首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Molecular-mechanical simulations have been carried out on “mismatched base” analogs of the DNA double-helical structure d(CGCGAATTCGCG)2, in which the base pairs CG at the 3 and 10 positions have been replaced by CA, AG, TC, and TG base pairs, as well as an insertion analog in which an extra adenine has been incorporated into one strand of the above structure between bases 3 and 4. The results of these simulations (calculated relative stabilities, structures, and nmr ring-current shifts) have been compared with calorimetric and nmr data. The calculated relative stabilities of the double-helical parent dodecamer and the various “wobble” base pairs qualitatively correlate with the experimental melting temperatures. The base-pairing structure for the GT wobble pair is in agreement with that previously determined from nmr experiments. For the GA base pair, the structure with both bases anti has a slightly more favorable energy from base pairing and stacking than a structure with non-Watson-Crick H-bonding with adenine syn, in agreement with nmr experiments. The CA wobble base is calculated to favor an adenine 6NH2 …? cytosine N3 H-bond over cytosine 4NH2 …? adenine N1, again, in agreement with nmr experiments. There is no definitive experimental data on the TC base pair, but the existence of (somewhat long and weak) H-bonds involving cytosine 4NH2 …? thymine 4CO and cytosine N3 …? thymine HN3 seems reasonable. We find a structure in which the extra adenine base of the insertion analogs sits “inside” the double helix.  相似文献   

2.
The crystal structure of a hexamer duplex d(CACGTG)(2) has been determined and refined to an R-factor of 18.3% using X-ray data up to 1.2 A resolution. The sequence crystallizes as a left-handed Z-form double helix with Watson-Crick base pairing. There is one hexamer duplex, a spermine molecule, 71 water molecules, and an unexpected diamine (Z-5, 1,3-propanediamine, C(3)H(10)N(2)) in the asymmetric unit. This is the high-resolution non-disordered structure of a Z-DNA hexamer containing two AT base pairs in the interior of a duplex with no modifications such as bromination or methylation on cytosine bases. This structure does not possess multivalent cations such as cobalt hexaammine that are known to stabilize Z-DNA. The overall duplex structure and its crystal interactions are similar to those of the pure-spermine form of the d(CGCGCG)(2) structure. The spine of hydration in the minor groove is intact except in the vicinity of the T5A8 base pair. The binding of the Z-5 molecule in the minor grove of the d(CACGTG)(2) duplex appears to have a profound effect in conferring stability to a Z-DNA conformation via electrostatic complementarity and hydrogen bonding interactions. The successive base stacking geometry in d(CACGTG)(2) is similar to the corresponding steps in d(CG)(3). These results suggest that specific polyamines such as Z-5 could serve as powerful inducers of Z-type conformation in unmodified DNA sequences with AT base pairs. This structure provides a molecular basis for stabilizing AT base pairs incorporated into an alternating d(CG) sequence.  相似文献   

3.
D J Patel  C W Hilbers 《Biochemistry》1975,14(12):2651-2656
The chemical shifts and line widths of the Watson-Crick ring NH resonances of the self-complementary duplex of d-ApTpGpApT have been monitored at low ionic strength and in the presence of Mg ions at neutral pH in aqueous solution to determine the thermodynamic parameters associated with fraying (D. J. Patel (1974), Biochemistry 13, 2396) at the terminal and internal base pairs as a function of temperature and pH. From studies in H2O-MeOH (3:2), the fraying process persists down to approximately -20 degrees for the internal TA base pair and down to and probably beyond -30 degrees for the terminal AT base pair. The observed average chemical shift at each of these base pairs as a function of temperature suggests rapid exchange on the nuclear magnetic resonance (NMR) time scale between helix and coil (chemical shift separation of 3.2 ppm) and have been utilized to determine the dissociation constant at the terminal and internal base pairs. Comparison of the reaction enthalpies elucidated from the chemical shift parameters with those reported from optical studies suggests that the symmetry related internal TA base pairs break in a coupled manner at low ionic strength, with the coupling removed in the presence of Mg ions and high salt. By contrast, the symmetry related terminal AT base pairs break independently of each other in the absence and presence of Mg ions and high salt. The terminal base pair exhibits a Tm of 10-15 degrees lower than that of the internal base pair in the hexanucleotide, with divalent Mg ions and high salt stabilizing the double helix as reflected in the Tm values of these base pairs. The observed line width changes as a function of temperature provide an estimate of the exchange rate of the proton from the coil form with water. The exchange reaction from the coil state is base catalyzed with rate constants in the diffusion limit.  相似文献   

