首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The ferric binding protein (FbpA) transports iron across the periplasmic space of certain Gram-negative bacteria and is an important component involved in iron acquisition by pathogenic Neisseria spp. (Neisseria gonorrheae and Neisseria meningitidis). Previous work has demonstrated that the synergistic anion, required for tight Fe(3+) sequestration by FbpA, also plays a key role in inserting Fe(3+) into the FbpA binding site. Here, we investigate the iron release process from various forms of holo-FbpA, Fe(3+)FbpA-X, during the course of a chelator competition reaction using EDTA and Tiron. Fe(3+)FbpA-X represents the protein assembly complex with different synergistic anions, X = PO(4)(3)(-) and NTA. Stepwise mechanisms of Fe(3+) release are proposed on the basis of kinetic profiles of these chelator competition reactions. Fe(3+)FbpA-PO(4) and Fe(3+)FbpA-NTA react differently with EDTA and Tiron during the Fe(3+)-exchange process. EDTA replaces PO(4)(3)(-) and NTA from the first coordination shell of Fe(3+) and acts as a synergistic anion to give a spectroscopically distinguishable intermediate, Fe(3+)FbpA-EDTA, prior to pulling Fe(3+) out of the protein. Tiron, on the other hand, does not act as a synergistic anion but is a more efficient competing chelator as it removes Fe(3+) from FbpA at rate much faster than EDTA. These results reaffirm the contribution of the synergistic anion to the FbpA iron transport process as the anion, in addition to playing a facilitative role in iron binding, appears to have a "gatekeeper" role, thereby modulating the Fe(3+) release process.  相似文献   

2.
SUPREX (stability of unpurified proteins from rates of H/D exchange) is a H/D exchange- and matrix-assisted laser desorption/ionization (MALDI)-based technique for characterizing the equilibrium unfolding/refolding properties of proteins and protein-ligand complexes. Here, we describe the application of SUPREX to the thermodynamic analysis of synergistic anion binding to iron-loaded ferric-binding protein (Fe(3+)FbpA-X, X = synergistic anion). The in vivo function of FbpA is to transport unchelated Fe(3+) across the periplasmic space of certain Gram-negative bacteria, a process that requires simultaneous binding of a synergistic anion. Our results indicate that Fe(3+)FbpA-X is not a so-called "ideal" protein system for SUPREX analyses because it does not exhibit two-state folding properties and it does not exhibit EX2 H/D exchange behavior. However, despite these nonideal properties of the Fe(3+)FbpA-X protein-folding/unfolding reaction, we demonstrate that the SUPREX technique is still amenable to the quantitative thermodynamic analysis of synergistic anion binding to Fe(3+)FbpA. As part of this work, the SUPREX technique was used to evaluate the DeltaDeltaG(f) values of four synergistic anion-containing complexes of Fe(3+)FbpA (i.e., Fe(3+)FbpA-PO(4), Fe(3+)FbpA-citrate, Fe(3+)FbpA-AsO(4), and Fe(3+)FbpA-SO(4)). The DeltaDeltaG(f) value obtained for Fe(3+)FbpA-citrate relative to Fe(3+)FbpA-PO(4) (1.45 +/- 0.44 kcal/mol), is in good agreement with that reported previously (1.98 kcal/mol). The value obtained for Fe(3+)FbpA-AsO(4) (0.58 +/- 0.45 kcal/mol) was also consistent with that reported previously (0.68 kcal/mol), but the measurement error is very close to the magnitude of the value. This work (i) demonstrates the utility of the SUPREX method for studying anion binding by FbpA, (ii) provides the first evaluation of a DeltaDeltaG(f) value for Fe(3+)FbpA-SO(4), -1.43 +/- 0.17 kcal/mol, and (iii) helps substantiate our hypothesis that the synergistic anion plays a role in controlling the lability of iron bound to FbpA in the transport process.  相似文献   

