.  相似文献   

10.
Vaccinium myrtillus and Vaccinium vitis‐idaea are two dwarf shrubs widespread in the European Alps. We studied the hydraulics of these species hypothesizing that (1) the hydraulic architecture of dwarf shrubs differs from trees, (2) hydraulic properties reflect the species' ecological amplitude and (3) hydraulic properties vary spatially and seasonally. Key hydraulic parameters (osmotic potential, turgor loss point, xylem hydraulic conductivity, vulnerability to drought‐induced embolism, stomata closure, drought‐induced cell damage and embolism repair) and related wood anatomical traits (conduit diameter and conduit wall reinforcement) were analyzed at four sites in Tyrol, Austria. Both species exhibited low hydraulic safety as well as low hydraulic efficiency. Fifty percentage embolism accumulated at ?2.08 (V. myrtillus) and ?1.97 MPa (V. vitis‐idaea), 88% stomata closure was at ?2.19 and ?2.35 MPa, respectively. After drought, both species showed embolism repair on re‐watering. Site‐specific variation within species was low, while seasonal changes in embolism resistance and turgor loss point were observed. Results indicate that studied Vaccinium species have a high risk for embolism formation. This is balanced by refilling capacities, which are probably based on the small growth height of dwarf shrubs. V. vitis‐idaea, which occurs on drier sites, showed more efficient repair and a lower turgor loss point than V. myrtillus.  相似文献   

11.
木本植物木质部栓塞脆弱性研究新进展   总被引:3,自引:0,他引:3       下载免费PDF全文
木质部空穴化和栓塞是木本植物在干旱等条件下遭受水分胁迫时产生的木质部输水功能障碍, 在全球气候变化的大背景下, 栓塞脆弱性对干旱响应的研究已成为热点和重要内容。近年来有关木质部栓塞脆弱性与植物输水结构和耐旱性的关系已有大量研究并取得一定成果, 但是, 不同学者在不同地区对不同材料的研究结果存在很大不同。该文就近年来这一研究领域取得的成果及争议问题进行了概括和总结, 主要涉及木质部栓塞脆弱性(P50)及脆弱曲线的建立方法、木质部栓塞脆弱性与木质部结构(导管直径、导管长度、纹孔膜、木质部密度、纤维及纤维管胞)间的关系和木质部栓塞脆弱性与耐旱性的关系, 并对未来工作进行展望, 提出在未来的工作中应对同一树种使用Cochard Cavitron离心机法、Sperry离心机技术与传统方法建立的脆弱曲线进行比较验证、计算P50值、分析植物个体器官水平差异(根、茎、叶)、测定树种生理生态指标, 探索植物栓塞脆弱性与输水结构和耐旱性的关系, 从而评估不同类型植物在未来气候变化下的耐旱能力。  相似文献   

12.
《植物生态学报》2015,39(8):838
Xylem cavitation/embolism is the blockage of xylem conduits when woody plants suffer from water stress under drought and other environmental conditions, the study of embolism has become a hot and key topic under global climate change. Recent researches on the relationship between the vulnerability of xylem embolism and hydraulic architecture/drought tolerance have made some progress, however, scholars reached different conclusions based on results from different regions or different materials. This paper reviews the current achievements and controversial viewpoints, which includes indicator of xylem embolism vulnerability (P50), method of vulnerability curve establishment, the relationship between embolism vulnerability and hydraulic architecture (vessel diameter, vessel length, pit area, wood density, fiber and fiber tracheid) and the relationship between embolism vulnerability and drought tolerance of woody plants. Future studies should use Cochard Cavitron centrifuge and Sperry centrifuge coupled with traditional methods to establish vulnerability curves, calculate P50, analyze the difference among different organisms (root, stem, leaf), and measure physiological and ecological indexes. Future studies should be aimed to explore the relationship between the vulnerability of xylem embolism and hydraulic architecture/drought tolerance and to assess drought tolerance ability of different species under future climate change.  相似文献   

