首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细胞壁在植物重金属耐性中的作用   总被引:8,自引:0,他引:8  
植物细胞壁主要是由多糖、蛋白质和木质素等组成的一个复合体,广泛参与植物生长发育及对各种逆境胁迫的响应,是重金属离子进入细胞质的第一道屏障。本文主要综述了植物细胞壁主要成分,包括细胞壁多糖、细胞壁蛋白质和木质素,在响应重金属胁迫反应中的作用及其参与重金属耐性的机制,以期能对植物细胞壁在重金属耐性中的作用有更深入的了解。  相似文献   

2.
Two-days-old in vitro grown protonemata of Funaria hygrometrica Hedw. were treated with a mixture PbCl2 (4 M Pb2+) and CaCl2 (16 M Ca2+) (Ca+Pb) for 48 h. The results were compared with the control: distilled water (H2O) and the solution of PbCl2 (4 M Pb2+) (Pb). Protonemata treated with Ca+Pb were longer and contained more cells than those treated with Pb. Moreover, a lower number of cells showed apical cell deformations typical for lead toxicity: swollen tips and wall thickenings at the apex. If deformations were present they were not as extended as in Pb. In comparison with the control, however, protonemata treated with Ca+Pb were shorter, contained a lower number of cells and some apical cells in this material were altered. It can be concluded that the presence of calcium partially neutralised toxic effects of lead in Funaria hygrometrica protonemata cells.  相似文献   

3.
The respiration rate and viability of cultured cells and protoplasts isolated from two clones of Anthoxanthum odoratum tolerant to both zinc and lead were unaffected by the presence of zinc. Although intact cells were largely unaffected by the presence of lead, protoplasts isolated from cultured cells were susceptible, showing a reduced respiration rate and a high mortality. In contrast cultured cells and protoplasts of non-tolerant clones of A. odoratum were susceptible to both zinc and lead. The results provide direct evidence that in A. odoratum the cell wall is part of the mechanism of tolerance to lead, but not to zinc.  相似文献   

4.
    
There are 10 genes in the Arabidopsis genome that contain a domain described in the Pfam database as domain of unknown function 579 (DUF579). Although DUF579 is widely distributed in eukaryotic species, there is no direct experimental evidence to assign a function to it. Five of the 10 Arabidopsis DUF579 family members are co‐expressed with marker genes for secondary cell wall formation. Plants in which two closely related members of the DUF579 family have been disrupted by T‐DNA insertions contain less xylose in the secondary cell wall as a result of decreased xylan content, and exhibit mildly distorted xylem vessels. Consequently we have named these genes IRREGULAR XYLEM 15 (IRX15) and IRX15L. These mutant plants exhibit many features of previously described xylan synthesis mutants, such as the replacement of glucuronic acid side chains with methylglucuronic acid side chains. By contrast, immunostaining of xylan and transmission electron microscopy (TEM) reveals that the walls of these irx15 irx15l double mutants are disorganized, compared with the wild type or other previously described xylan mutants, and exhibit dramatic increases in the quantity of sugar released in cell wall digestibility assays. Furthermore, localization studies using fluorescent fusion proteins label both the Golgi and also an unknown intracellular compartment. These data are consistent with irx15 and irx15l defining a new class of genes involved in xylan biosynthesis. How these genes function during xylan biosynthesis and deposition is discussed.  相似文献   

5.
    
The phenotype of the novel gapped xylem (gpx) mutant is described. gpx plants exhibit gaps in the xylem in positions where xylem elements would normally be located. These gaps are not part of the transpiration stream and result in gpx plants having fewer functional xylem elements. The gaps are due to the absence of a secondary cell wall in developing xylem elements, resulting in complete degradation of these elements during cell death, and illustrate the importance of the secondary cell wall in retaining a functional xylem element following programmed cell death. Consequently the gpx phenotype suggests that the processes of secondary cell wall formation and cell death are independently regulated in developing xylem. gpx plants also exhibit a highly irregular pattern of secondary cell wall thickening in interfascicular cells, with some cells apparently undergoing little or no secondary cell wall deposition. Secondary cell wall deposition in plants involves the co-ordinate regulation of several complex metabolic pathways. The gpx mutant identifies a key step involved in regulating the deposition of secondary cell wall material in both xylem and interfascicular cells, and suggests that a common regulatory step controls secondary cell wall formation in these diverse cell types. The gpx mutant offers a unique opportunity to elucidate the mechanism by which the complex processes involved in secondary cell wall formation are co-ordinately regulated.  相似文献   