3.
The obligate human pathogens Haemophilus influenzae, Neisseria gonorrhoeae, and N. meningitidis utilize a highly conserved, three-protein ATP-binding cassette transporter (FbpABC) to shuttle free Fe(3+) from the periplasm and across the cytoplasmic membrane. The periplasmic binding protein, ferric binding protein (FbpA), is capable of transporting other trivalent cations, including Ga(3+), which, unlike Fe(3+), is not redox-active. Because of a similar size and charge as Fe(3+), Ga(3+) is widely used as a non-redox-active Fe(3+) substitute for studying metal complexation in proteins and bacterial populations. The investigations reported here elucidate the similarities and differences in FbpA sequestration of Ga(3+) and Fe(3+), focusing on metal selectivity and the resulting transport function. The thermodynamic binding constant for Ga(3+) complexed with FbpA at pH 6.5, in 50 mM 4-morpholineethanesulfonic acid, 200 mM KCl, 5 mM KH(2)PO(4) was determined by UV-difference spectroscopy as [Formula: see text] This represents a 10(5)-fold weaker binding relative to Fe(3+) at identical conditions. The unfolding/refolding behavior of Ga(3+) and Fe(3+) holo-FbpA were also studied using a matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy technique, stability of unpurified proteins from rates of H/D exchange (SUPREX). This analysis indicates significant differences between Fe(3+) and Ga(3+) sequestration with regard to protein folding behavior. A series of kinetic experiments established the lability of the Ga(3+)FbpA-PO(4) assembly, and the similarities/differences of stepwise loading of Fe(3+) into apo- or Ga(3+)-loaded FbpA. These biophysical characterization data are used to interpret FbpA-mediated Ga(3+) transport and toxicity in cell culture studies.  相似文献   

4.
Ferric binding protein, FbpA, is a member of the transferrin superfamily whose function is to move an essential nutrient, iron, across the periplasm and into the cytosol through formation of a ternary complex containing Fe (3+) and a synergistic anion, X. Here we utilize SUPREX ( stability of unpurified proteins from rates of H/D exchange) to determine the identification and distribution of the synergistic anion in FeFbpA-X species in periplasmic preparations from Gram-negative bacteria. SUPREX is a mass spectrometry-based technique uniquely suited for thermodynamic analyses of protein-ligand complexes in complex biological mixtures such as periplasmic preparations. Model binary mixtures of FeFbpA-Cit and FeFbpA-PO 4 were initially characterized by SUPREX due to the likely presence of citrate and phosphate ions in the periplasm. Ex vivo SUPREX analyses were performed on FeFbpA-X species overexpressed in an Escherichia coli cell line and on endogenous FeFbpA-X species in Neisseria gonorrheae. Detected in the E. coli periplasmic extract were two distinct populations of FbpA, including one in which the protein was unliganded (i.e., apoFbpA) and one in which the protein was bound to iron and the synergistic anion, phosphate (i.e., FeFbpA-PO 4). FeFbpA-PO 4 was the only population of FbpA molecules detected in the N. gonorrheae periplasmic extract. This work provides the first determination of the identity of the in vivo anion bound to FeFbpA-X in the periplasm and substantiates the hypothesis that the synergistic anion plays a structural and functional role in FbpA-mediated transport of iron across the periplasm and into the cytosol.  相似文献   

5.
The Fe(3+) binding site of recombinant nFbp, a ferric-binding protein found in the periplasmic space of pathogenic Neisseria, has been characterized by physicochemical techniques. An effective Fe(3+) binding constant in the presence of 350 microm phosphate at pH 6.5 and 25 degrees C was determined as 2.4 x 10(18) m(-1). EPR spectra for the recombinant Fe(3+)nFbp gave g' = 4.3 and 9 signals characteristic of high spin Fe(3+) in a strong ligand field of low (orthorhombic) symmetry. (31)P NMR experiments demonstrated the presence of bound phosphate in the holo form of nFbp and showed that phosphate can be dialyzed away in the absence of Fe(3+) in apo-nFbp. Finally, an uncorrected Fe(3+/2+) redox potential for Fe-nFbp was determined to be -290 mV (NHE) at pH 6.5, 20 degrees C. Whereas our findings show that nFbp and mammalian transferrin have similar Fe(3+) binding constants and EPR spectra, they differ greatly in their redox potentials. This has implications for the mechanism of Fe transport across the periplasmic space of Gram-negative bacteria.  相似文献   

