首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endosymbiont-bearing trypanosomatids present a typical kDNA arrangement, which is not well characterized. In the majority of trypanosomatids, the kinetoplast forms a bar-like structure containing tightly packed kDNA fibers. On the contrary, in trypanosomatids that harbor an endosymbiotic bacterium, the kDNA fibers are disposed in a looser arrangement that fills the kinetoplast matrix. In order to shed light on the kinetoplast structural organization in these protozoa, we used cytochemical and immunocytological approaches. Our results showed that in endosymbiont-containing species, DNA and basic proteins are distributed not only in the kDNA network, but also in the kinetoflagellar zone (KFZ), which corresponds to the region between the kDNA and the inner mitochondrial membrane nearest the flagellum. The presence of DNA in the KFZ is in accordance with the actual model of kDNA replication, whereas the detection of basic proteins in this region may be related to the basic character of the intramitochondrial filaments found in this area, which are part of the complex that connects the kDNA to the basal body. The kinetoplast structural organization of Bodo sp. was also analyzed, since this protozoan lacks the highly ordered kDNA-packaging characteristic of trypanosomatid and represents an evolutionary ancestral of the Trypanosomatidae family.  相似文献   

2.
We have examined the ultrastructural localization of U3 RNA in the nucleoli of HeLa and mouse 3T3 cells by in situ hybridization with a biotinylated U3 DNA probe and subsequent detection of hybrids with electron microscopy by direct immunogold labeling. The highest levels of signal density for U3 RNA are detected over the dense fibrillar component (DFC) of the nucleolus, including the interfaces between DFC and the enclosed fibrillar center (FC) on the one hand and DFC and the granular component (GC) on the other hand. Lower but significant signals also are observed over GC, which indicate, taking into account the high relative volume of GC in a nucleolus, that a substantial fraction of U3 RNA is present in this compartment where the more mature forms of pre-rRNA accumulate. In parallel, the localization of fibrillarin was analyzed by immunogold detection, demonstrating that fibrillarin and U3 RNA have a roughly similar distribution, although quantitative measurements reveal that the signal ratio for both molecules exhibit significant differences among the major ultrastructural components of the nucleolus.  相似文献   

3.
The editing of mRNA coding sequences by the modification, removal or addition of nucleotides has recently been recognized as another form of RNA processing. Studies of the extensive editing of mitochondrial mRNAs in trypanosomatids have revealed the involvement of small guide RNAs (gRNAs) which are encoded by the minicircles of kinetoplast DNA.  相似文献   

4.
We have studied topoisomerase II (topo II) in the cells of Bodo saltans, a free-living bodonid (Kinetoplastida). Phylogenetic analysis based on the sequence of the entire topo II gene, which is a single-copy gene, confirmed that B. saltans is a predecessor of parasitic trypanosomatids. Antibodies generated against either an overexpressed unique C-terminal region of topo II or a synthetic oligopeptide derived from the same region did not cross-react with cell lysates of related trypanosomatids, while they recognized a single specific band in the B. saltans lysate. Immunolocalization experiments using both antibodies showed that topo II is evenly dispersed throughout the kinetoplast. This is in striking difference from the localization of topo II in other flagellates, where it occurs in two antipodal centers flanking the kinetoplast disk. Moreover, the same topo II has a distinct localization in multiple loci at the periphery of the nucleus of B. saltans. With a minicircle probe derived from the conserved region we have shown that all relaxed non-catenated minicircles are confined to the globular kinetoplast DNA bundle. Therefore, in the mitochondrion of this primitive eukaryote topo II does not catenate relaxed DNA circles into a network in vivo, while a decatenating activity is present in partially purified cell lysates.  相似文献   