6.
BACKGROUND AND AIMS: The xylem plays an important role in strengthening plant bodies. Past studies on xylem formation in tension woods in poplar and also in clinorotated Prunus tree stems lead to the suggestion that changes in the gravitational conditions affect morphology and mechanical properties of xylem vessels. The aim of this study was to examine effects of hypergravity stimulus on morphology and development of primary xylem vessels and on mechanical properties of isolated secondary wall preparations in inflorescence stems of arabidopsis. METHODS: Morphology of primary xylem was examined under a light microscope on cross-sections of inflorescence stems of arabidopsis plants, which had been grown for 3-5 d after exposure to hypergravity at 300 g for 24 h. Extensibility of secondary cell wall preparation, isolated from inflorescence stems by enzyme digestion of primary cell wall components (mainly composed of metaxylem elements), was examined. Plants were treated with gadolinium chloride, a blocker of mechanoreceptors, to test the involvement of mechanoreceptors in the responses to hypergravity. KEY RESULTS: Number of metaxylem elements per xylem, apparent thickness of the secondary thickenings, and cross-section area of metaxylem elements in inflorescence stems increased in response to hypergravity. Gadolinium chloride suppressed the effect of hypergravity on the increase both in the thickness of secondary thickenings and in the cross-section area of metaxylem elements, while it did not suppress the effect of hypergravity on the increase in the number of metaxylem elements. Extensibility of secondary cell wall preparation decreased in response to hypergravity. Gadolinium chloride suppressed the effect of hypergravity on cell wall extensibility. CONCLUSIONS: Hypergravity stimulus promotes metaxylem development and decreases extensibility of secondary cell walls, and mechanoreceptors were suggested to be involved in these processes.  相似文献   

7.
Ecophysiology of algae living in highly acidic environments   总被引:4,自引:0,他引:4  
Gross  Wolfgang 《Hydrobiologia》2000,433(1-3):31-37
Highly acidic environments are inhabited by acidophilic as well as acidotolerant algae. Acidophilic algae are adapted to pH values as low as 0.05 and unable to grow at neutral pH. A prerequisite for thriving at low pH is the reduction of proton influx and an increase in proton pump efficiency. In addition, algae have to cope with a limited supply of carbon dioxide for photosynthesis because of the absence of a bicarbonate pool. Therefore, some algae grow mainly in near terrestrial situations to increase the CO2-availability or actively move within the water body into areas with high CO2. Beside these direct effects of acidity, high concentrations of heavy metals and precipitation of nutrients cause indirect effects on the algae in many acidic environments.  相似文献   

8.
9.
Plants represent a natural environmentally safe way to clean or remediate contaminated sites. Members of the Brassicaceae or Cruciferae plant family have a key role in phytoremediation technology. Many wild crucifer species are known to hyperaccumulate heavy metals and possess genes for resistance or tolerance to the toxic effects of a wide range of metals. Metal uptake, sensitivity, and sequestration have been studied extensively in Arabidopsis thaliana, and a number of heavy metal-sensitive and ion-accumulating mutants have been identified. This species is a likely source of genes for phytoremediation. Within the Brassicaceae, Brassica and other crop species are likely candidates for phytoremediation. There is a wealth of information on the agronomics of the economically important members and biomass production can be extensive. Many of these species are well adapted to a range of environmental conditions. Some species are tolerant to high levels of heavy metals, and there is the potential to select superior genotypes for phytoremediation. They are well suited to genetic manipulation and in vitro culture techniques and are attractive candidates for the introduction of genes aimed at phytoremediation. Biotechnology and molecular biology are valuable tools for studies of metal accumulation and tolerance in hyperaccumulating species and for the transfer of relevant genes into crucifer species suitable for phytoremediation. The purpose of this article is to review the potential use of both wild and cultivated members of the Brassicaceae in phytoremediation.  相似文献   