6.
Pathogenic Haemophilus influenzae, Neisseria spp. (Neisseria gonorrhoeae and N. meningitidis), Serratia marcescens, and other gram-negative bacteria utilize a periplasm-to-cytosol FbpABC iron transporter. In this study, we investigated the H. influenzae FbpABC transporter in a siderophore-deficient Escherichia coli background to assess biochemical aspects of FbpABC transporter function. Using a radiolabeled Fe3+ transport assay, we established an apparent Km=0.9 microM and Vmax=1.8 pmol/10(7)cells/min for FbpABC-mediated transport. Complementation experiments showed that hFbpABC is dependent on the FbpA binding protein for transport. The ATPase inhibitor sodium orthovanadate demonstrated dose-dependent inhibition of FbpABC transport, while the protonmotive-force-inhibitor carbonyl cyanide m-chlorophenyl hydrazone had no effect. Metal competition experiments demonstrated that the transporter has high specificity for Fe3+ and selectivity for trivalent metals, including Ga3+ and Al3+, over divalent metals. Metal sensitivity experiments showed that several divalent metals, including copper, nickel, and zinc, exhibited general toxicity towards E. coli. Significantly, gallium-induced toxicity was specific only to E. coli expressing FbpABC. A single-amino-acid mutation in the gene encoding the periplasmic binding protein, FbpA(Y196I), resulted in a greatly diminished iron binding affinity Kd=5.2 x 10(-4) M(-1), approximately 14 orders of magnitude weaker than that of the wild-type protein. Surprisingly, the mutant transporter [FbpA(Y196I)BC] exhibited substantial transport activity, approximately 35% of wild-type transport, with Km=1.2 microM and Vmax=0.5 pmol/10(7)cells/min. We conclude that the FbpABC complexes possess basic characteristics representative of the family of bacterial binding protein-dependent ABC transporters. However, the specificity and high-affinity binding characteristics suggest that the FbpABC transporters function as specialized transporters satisfying the strict chemical requirements of ferric iron (Fe3+) binding and membrane transport.  相似文献   

7.
The crystal structure of the iron-free (apo) form of the Haemophilus influenzae Fe(3+)-binding protein (hFbp) has been determined to 1.75 A resolution. Information from this structure complements that derived from the holo structure with respect to the delineation of the process of iron binding and release. A 21 degrees rotation separates the two structural domains when the apo form is compared with the holo conformer, indicating that upon release of iron, the protein undergoes a change in conformation by bending about the central beta-sheet hinge. A surprising finding in the apo-hFbp structure was that the ternary binding site anion, observed in the crystals as phosphate, remained bound. In solution, apo-hFbp bound phosphate with an affinity K(d) of 2.3 x 10(-3) M. The presence of this ternary binding site anion appears to arrange the C-terminal iron-binding residues conducive to complementary binding to Fe(3+), while residues in the N-terminal binding domain must undergo induced fit to accommodate the Fe(3+) ligand. These observations suggest a binding process, the first step of which is the binding of a synergistic anion such as phosphate to the C-terminal domain. Next, iron binds to the preordered half-site on the C-terminal domain. Finally, the presence of iron organizes the N-terminal half-site and closes the interdomain hinge. The use of the synergistic anion and this iron binding process results in an extremely high affinity of the Fe(3+)-binding proteins for Fe(3+) (nFbp K'(eff) = 2.4 x 10(18) M(-1)). This high-affinity ligand binding process is unique among the family of bacterial periplasmic binding proteins and has interesting implications in the mechanism of iron removal from the Fe(3+)-binding proteins during FbpABC-mediated iron transport across the cytoplasmic membrane.  相似文献   