5.
Some trypanosomatids, such as Crithidia deanei, are endosymbiont-containing species. Aposymbiotic strains are obtained after antibiotic treatment, revealing interesting aspects of this symbiotic association. Ornithine decarboxylase (ODC) promotes polyamine biosynthesis and contributes to cell proliferation. Here, we show that ODC activity is higher in endosymbiont-bearing trypanosomatids than in aposymbiotic cells, but isolated endosymbionts did not display this enzyme activity. Intriguingly, expressed levels of ODC were similar in both strains, suggesting that ODC is positively modulated in endosymbiont-bearing cells. When the aposymbiotic strain was grown in conditioned medium, obtained after cultivation of the endosymbiont-bearing strain, cellular proliferation as well as ODC activity and localization were similar to that observed in the endosymbiont-containing trypanosomatids. Furthermore, dialyzed-heated medium and trypsin treatment reduced ODC activity of the aposymbiont strain. Taken together, these data indicate that the endosymbiont can enhance the protozoan ODC activity by providing factors of protein nature, which increase the host polyamine metabolism.  相似文献   

6.
Kinetoplast DNA from the order Kinetoplastidae (trypanosomatids) exists as large associations (molecular weight 4 × 1010), made up of about 104 small, probably circular, molecules, commonly known as ‘minicircles’. These minicircles were originally thought to be identical in base composition, suggesting that the coding capacity of kinetoplast DNA is very restricted. However, linear molecules have also been observed in preparations of kinetoplast DNA, which, if they contain unique sequences, could represent additional genetic information. This linear DNA has been assumed to be derived from the kinetoplast, but the possibility of it being nuclear contamination has not been definitely ruled out. Work presented in this paper demonstrates that nuclear DNA contamination may indeed be present in kinetoplast DNA prepared by a commonly used method.  相似文献   

7.
ABSTRACT. The restriction enzyme digestion of kinetoplast DNA from four Phytomonas serpens isolates shows an overall similar band pattern. One minicircle from isolate 30T was cloned and sequenced, showing low levels of homology but the same general features and organization as described for minicircles of other trypanosomatids. Extensive regions of the minicircle are composed by G and T on the H strand. These regions are very repetitive and similar to regions in a minicircle of Crithidia oncopelti and to telomeric sequences of Saccharomyces cerevisiae. Conserved Sequence Block 3, present in all trypanosomatids, is one nucleotide different from the consensus in P. serpens and provides a basis to differentiate P. serpens from other trypanosomatids. Electron microscopy of kinetoplast DNA evidenced a network with organization similar to other trypanosomatids and the measurement of minicircles confirmed the size of about 1.45 kb of the sequenced minicircle.  相似文献   

8.
To obtain additional information on the phylogenetic relationships within the family Trypanosomatidae (order Kinetoplastida), we have sequenced the small subunit ribosomal RNA genes from the endosymbiont containing species Herpetomonas roitmani TCC080, Herpetomonas sp. TCC263, Crithidia oncopelti ATCC 12982 and a partial large subunit rRNA gene from H. roitmani. The small subunit sequences in the two isolates of Herpetomonas are very similar but not identical, and so are their restriction digest profiles of kinetoplast DNA. The size of minicircles in both isolates is 4.2 kilobases. The inferred ribosomal RNA phylogenetic trees shows the genera Herpetomonas and Crithidia as polyphyletic. Endosymbiont-bearing herpetomonads cluster with the endosymbiont-bearing crithidias and a blastocrithidia to form a monophyletic clade, whereas the endosymbiont-free members of these genera are found elsewhere in the tree. These data support the hypothesis of a monophyletic origin of endosymbiosis in trypanosomatid evolution and also suggest that a taxonomic revision is needed in order to better describe the natural affinities in this family.  相似文献   