10.
Acquisition and homeostasis of micronutrients such as iron (Fe) and zinc (Zn) pose specific challenges. Poor solubility and high reactivity require controlled synthesis and supply of ligands to complex these metals extracellularly and intracellularly. Cytosolic labile pools represent only a minute fraction of the total cellular content. Several low‐molecular‐weight ligands are known in plants, including sulfur ligands (cysteine and peptides), nitrogen/oxygen ligands (S‐adenosyl‐l ‐methionine‐derived molecules and histidine), and oxygen ligands (phenolics and organic acids). Some ligands are secreted into the extracellular space and influence the phytoavailability of metal ions. A second principal function is the intracellular buffering of micronutrients as well as the facilitation of long‐distance transport in xylem and phloem. Furthermore, low‐molecular‐weight ligands are involved in the storage of metals, predominantly in vacuoles. A detailed molecular understanding is hampered by technical limitations, in particular the difficulty to detect and quantify cellular metal–ligand complexes. More, but still too little, is known about ligand synthesis and the transport across membranes, either with or without a complexed metal. Metal ligands have an immediate impact on human well‐being. Engineering metal ligand synthesis and distribution in crops has tremendous potential to improve the nutritional quality of food and to tackle major human health risks.  相似文献   

11.
AreA作为丝状真菌氮代谢中的关键转录因子,在真菌响应外界氮源、生长发育、次级代谢及抗逆过程中发挥了重要作用。本研究通过生物信息学比对分析,获得了灵芝AreA的全长序列,研究了AreA对菌丝生长、抵御细胞壁胁迫以及次级代谢的影响,AreA编码蛋白的C末端含有保守的GATA型锌指结构域,与其他担子菌中AreA的亲缘关系较近。通过qRT-PCR分析发现,外界氮源浓度的变化能够影响AreA的转录水平。在低氮源浓度条件下,AreA的转录水平显著高于氮源丰富的条件。利用前期构建的AreA沉默转化子研究发现,沉默AreA后菌株生长速率显著低于野生菌株,约下降70%;且AreA沉默菌株菌丝比野生菌株蓬松。细胞壁的组成成分检测发现,AreA沉默菌株的葡聚糖和几丁质含量比野生菌株(WT)和转入空载沉默质粒的菌株(CK)分别下降约65%和40%-60%。随后检测了对细胞壁胁迫的耐受性,结果发现AreA沉默转化子对刚果红和SDS极为敏感,几乎不能生长。在AreA沉默菌株中,灵芝三萜的含量相比于对照菌株下降了约23%。研究结果表明灵芝AreA能够响应环境中的氮源浓度,并且在灵芝的生长发育、次级代谢以及抵御细胞壁胁迫中发挥了重要作用。  相似文献   

12.
  总被引:2,自引:0,他引:2  
Abstract: The modifications caused by genetic down-regulation of the enzyme cinnamoyl CoA reductase (CCR) from monolignol biosynthetic pathways on tobacco and Arabidopsis thaliana were investigated at the ultrastructural level. A typical result was that the same transformation led to similar abnormality in secondary wall formation of fibres in both plants. The cell wall alterations mainly consisted in an important disorganization and loosening of cellulose microfibrils in the inner part of the S2 layer. This inability of the transformants to form a coherent cell wall coincided with a lack of synthesis of non-condensed forms of lignin in this disorganized region of the wall, as demonstrated by immunolabelling of lignin subunits. A similar disorganization was observed during fibre wall formation in the differentiating tissues of young Populus and A. thaliana plants. The transitory lack of organization of cellulose microfibrils, also coincided with a depletion in non-condensed forms of lignins. These results suggest that such lignin substructures may be involved in the cohesion of secondary walls during cell wall biogenesis. The mutual influence of the cellulose-hemicellulose environment and monolignol local polymerization is discussed.  相似文献   

13.
以拟南芥原生质体为实验体系,研究不同浓度的3种重金属离子对拟南芥原生质体的毒性和DNA损伤的差异。结果表明,用1-5mmol·L^-1的Zn^2+、Cd^2+和Cu^2+分别处理的拟南芥原生质体,2小时内活力逐渐下降,并表现出明显的浓度依赖性:与相同浓度的Cd^2+和Cu^2+相比,Zn^2+对拟南芥原生质体活力的影响程度较小,表现出较低的毒性。单细胞凝胶电泳检测发现,用0.1-0.8mmol·L^-1的Zn^2+、Cd^2+和Cu^2+分别处理拟南芥原生质体30分钟,以OTM值表示的原生质体DNA损伤量随重金属离子浓度的增加而递增:相同浓度(0.5mmol·L^-1)的3种重金属离子相比,Zn^2+对原生质体的遗传毒性明显低于Cu^2+和Cd^2+。综合原生质体活力和DNA损伤的单细胞凝胶电泳检测结果,发现ZnO^2+对拟南芥原生质体的遗传毒性较低,而CdO^2+和Cu^2+的遗传毒性较高。本研究建立的拟南芥原生质体实验体系,结合运用单细胞凝胶电泳技术,能够快速、灵敏地检测重金属对植物细胞的遗传毒性。  相似文献   