8.
M W Pinkse  M Merkx  B A Averill 《Biochemistry》1999,38(31):9926-9936
Purple acid phosphatases (PAPs) employ a dinuclear Fe(3+)Fe(2+) or Fe(3+)Zn(2+) center to catalyze the hydrolysis of phosphate monoesters. The interaction of fluoride with bovine spleen purple acid phosphatase (BSPAP) has been studied using a combination of steady-state kinetics and spectroscopic methods. For FeZn-BSPAP, the nature of the inhibition changes from noncompetitive at pH 6.5 (K(i(comp)) approximately K(i(uncomp)) approximately 2 mM) to uncompetitive at pH 5.0 (K(i(uncomp)) = 0.2 mM). The inhibition constant for AlZn-BSPAP at pH 5.0 (K(i) = 3 microM) is approximately 50-70-fold lower than that observed for both FeZn-BSAP and GaZn-BSPAP, suggesting that fluoride binds to the trivalent metal. Fluoride binding to the enzyme-substrate complex was found to be remarkably slow; hence, the kinetics of fluoride binding were studied in some detail for FeZn-, AlZn-, and FeFe-BSPAP at pH 5.0 and for FeZn-BSPAP at pH 6.5. Since the enzyme kinetics studies indicated the formation of a ternary enzyme-substrate-fluoride complex, the binding of fluoride to FeZn-BSPAP was studied using optical and EPR spectroscopies, both in the presence and absence of phosphate. The characteristic optical and EPR spectra of FeZn-BSPAP. F and FeZn-BSPAP.PO(4).F are similar at pH 5.0 and pH 6.5, indicating the formation of similar fluoride complexes at both pHs. A structural model for the ternary enzyme-(substrate/phosphate)-fluoride complexes is proposed that can explain the results from both the spectroscopic and the enzyme kinetics experiments. In this model, fluoride binds to the trivalent metal replacing the water/hydroxide ligand that is essential for the hydrolysis reaction to take place, while phosphate or the phosphate ester coordinates to the divalent metal ion.  相似文献   

9.
Lassila JK  Herschlag D 《Biochemistry》2008,47(48):12853-12859
The nucleotide phosphodiesterase/pyrophosphatase from Xanthomonas axonopodis (NPP) is a structural and evolutionary relative of alkaline phosphatase that preferentially hydrolyzes phosphate diesters. With the goal of understanding how these two enzymes with nearly identical Zn(2+) bimetallo sites achieve high selectivity for hydrolysis of either phosphate monoesters or diesters, we have measured a promiscuous sulfatase activity in NPP. Sulfate esters are nearly isosteric with phosphate esters but carry less charge, offering a probe of electrostatic contributions to selectivity. NPP exhibits sulfatase activity with k(cat)/K(M) value of 2 x 10(-5) M(-1) s(-1), similar to the R166S mutant of alkaline phosphatase. We further report the effects of thio-substitution on phosphate monoester and diester reactions. Reactivities with these noncognate substrates illustrate a reduced dependence of NPP reactivity on the charge of the nonbridging oxygen situated between the Zn(2+) ions relative to that in alkaline phosphatase. This reduced charge dependence can explain about 10(2) of the 10(7)-fold differential catalytic proficiency for the most similar monoester and diester substrates in the two enzymes. The results further suggest that active site contacts to substrate oxygen atoms that do not contact the Zn(2+) ions may play an important role in defining the selectivity of the enzymes.  相似文献   