9.
Tryparedoxin I (TXNI) and tryparedoxin peroxidase (TXNPx), novel proteins isolated from Crithidia fasciculata, have been reported to reconstitute a trypanothione peroxidase activity in vitro (Nogoceke, E.; Gommel, D. U.; Kiess, M.; Kalisz, H. M.; Flohé, L. Biol. Chem. 378:827-836; 1997). Combined with trypanothione reductase, they may form an NADPH-fueled trypanothione-mediated defense system against hydroperoxides in the trypanosomatids. In situ confocal microscopy of antibody-stained TXNI and TXNPx and electron microscopy of the immunogold labeled proteins revealed their colocalization in the cytosol. Insignificant amounts of the enzymes were detected in the nucleus and vesicular structures, whereas the kinetoplast and the mitochondrion are virtually free of any label. Comparison of the PCR product sequences obtained with genomic and cDNA templates rules out any editing typical of kinetoplast mRNA. Sequence similarities with any of the established maxicircle genes of trypanosomatids were not detectable. It is concluded that both, TXNI as well as TXNPx are encoded by nuclear DNA and predominantly, if not exclusively localized in the cytosol. Working in concert with trypanothione reductase, they can function as an enzymatic system that reduces hydroperoxides at the expense of NADPH without any impairment of the flux of reduction equivalents by cellular compartmentation.  相似文献   

10.
Although the mitochondrial uridine insertion/deletion, guide RNA (gRNA)-mediated type of RNA editing has been described in Crithidia fasciculata, no evidence for the encoding of gRNAs in the kinetoplast minicircle DNA has been presented. There has also been a question as to the capacity of the minicircle DNA in this species to encode the required variety of gRNAs, because the kinetoplast DNA from the C1 strain has been reported as essentially containing a single minicircle sequence class. To address this problem, the genomic and mature edited sequences of the MURF4 and RPS12 cryptogenes were determined and a gRNA library was constructed from mitochondrial RNA. Five specific gRNAs were identified, two of which edit blocks within the MURF4 mRNA, and three of which edit blocks within the RPS12 mRNA. The genes for these gRNAs are all localized with identical polarity within one of the two variable regions of specific minicircle molecules, approximately 60 bp from the "bend" region. These minicircles were found to represent minor sequence classes representing approximately 2% of the minicircle DNA population in the network. The major minicircle sequence class also encodes a gRNA at the same relative genomic location, but the editing role of this gRNA was not determined. These results confirm that kinetoplast minicircle DNA molecules in this species encode gRNAs, as is the case in other trypanosomatids, and suggest that the copy number of specific minicircle sequence classes can vary dramatically without an overall effect on the RNA editing system.  相似文献   

11.
12.
A simple protocol is described for the silver staining of polyacrylamide gradient gels used for the separation of restriction fragments of kinetoplast DNA [schizodeme analysis of trypanosomatids (Morel et al., 1980)]. The method overcomes the problems of non-uniform staining and strong background color which are frequently encountered when conventional protocols for silver staining of linear gels are applied to gradient gels. The method described has proven to be of general applicability for DNA, RNA and protein separations in gradient gels.  相似文献   

13.
Despite extensive phylogenetic analysis of small subunit ribosomal RNA (SSUrRNA) genes, the deep-level relationships among kinetoplastids remain poorly understood, limiting our grasp of their evolutionary history, especially the origins of their bizarre mitochondrial genome organizations. In this study we examine the SSUrRNA data in the light of a new marker--cytoplasmic heat shock protein 90 (hsp90) sequences. Our phylogenetic analyses divide kinetoplastids into four main clades. Clades 1-3 include the various bodonid kinetoplastids. Trypanosomatids comprise the fourth clade. SSUrRNA analyses give vastly different and poorly supported positions for the root of the kinetoplastid tree, depending on the out-group and analysis method. This is probably due to the extraordinary length of the branch between kinetoplastids and any out-group. In contrast, almost all hsp90 analyses place the root between clade 1 (including Dimastigella, Rhynchomonas, several Bodo spp., and probably Rhynchobodo) and all other kinetoplastids. Maximum likelihood and maximum likelihood distance analyses of hsp90 protein and second codon-position nucleotides place trypanosomatids adjacent to Bodo saltans and Bodo cf. uncinatus (clade 3), as (weakly) do SSUrRNA analyses. Hsp90 first codon- plus second codon-position nucleotide analyses return a slightly different topology. We show that this may be an artifact caused, in part, by the different evolutionary behavior of first- and second-codon positions. This study provides the most robust evidence to date that trypanosomatids are descended from within bodonids and that B. saltans is a close relative of trypanosomatids. A total reevaluation of the high-level systematics within kinetoplastids is needed. We confirm that the interlocking network organization of kinetoplast DNA seen in trypanosomatids is a derived condition within kinetoplastids but suggest that open-conformation minicircles may have arisen early in kinetoplastid evolution. Further understanding of the evolution of kinetoplast structure and RNA editing is hampered by a paucity of data from basal (i.e., clade 1) bodonids.  相似文献   