14.
Structural Changes in Radish Seedlings Exposed to Cadmium   总被引:3,自引:0,他引:3  
Radish (Raphanus sativus L. cv. Redondo Vermelho) seedlings were analysed by light and scanning electron microscopy to characterize the structural changes caused by the exposure to 0.5 or 1.0 mM cadmium chloride for 24, 48 and 72 h. The analyses showed changes in the anatomical and morphological characteristics of roots, stems and leaves of two-week-old seedlings. In all tissues, pressure potential was decreased. Premature death with the disintegration of the epidermis and an increase in the number of root hairs was observed in roots exposed to Cd. The stem of seedlings exposed to Cd exhibited more cells layers in the cambial region. The main effects observed in leaves in response to Cd were stomatal closure, lack of cell wall thickening and alterations in the shape of the chloroplasts. It is suggested that the structural changes observed in seedlings treated with Cd were mainly caused by a Cd-induced decrease in water uptake.  相似文献   

15.
    
A mutant called defective glycosylation1-1 (dgl1-1) was identified in Arabidopsis based on a growth defect of the dark-grown hypocotyl and an abnormal composition of the non-cellulosic cell wall polysaccharides. dgl1-1 is altered in a protein ortholog of human OST48 or yeast WBP1, an essential protein subunit of the oligosaccharyltransferase (OST) complex, which is responsible for the transfer in the ER of the N-linked glycan precursor onto Asn residues of candidate proteins. Consistent with the known function of the OST complex in eukaryotes, the dgl1-1 mutation led to a reduced N-linked glycosylation of the ER-resident protein disulfide isomerase. A second more severe mutant (dgl1-2) was embryo-lethal. Microscopic analysis of dgl1-1 revealed developmental defects including reduced cell elongation and the collapse and differentiation defects of cells in the central cylinder. These defects were accompanied by changes in the non-cellulosic polysaccharide composition, including the accumulation of ectopic callose. Interestingly, in contrast to other dwarf mutants that are altered in early steps of the N-glycan processing, dgl1-1 did not exhibit a cellulose deficiency. Together, these results confirm the role of DGL1 in N-linked glycosylation, cell growth and differentiation in plants.  相似文献   

16.
赤霉素不仅对植物的种子萌发、叶片伸展和开花结果有重要的影响, 而且在茎秆的发育过程中扮演关键的角色。它的生物合成受到多种酶的调控, 其中赤霉素3-氧化酶(GA3OX)是关键的限速酶, 备受重视。拟南芥AtGA3OX 基因由4个成员组成, 其中A3OX1 和 AtGA3OX2 基因在茎中超量表达, 可能与茎的发育有关。目前, 尚未见到AtGA3OX1、AtGA3OX2基因调控次生细胞壁增厚的报道。文章以拟南芥AtGA3OX1 和 AtGA3OX2 基因双突变体atga3ox1atga3ox2为材料, 系统研究了AtGA3OX1和AtGA3OX2 基因对次生细胞壁的影响。结果表明:同时突变 AtGA3OX1和AtGA3OX2基因不仅显著抑制了茎秆次生细胞壁纤维细胞的增厚(对导管细胞没有影响), 而且也明显降低了次生细胞壁3个组分(纤维素、半纤维素和木质素)的含量。利用实时荧光定量PCR (qRT-PCR) 进一步分析次生细胞壁3个组分生物合成基因及相关的转录因子的表达情况, 结果显示这些基因在双突变体中均受到显著影响, 表明拟南芥AtGA3OX1和 AtGA3OX2 基因可能是通过调控这些转录因子进而调控了次生细胞壁的加厚。研究结果为基因工程调控拟南芥AtGA3OX1、AtGA3OX2 基因(或其他物种同源基因), 进而增强粮食作物抗倒伏性和提高能源植物纤维生物质量提供了理论依据。  相似文献   

17.
    