10.
Iron transport across the periplasmic space to the cytoplasmic membrane of certain Gram-negative bacteria is mediated by a ferric binding protein (Fbp). This requires Fe(3+) loading of Fbp at the inner leaflet of the outer membrane. A synergistic anion is required for tight Fe(3+) sequestration by Fbp. Although phosphate fills this role in the protein isolated from bacterial cell lysates, nitrilotriacetate anion (NTA) can also satisfy this requirement in vitro. Here, we report the kinetics and mechanism of Fe(3+) loading of Fbp from Fe(NTA)(aq) in the presence of phosphate at pH 6.5. The reaction proceeds in four kinetically distinguishable steps to produce Fe(3+)Fbp(PO(4)) as a final product. The first three steps exhibit half-lives ranging from ca. 20 ms to 0.5 min, depending on the concentrations, and produce Fe(3+)Fbp(NTA) as an intermediate product of significant stability. The rate for the first step is accelerated with an increasing phosphate concentration, while that of the third step is retarded by phosphate. Conversion of Fe(3+)Fbp(NTA) to Fe(3+)Fbp(PO(4)) in the fourth step is a slow process (half-life approximately 2 h) and is facilitated by free phosphate. A mechanism for the Fe(3+)-loading process is proposed in which the synergistic anions, phosphate and NTA, play key roles. These data suggest that not only is a synergistic anion required for tight Fe(3+) sequestration by Fbp, but also the synergistic anion plays a critical role in the process of inserting Fe(3+) into the Fbp binding site.  相似文献   

11.
The acquisition of iron from transferrin by Gram-negative bacterial pathogens is dependent on a periplasmic ferric-ion-binding protein, FbpA. FbpA shuttles iron from the outer membrane to an inner membrane transport complex. A bound phosphate anion completes the iron co-ordination shell of FbpA and kinetic studies demonstrate that the anion plays a critical role in iron binding and release in vitro. The present study was initiated to directly address the hypothesis that the synergistic anion is required for transport of iron in intact cells. A series of site-directed mutants in the anion-binding amino acids of the Haemophilus influenzae FbpA (Gln-58, Asn-175 and Asn-193) were prepared to provide proteins defective in binding of the phosphate anion. Crystal structures of various mutants have revealed that alteration of the C-terminal domain ligands (Asn-175 or Asn-193) but not the N-terminal domain ligand (Gln-58) abrogated binding of the phosphate anion. The mutant proteins were introduced into H. influenzae to evaluate their ability to mediate iron transport. All of the single site-directed mutants (Q58L, N175L and N193L) were capable of mediating iron acquisition from transferrin and from limiting concentrations of ferric citrate. The results suggest that the transport of iron by FbpA is not dependent on binding of phosphate in the synergistic anion-binding site.  相似文献   

12.
The periplasmic iron binding protein of pathogenic Gram-negative bacteria performs an essential role in iron acquisition from transferrin and other iron sources. Structural analysis of this protein from Haemophilus influenzae identified four amino acids that ligand the bound iron: His(9), Glu(57), Tyr(195), and Tyr(196). A phosphate provides an additional ligand, and the presence of a water molecule is required to complete the octahedral geometry for stable iron binding. We report the 1.14-A resolution crystal structure of the iron-loaded form of the H. influenzae periplasmic ferric ion binding protein (FbpA) mutant H9Q. This protein was produced in the periplasm of Escherichia coli and, after purification and conversion to the apo form, was iron-loaded. H9Q is able to bind ferric iron in an open conformation. A surprising finding in the present high resolution structure is the presence of EDTA located at the previously determined anion ternary binding site, where phosphate is located in the wild type holo and apo structures. EDTA contributes four of the six coordinating ligands for iron, with two Tyr residues, 195 and 196, completing the coordination. This is the first example of a metal binding protein with a bound metal.EDTA complex. The results suggest that FbpA may have the ability to bind and transport iron bound to biological chelators, in addition to bare ferric iron.  相似文献   