13.
Background and AimsThe ability to avoid drought-induced embolisms in the xylem is one of the essential traits for plants to survive periods of water shortage. Over the past three decades, hydraulic studies have been focusing on trees, which limits our ability to understand how herbs tolerate drought. Here we investigate the embolism resistance in inflorescence stems of four Arabidopsis thaliana accessions that differ in growth form and drought response. We assess functional traits underlying the variation in embolism resistance amongst the accessions studied using detailed anatomical observations.MethodsVulnerability to xylem embolism was evaluated via vulnerability curves using the centrifuge technique and linked with detailed anatomical observations in stems using light microscopy and transmission electron microscopy.Key ResultsThe data show significant differences in stem P50, varying 2-fold from −1.58 MPa in the Cape Verde Island accession to −3.07 MPa in the woody soc1 ful double mutant. Out of all the anatomical traits measured, intervessel pit membrane thickness (TPM) best explains the differences in P50, as well as P12 and P88. The association between embolism resistance and TPM can be functionally explained by the air-seeding hypothesis. There is no evidence that the correlation between increased woodiness and increased embolism resistance is directly related to functional aspects. However, we found that increased woodiness is strongly linked to other lignification characters, explaining why mechanical stem reinforcement is indirectly related to increased embolism resistance.ConclusionsThe woodier or more lignified accessions are more resistant to embolism than the herbaceous accessions, confirming the link between increased stem lignification and increased embolism resistance, as also observed in other lineages. Intervessel pit membrane thickness and, to a lesser extent, theoretical vessel implosion resistance and vessel wall thickness are the missing functional links between stem lignification and embolism resistance.  相似文献   

14.
Plants can be highly segmented organisms with an independently redundant design of organs. In the context of plant hydraulics, leaves may be less embolism resistant than stems, allowing hydraulic failure to be restricted to distal organs that can be readily replaced. We quantified drought‐induced embolism in needles and stems of Pinus pinaster using high‐resolution computed tomography (HRCT). HRCT observations of needles were compared with the rehydration kinetics method to estimate the contribution of extra‐xylary pathways to declining hydraulic conductance. High‐resolution computed tomography images indicated that the pressure inducing 50% of embolized tracheids was similar between needle and stem xylem (P50 needle xylem = ?3.62 MPa, P50 stem xylem = ?3.88 MPa). Tracheids in both organs showed no difference in torus overlap of bordered pits. However, estimations of the pressure inducing 50% loss of hydraulic conductance at the whole needle level by the rehydration kinetics method were significantly higher (P50 needle = ?1.71 MPa) than P50 needle xylem derived from HRCT. The vulnerability segmentation hypothesis appears to be valid only when considering hydraulic failure at the entire needle level, including extra‐xylary pathways. Our findings suggest that native embolism in needles is limited and highlight the importance of imaging techniques for vulnerability curves.  相似文献   

15.
Vulnerability to drought‐induced cavitation is a key trait of plant water relations. Here, we summarize the available literature on vulnerability to drought‐induced cavitation in poplars (Populus spp.), a genus of agronomic, ecological and scientific importance. Vulnerability curves and vulnerability parameters (including the water potential inducing 50% loss in hydraulic conductivity, P50) were collected from 37 studies published between 1991 and 2014, covering a range of 10 species and 12 interspecific hybrid crosses. Results of our meta‐analysis confirm that poplars are among the most vulnerable woody species to drought‐induced cavitation (mean P50 = ?1.44 and ?1.55 MPa across pure species and hybrids, respectively). Yet, significant variation occurs among species (P50 range: 1.43 MPa) and among hybrid crosses (P50 range: 1.12 MPa), within species and hybrid crosses (max. P50 range reported: 0.8 MPa) as well as in response to environmental factors including nitrogen fertilization, irradiance, temperature and drought (max. P50 range reported: 0.75 MPa). Potential implications and gaps in knowledge are discussed in the context of poplar cultivation, species adaptation and climate modifications. We suggest that poplars represent a valuable model for studies on drought‐induced cavitation, especially to elucidate the genetic and molecular basis of cavitation resistance in Angiosperms.  相似文献   