14.
Whole cell DNA from Leishmania tropica has 2 peaks when banded by CsCl equilibrium density centrifugation. The main band has a buoyant density of 1.721 and the satellite band a buoyant density of 1.705, with Clostridium perfringens DNA (ρ= 1.6915) used as a reference. The satellite band has been identified as the kinetoplast DNA by purifying DNA from isolated kinetoplasts. L. tropica has the highest G + C content of both nuclear and kinetoplastic DNA thus far reported for trypanosomatids. The effects of ethidium bromide, acriflavin, proflavin, and 5-aminoacridine on the kinetoplast of L. tropica have been compared. Ethidium bromide and acriflavin, but not proflavin or 5-aminoacridine, induce dyskinetoplasty. L. tropica is one of the most sensitive trypanosomatids to ethidium bromide and acriflavin. Examination of the DNA from drug-treated cells in CsCl gradients revealed a loss of the satellite band after ethidium bromide or acriflavin treatment, but not after proflavin or 5-aminoacridine treatment. Cell division was required to produce these effects on the kinetoplast.  相似文献   

15.

Background  

The kinetoplast DNA (kDNA) of trypanosomatids consists of an unusual arrangement of circular molecules catenated into a single network. The diameter of the isolated kDNA network is similar to that of the entire cell. However, within the kinetoplast matrix, the kDNA is highly condensed. Studies in Crithidia fasciculata showed that kinetoplast-associated proteins (KAPs) are capable of condensing the kDNA network. However, little is known about the KAPs of Trypanosoma cruzi, a parasitic protozoon that shows distinct patterns of kDNA condensation during their complex morphogenetic development. In epimastigotes and amastigotes (replicating forms) the kDNA fibers are tightly packed into a disk-shaped kinetoplast, whereas trypomastigotes (non-replicating) present a more relaxed kDNA organization contained within a rounded structure. It is still unclear how the compact kinetoplast disk of epimastigotes is converted into a globular structure in the infective trypomastigotes.  相似文献   

16.
DNA replication mechanisms are poorly understood in most of trypanosomatids, in particular the replication of the peculiar mitochondrial DNA, the kinetoplast DNA (kDNA). To contribute to the knowledge on the mechanism of kDNA replication in Trypanosoma cruzi, we have previously characterized the Universal Minicircle Sequence Binding Protein of this parasite (TcUMSBP), which was first called PDZ5 [E.R. Coelho, T.P. Urmenyi, J. Franco da Silveira, E. Rondinelli, R. Silva, Identification of PDZ5, a candidate universal minicircle sequence binding protein of Trypanosoma cruzi, Int. J. Parasitol. 33 (2003) 853-858]. In this work, we describe two highly polymorphic alleles of the TcUMSBP locus in the T. cruzi reference clone CL Brener and the differential expression pattern of these alleles. A 62 bp sequence in the TcUMSBP upstream intergenic region in one of its alleles affects the efficiency of polycistronic RNA processing and the polyadenylation sites, and therefore regulates the differential expression of TcUMSBP alleles of this locus.  相似文献   