13.
The vanadate inhibition of the Ca(2+)-ATPase activity was analysed both in intact sarcoplasmic reticulum vesicles and in the presence of low concentrations of Tween 20, using ATP and p-nitrophenyl phosphate as substrates. The saturation of the internal low-affinity calcium-binding sites protects the enzyme against vanadate inhibition, because: (1) p-nitrophenyl phosphate hydrolysis is not inhibited by vanadate in intact vesicles, but inhibition developed after solubilization with detergents; (2) the vanadate inhibition of the p-nitrophenyl phosphate hydrolysis in solubilized preparations is prevented by free Ca2+ concentrations higher than 10(-3) M and vanadate competes with calcium (10(-5)-10(-3) M); and (3) the vanadate inhibition of ATP hydrolysis is decreased with an increase in vesicular Ca2+ concentration. The presence of magnesium ions is indispensable for the vanadate effect. The vanadate inhibition is non-competitive with respect to Mg-p-nitrophenyl phosphate and uncompetitive with respect to Mg-ATP. However, in the presence of dimethyl sulfoxide, which facilitates phosphorylation of the enzyme, the inhibition is converted to a competitive one with respect to a substrate. The results suggest, that in the process of enzyme operation vanadate interacts with the unliganded E form of Ca(2+)-ATPase, occupying probably an intermediate position between the E2 and E1 forms, with the formation of an E2 Van complex, that imposes the inhibition on the Ca(2+)-ATPase activity.  相似文献   

14.
Isothermal calorimetric studies of the binding of iron(III) citrate to ferric ion binding protein from Neisseria gonorrhoeae suggested the complexation of a tetranuclear iron(III) cluster as a single step binding event (apparent binding constant K(app) (ITC) = 6.0(5) × 10(5) M(-1)). High-resolution Fourier transform ion cyclotron resonance mass spectrometric data supported the binding of a tetranuclear oxo(hydroxo) iron(III) cluster of formula [Fe(4)O(2)(OH)(4)(H(2)O)(cit)](+) in the interdomain binding cleft of FbpA. The mutant H9Y-nFbpA showed a twofold increase in the apparent binding constant [K(app) (ITC) = 1.1(7) × 10(6) M(-1)] for the tetranuclear iron(III) cluster compared to the wild-type protein. M?ssbauer spectra of Escherichia coli cells overexpressing FbpA and cultured in the presence of added (57)Fe citrate were indicative of the presence of dinuclear and polynuclear clusters. FbpA therefore appears to have a strong affinity for iron clusters in iron-rich environments, a property which might endow the protein with new biological functions.  相似文献   

15.

Background

Gram negative bacteria require iron for growth and virulence. It has been shown that certain pathogenic bacteria such as Neisseria gonorrhoeae possess a periplasmic protein called ferric binding protein (FbpA), which is a node in the transport of iron from the cell exterior to the cytosol.

Scope of review

The relevant literature is reviewed which establishes the molecular mechanism of FbpA mediated iron transport across the periplasm to the inner membrane.

Major conclusions

Here we establish that FbpA may be considered a bacterial transferrin on structural and functional grounds. Data are presented which suggest a continuum whereby FbpA may be considered as a naked iron carrier, as well as a Fe–chelate carrier, and finally a member of the larger family of periplasmic binding proteins.

General significance

An investigation of the molecular mechanisms of action of FbpA as a member of the transferrin super family enhances our understanding of bacterial mechanisms for acquisition of the essential nutrient iron, as well as the modes of action of human transferrin, and may provide approaches to the control of pathogenic diseases. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.  相似文献   