16.
Drought‐induced xylem embolism is a key process closely related to plant mortality during extreme drought events. However, this process has been poorly investigated in crop species to date, despite the observed decline of crop productivity under extreme drought conditions. Interspecific variation in hydraulic traits has frequently been reported, but less is known about intraspecific variation in crops. We assessed the intraspecific variability of embolism resistance in four sunflower (Helianthus annuus L.) accessions grown in well‐watered conditions. Vulnerability to embolism was determined by the in situ flow‐centrifuge method (cavitron), and possible trade‐offs between xylem safety, xylem efficiency and growth were assessed. The relationship between stem anatomy and hydraulic traits was also investigated. Mean P 50 was ?3 MPa, but significant variation was observed between accessions, with values ranging between ?2.67 and ?3.22 MPa. Embolism resistance was negatively related to growth and positively related to xylem‐specific hydraulic conductivity. There is, therefore, a trade‐off between hydraulic safety and growth but not between hydraulic safety and efficiency. Finally, we found that a few anatomical traits, such as vessel density and the area of the vessel lumen relative to that of the secondary xylem, were related to embolism resistance, whereas stem tissue lignification was not. Further investigations are now required to investigate the link between the observed variability of embolism resistance and yield, to facilitate the identification of breeding strategies to improve yields in an increasingly arid world.  相似文献   

17.
Resistance to water‐stress induced cavitation is an important indicator of drought tolerance in woody species and is known to be intimately linked to the anatomy of the xylem. However, the actual mechanical properties of the pit membrane are not well known and the exact mode of air‐seeding by which cavitation occurs is still uncertain. We examined the relationship between cavitation resistance and bordered pit structure and function in 40 coniferous species. Xylem pressure inducing 50% loss of hydraulic conductance (P50, a proxy for cavitation resistance) varied widely among species, from ?2.9 to ?11.3 MPa. The valve effect of the pit membrane, measured as a function of margo flexibility and torus overlap, explained more variation in cavitation‐resistance than simple anatomical traits such as pit membrane, pit aperture or torus size. Highly cavitation resistant species exhibited both a high flexibility of the margo and a large overlap between the torus and the pit aperture, allowing the torus to tightly seal the pit aperture. Our results support the hypothesis of seal capillary‐seeding as the most likely mode of air‐seeding, and suggest that the adhesion of the torus to the pit border may be the main determinant of cavitation resistance in conifers.  相似文献   

18.
Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site-level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50 values (< −2 MPa) are common across the wet and dry tropics. This high site-level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.  相似文献   

19.
Drought‐induced tree mortality is expected to increase in future climates with the potential for significant consequences to global carbon, water, and energy cycles. Xylem embolism can accumulate to lethal levels during drought, but species that can refill embolized xylem and recover hydraulic function may be able to avoid mortality. Yet the potential controls of embolism recovery, including cross‐biome patterns and plant traits such as nonstructural carbohydrates (NSCs), hydraulic traits, and nocturnal stomatal conductance, are unknown. We exposed eight plant species, originating from mesic (tropical and temperate) and semi‐arid environments, to drought under ambient and elevated CO2 levels, and assessed recovery from embolism following rewatering. We found a positive association between xylem recovery and NSCs, and, surprisingly, a positive relationship between xylem recovery and nocturnal stomatal conductance. Arid‐zone species exhibited greater embolism recovery than mesic zone species. Our results indicate that nighttime stomatal conductance often assumed to be a wasteful use of water, may in fact be a key part of plant drought responses, and contribute to drought survival. Findings suggested distinct biome‐specific responses that partially depended on species climate‐of‐origin precipitation or aridity index, which allowed some species to recover from xylem embolism. These findings provide improved understanding required to predict the response of diverse plant communities to drought. Our results provide a framework for predicting future vegetation shifts in response to climate change.  相似文献   

20.
The occurrence of root pressure, the vulnerability of xylemvessels to drought-induced cavitation, and the seasonal changesin hydraulic conductivity due to embolism were studied in theculms of Rhipidocladum racemiflorum (Steud.) McClure, a tropicalvine-like bamboo from central Panama. Positive hydrostatic potentialsup to 120 kPa occurred only during the wet season when the transpirationrate of the plant was low, i.e. at night or during rain events.Although the xylem vessels were large and efficient for conductingwater, they were highly resistant to cavitation. Xylem waterpotentials lower than –4.5 MPa were required to induce50% loss of hydraulic conductivity in culms. The minimum waterpotential reached –3.75 MPa at the end of the 1993 dryseason, so loss of hydraulic conductivity due to embolism remained<10%. The species is adapted to drier habitats both by wayof a low vulnerability to xylem cavitation and by root pressuresin the wet season that could refill vessels that became embolizedduring a severe dry season. Key words: Rhipidocladum racemiflorum, root pressure, cavitation, embolism, water relations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号