17.
The unusual structure of the kinetoplast DNA (kDNA) of trypanosomatids requires unique replication mechanisms. Deciphering the mechanisms that regulate the network assembly has been a challenge for many years. A better understanding of these processes was facilitated by recent studies on the fine structure of resting and replicating kDNA networks. In this review, Joseph Shlomai discusses our current view of the structural and mechanistic aspects of the assembly of kinetoplast DNA.  相似文献   

18.
Interaction experiments between hematophagous insects and monoxenous trypanosomatids have become relevant, once cases of human infection involving these protozoa have been reported. Moreover, investigations related to the interaction of insects with trypanosomatids that harbour an endosymbiotic bacterium and thereby lack the paraflagellar rod structure are important to elucidate the role of this structure in the adhesion process. In this work, we compared the interaction of endosymbiont-bearing trypanosomatids and their aposymbiotic counterpart strains (without endosymbionts) with cell lines of Anopheles gambiae, Aedes albopictus and Lutzomyia longipalpis and with explanted guts of the respective insects. Endosymbiont-bearing strains interacted better with insect cells and guts when compared with aposymbiotic strains. In vitro binding assays revealed that the trypanosomatids interacted with the gut epithelial cells via flagellum and cell body. Flagella attached to the insect gut were enlarged, containing electrondense filaments between the axoneme and flagellar membrane at the point of adhesion. Interactions involving the flagellum lacking paraflagellar rod structure were mainly observed close to tight junctions, between epithelial cells. Endosymbiont-bearing trypanosomatids were able to colonise Aedes aegypti guts after protozoa feeding.  相似文献   

19.
The putative nucleolus in Saccharomyces cerevisiae is visible in electron micrographs as a darkly stained, crescent-shaped structure associated with the nuclear envelope. The haploid yeast genome contains 100 200 tandem copies of a 9.1 kb ribosomal DNA (rDNA) repeat predicted to reside in this structure. We combined in situ hybridization of non-isotopically labeled probes to isolated S. cerevisiae nuclei with immunogold detection to localize rDNA and rRNA precursor sequences in nuclei at the electron microscope (EM) level. Gold particles are restricted to defined regions of nuclei which appear more electron dense than the bulk of the nucleus and which generally exhibit the crescent shape typical of the structure thought to be the nucleolus. In addition, snR17, the yeast homolog of mammalian U3, a nucleolar-restricted small nuclear RNA (snRNA), was localized to the same electron dense region of the nucleus. These data, in conjunction with published immunofluorescent localizations of nucleolarassociated antigens, provide definitive proof that the dense crescent is the nucleolus. Finally, the technique described is applicable to probing nuclear organization in a genetically manipulable system.Abbreviations snRNA small nuclear RNA - AAF N-acetoxy-2-acetyl-aminofluorence by M.L. Pardue  相似文献   

20.
Newly replicated duplex DNA minicircles of trypanosomal kinetoplast DNA are nicked in both their monomeric and catenated topological states, whereas mature ones are covalently sealed. The possibility that nicking may play a role during kinetoplast DNA replication by affecting the topological interconversions of monomeric DNA minicircles and catenane networks was studied here in vitro using Crithidia fasciculata DNA topoisomerase. An enzyme that catalyzes the nicking of duplex DNA circles has been purified to apparent homogeneity from C. fasciculata cell extracts. The native enzyme has a sedimentation coefficient of 6.8 S and was found to be a dimer with a protomer Mr = 60,000. Nicking of kinetoplast DNA networks by the purified enzyme inhibits their decatenation by the Crithidia DNA topoisomerase but has no effect on the catenation of monomeric DNA minicircles into networks. This differential effect on decatenation versus catenation is specific to the purified nicking enzyme. Random nicking of interlocked DNA minicircles has no detectable effect on the reversibility of the topological reaction. The potential role of Crithidia nicking enzyme in the replication of kinetoplast DNA networks in trypanosomatids is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号