16.
1. The intrinsic Na(+), K(+), Mg(2+) and Ca(2+) contents of a preparation of membrane fragments from ox brain were determined by emission flame photometry. 2. Centrifugal washing of the preparation with imidazole-buffered EDTA solutions decreased the bound Na(+) from 90+/-20 to 24+/-12, the bound K(+) from 27+/-3 to 7+/-2, the bound Mg(2+) from 20+/-2 to 3+/-1 and the bound calcium from 8+/-1 to <1nmol/mg of protein. 3. The activities of the Na(+)+K(+)+Mg(2+)-stimulated adenosine triphosphatase and the Na(+)-dependent reaction forming bound phosphate were compared in the unwashed and washed preparations at an ATP concentration of 2.5mum (ATP/protein ratio 12.5pmol/mug). 4. The Na(+)-dependent hydrolysis of ATP as well as the plateau concentration of bound phosphate and the rate of dephosphorylation were decreased in the washed preparation. The time-course of formation and decline of bound phosphate was fully restored by the addition of 2.5mum-magnesium chloride and 2mum-potassium chloride. Addition of 2.5mum-magnesium chloride alone fully restored the plateau concentration of bound phosphate, but the rate of dephosphorylation was only slightly increased. Na(+)-dependent ATP hydrolysis was partly restored with 2.5mum-magnesium chloride; addition of K(+) in the range 2-10mum-potassium chloride then further restored hydrolysis but not to the control rate. 5. Pretreatment of the washed preparation at 0 degrees C with 0.5nmol of K(+)/mg of protein so that the final added K(+) in the reaction mixture was 0.1mum restored the Na(+)-dependent hydrolysis of ATP and the time-course of the reaction forming bound phosphate. 6. The binding of [(42)K]potassium chloride by the washed membrane preparation was examined. Binding in a solution containing 10nmol of K(+)/mg of protein was linear over a period of 20min and was inhibited by Na(+). Half-maximal inhibition of (42)K(+)-binding required a 100-fold excess of sodium chloride. 7. It was concluded (a) that a significant fraction of the apparent Na(+)-dependent hydrolysis of ATP observed in the unwashed preparation is due to activation by bound K(+) and Mg(2+) of the Na(+)+K(+)+Mg(2+)-stimulated adenosine triphosphatase system and (b) that the enzyme system is able to bind K(+) from a solution of 0.5mum-potassium chloride.  相似文献   

17.
The rapid expansion of the amount of genomic and structural data has provided many examples of enzymes with evolutionarily related active sites that catalyze different reactions. Functional comparisons of these active sites can provide insight into the origins of the enormous catalytic proficiency of enzymes and the evolutionary changes that can lead to different enzyme activities. The alkaline phosphatase (AP) superfamily is an ideal system to use in making such comparisons given the extensive data available on both nonenzymatic and enzymatic phosphoryl transfer reactions. Some superfamily members, such as AP itself, preferentially hydrolyze phosphate monoesters, whereas others, such as nucleotide pyrophosphatase/phosphodiesterase (NPP), preferentially hydrolyze phosphate diesters. We have measured rate constants for NPP-catalyzed hydrolysis of phosphate diesters and monoesters. NPP preferentially catalyzes diester hydrolysis by factors of 10(2)-10(6), depending on the identity of the diester substrate. To identify features of the NPP active site that could lead to preferential phosphate diester hydrolysis, we have determined the structure of NPP in the absence of ligands and in complexes with vanadate and AMP. Comparisons to existing structures of AP reveal bimetallo cores that are structurally indistinguishable, but there are several distinct structural features outside of the conserved bimetallo site. The structural and functional data together suggest that some of these distinct functional groups provide specific substrate binding interactions, whereas others tune the properties of the bimetallo active site itself to discriminate between phosphate diester and monoester substrates.  相似文献   