Mutations in the TUMOROUS SHOOT DEVELOPMENT2 (TSD2) gene reduce cell adhesion, and in strongly affected individuals cause non-coordinated shoot development that leads to disorganized tumor-like growth in vitro. tsd2 mutants showed increased activity of axial meristems, reduced root growth and enhanced de-etiolation. The expression domains of the shoot meristem marker genes KNAT1 and KNAT2 were enlarged in the mutant background. Soil-grown tsd2 mutants were dwarfed, but overall showed morphology similar to that of the wild-type (WT). The TSD2 gene was identified by map-based cloning. It encodes a novel 684 amino acid polypeptide containing a single membrane-spanning domain in the N-terminal part and S-adenosyl-l-methionine binding and methyltransferase domains in the C-terminal part. Expression of a TSD2:GUS reporter gene was detected mainly in meristems and young tissues. A green fluorescent protein-tagged TSD2 protein localized to the Golgi apparatus. The cell-adhesion defects indicated altered pectin properties, and we hypothesize that TSD2 acts as a pectin methyltransferase. However, analyses of the cell-wall composition revealed no significant differences of the monosaccharide composition, the uronic acid content and the overall degree of pectin methylesterification between tsd2 and WT. The findings support a function of TSD2 as a methyltransferase, with an essential role in cell adhesion and coordinated plant development.  相似文献   

18.
Anthocyanin biosynthesis in Arabidopsis is a convenient and relatively simple model for investigating the basic principles of secondary metabolism regulation. In recent years, many publications have described links between anthocyanin biosynthesis and general defense reactions in plants as well as photomorphogenesis and hormonal signaling. These relationships are complex, and they cannot be understood intuitively. Upon observing the lacuna in the Arabidopsis interactome (an interaction map of the factors involved in the regulation of Arabidopsis secondary metabolism is not available), we attempted to connect various cellular processes that affect anthocyanin biosynthesis. In this review, we revealed the main signaling protein modules that regulate anthocyanin biosynthesis. To our knowledge, this is the first reconstruction of a network of proteins involved in plant secondary metabolism.  相似文献   

19.
    
Secondary walls in fibers and vessels are typically deposited in three distinct layers, which are formed by the successive re-orientation of cellulose microfibrils. Although cortical microtubules have been implicated in this process, the underlying mechanisms for the formation of three distinct wall layers are not known. The Fragile Fiber1 (FRA1) kinesin-like protein has been previously shown to be involved in the oriented deposition of cellulose microfibrils and important for cell wall strength in Arabidopsis thaliana. In the present report, we investigated the expression pattern of the FRA 1 gene and studied the effects of FRA1 overexpression on secondary wall deposition. The FRAI gene was found to be expressed not only in cells undergoing secondary wall deposition including developing interfascicular fibers and xylem cells, but also in dividing cells and expanding/elongating parenchyma cells. Overexpression of FRA1 caused a severe reduction in the thickness of secondary walls in interfascicular fibers and deformation of vessels, which are accompanied with a marked decrease in stem strength. Close examination of secondary walls revealed that unlike the wild-type walls having three typical layers with the middle layer being the thickest, the secondary walls in FRA1 overexpressors exhibited an increased number of layers, all of which had a similar width. Together, these results provide further evidence implicating an important role of the FRA1 kinesin-like protein in the ordered deposition of secondary walls, which determines the strength of fibers and vessels.  相似文献   

20.
    
Serine carboxypeptidase-like (SCPL) proteins have traditionally been assigned roles in the hydrolytic processing of proteins; however, several SCPL proteins have recently been identified as catalysts in transacylation reactions of plant secondary metabolism. The novel functions of these enzymes suggest a catalytic diversity for plant SCPL proteins that extends beyond simple hydrolysis reactions. Characterization of the Arabidopsis sng2 (sinapoylglucose accumulator 2) mutant has identified another SCPL protein involved in plant secondary metabolism. The sng2 mutant was isolated by screening seed extracts for altered levels of sinapate esters, a group of phenylpropanoid compounds found in Arabidopsis and some other members of the Brassicaceae. Homozygous sng2 seeds accumulate sinapoylglucose instead of sinapoylcholine, and have increased levels of choline and decreased activity of the enzyme sinapoylglucose:choline sinapoyltransferase (SCT). Cloning of the SNG2 gene by a combination of map-based and candidate gene approaches demonstrates that SCT is another member of the growing class of SCPL acyltransferases involved in plant secondary metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号