18.
Zha S  Xu X  Hu H 《FEMS microbiology letters》2012,334(2):135-142
A Nostoc sp. PCC 7120 iron bioreporter containing iron-regulated schizokinen transporter gene alr0397 promoter fused to the luxAB genes was examined to optimize its response to bioavailable iron. Dose-response relationships between luciferase activity and free ferric ion (Fe(3+) ) concentrations pFe (-lg [Fe(3+) ]) were generated by measuring luciferase activities of the bioreporter in trace metal-buffered Fraquil medium with various incubation times. The results were best demonstrated by sigmoidal curves (pFe 18.8-21.7, Fe(3+) =?10(-18.8) -10(-21.7) M) with the linear range extending from pFe 19.6-21.5 (Fe(3+) =?10(-19.6) -10(-21.5) M) after a 12-h incubation time. Optimal conditions for the use of this bioreporter to sense the iron bioavailability were determined to be: a 12-h exposure time, initial cell density of OD(730?nm) =?0.06, high nitrate (100?μM), high phosphate (10?μM), moderate Co(2+) (0.1-22.5?nM), Zn(2+) (0.16-12?nM), Cu(2+) (0.04-50?nM), and wide range of Mn(2+) concentration (0.92-2300?nM). The applicability of using this iron bioreporter to assess iron availability in the natural environment has been tested using water samples from eutrophic Taihu, Donghu, and Chaohu lakes. It is indicated that the bioreporter is a useful tool to assess bioavailable iron in various water quality samples, especially in eutrophic lakes with high bioavailable iron.  相似文献   

19.
Zinc(II) complex with histidine-containing pseudopeptide derived from N,N'-bis(benzylhistidyl) diethylenetriamine L was examined as catalyst for the hydrolysis of bis(p-nitrophenyl) phosphate (BNPP), p-nitrophenyl phosphate (NPP), adenylyl-(3'-5')adenosine (ApA), thymidylyl-(3'-5') thymidine (TpT) and PBR 322 supercoiled DNA. The stepwise protonation constants of the ligand, stability constants for its zinc(II) complex LZn have been determined potentiometrically in aqueous solution. LZn efficiently hydrolyzed BNPP and NPP and their pseudo-first-order rate constants k(obs) are 1.1 x 10(-5) s(-1) and 2.1 x 10(-5) s(-1), respectively. Bell-shaped pH-k(obs) profile was seen in BNPP hydrolysis around pH 7. Kinetic parameters were obtained from temperature dependence of hydrolysis rate constants where entropy of activation showed considerably high negative value. ApA and TpT as RNA-type and DNA-type dinucleotides were slowly hydrolyzed by LZn. On the basis of the kinetic evidence of bell-shaped pH-k(obs) profile and species distribution curve, we propose a mechanism for LZn-promoted hydrolysis of BNPP as well as ApA where cooperative achieve of zinc-hydroxo and zinc-aqua complex species may be responsible for enzymatic activity. The agarose gel electrophoresis and AFM demonstrated that LZn performed good activity on the selective cleavage of pBR322 supercoiled DNA at pH 7.0 providing evidence for its probable applicability.  相似文献   

20.
The effects of Fe(3+) and Fe(2+) on molecular models of biomembranes were investigated. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and of dimyristoylphosphatidylethanolamine (DMPE), classes of phospholipids located in the outer and inner moieties of cell membranes, respectively. X-ray studies showed that very low concentrations of Fe(3+) affected DMPC organization and 10(-3)M induced a total loss of its multilamellar periodic stacking. Experiments carried out with Fe(2+) on DMPC showed weaker effects than those induced by Fe(3+) ions. Similar experiments were performed on DMPE bilayers. Fe(3+) from 10(-7)M up to 10(-4)M had practically no effect on DMPE structure. However, 10(-3)M Fe(3+) induced a deep perturbation of the multilamellar structure of DMPE. However, 10(-3)M Fe(2+) had no effect on DMPE organization practically. Differential scanning calorimetry measurements also revealed different effects of Fe(3+) and Fe(2+) on the phase transition and other thermal properties of the examined lipids. In conclusion, the results obtained indicate that iron ions interact with phospholipid bilayers perturbing their structures. These findings are consistent with the observation that iron ions change cell membrane fluidity and, therefore, affect its functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号