4.
The influence of sixteen base triplet changes at a single position within a pur.pur.pyr triple helix was examined by affinity cleaving. For the 15 base pair target site studied here, G.GC, A.AT and T.AT triplets stabilize a triple helix to a greater extent than the other 13 natural triplets (pH = 7.4, 25 degrees C). Weaker interactions were detected for the C.AT, A.GC and T.CG triplets. The absence of specific, highly stabilizing interactions between third strand bases and the CG or TA base pairs demonstrates a current sequence limitation to formation of this structure. Models for the two dimensional base triplet interactions for all possible 16 natural triplets are presented.  相似文献   

5.
C W Hilbers  D J Patel 《Biochemistry》1975,14(12):2656-2660
The chemical shifts and line widths of the Watson-Crick ring NH resonances of the self-complementary duplex of d-ApTpGpCpApT have been monitored in the presence of 0.1 M phosphate at neutral pH in aqueous solution. While the resonance positions of the terminal and internal AT base pairs shift upfield and broaden as average resonances with increasing temperature (helix and coil exchange several times prior to exchange with water from the coil form), those of the central GC base pairs broaden in the absence of upfield shifts (exchange with water occurs each time helix converts to coil). The line-width changes at the AT base pairs monitor the lifetime of the coil state at these positions prior to exchange with water while the line-width changes at the GC base pairs monitor the lifetime of the helix prior to dissociation to strands. This permits the separation of the propagation reaction at the AT base pairs from the nucleation reaction at the GC base pairs during helix formation. The experimental data have been quantitatively analyzed to yield (at 20 degrees) a nucleation formation rate of approximately 10(3) sec-1 for the GC base pairs (bimolecular rate constant of approximately 6 times 10(6) l. mol-1 sec-1) and a dissociation rate of 6 times 10(2) sec-1 at these same base pairs (unimolecular dissociation to strands). The unimolecular propagation reactions at the terminal and terminal base pairs are associated with reaction rates greater than 10(4) sec-1. These values are consistent with a slow formation of a stable nucleus at the GC base pairs followed by a rapid propagation reaction at the AT base pairs. The line width of the (GC) central base pairs in the presence of phosphate is a direct measure of the lifetime of the total helix and yields an activation energy of 45 kcal for helix to coil conversion measured over a narrow temperature range. The exchange from the coil form with water is catalyzed by 0.1 M phosphate with a rate constant kHPO2-/4 = 0.2 times 10(6) 1. mol-1 sec-1.  相似文献   

6.
A Pardi  K M Morden  D J Patel  I Tinoco 《Biochemistry》1982,21(25):6567-6574
The relaxation lifetimes of imino protons from individual base pairs were measured in (I) a perfect helix, d(C-G-C-G-A-A-T-T-C-G-C-G), (II) this helix with a G . C base pair replaced with a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and (III) the perfect helix with an extra adenine base in a mismatch, d(C-G-C-A-G-A-A-T-T-C-G-C-G). The lifetimes were measured by saturation recovery proton nuclear magnetic resonance experiments performed on the imino protons of these duplexes. The measured lifetimes of the imino protons were shown to correspond to chemical exchange lifetimes at higher temperatures and spin-lattice relaxation times at lower temperatures. Comparison of the lifetimes in these duplexes showed that the destabilizing effect of the G . T base pair in II affected the opening rate of only the nearest-neighbor base pairs. For helix III, the extra adenine affected the opening rates of all the base pairs in the helix and thus was a larger perturbation for opening of the base pairs than the G . T base pair. The temperature dependence of the exchange rates of the imino proton in the perfect helix gives values of 14-15 kcal/mol for activation energies of A . T imino protons. These relaxation rates were shown to correspond to exchange involving individual base pair opening in this helix, which means that one base-paired imino proton can exchange independent of the others. For the other two helices that contain perturbations, much larger activation energies for exchange of the imino protons were found, indicating that a cooperative transition involving exchange of at least several base pairs was the exchange mechanism of the imino protons. The effects of a perturbation in a helix on the exchange rates and the mechanisms for exchange of imino protons from oligonucleotide helices are discussed.  相似文献   

7.
Investigation of folding/unfolding DNA duplexes of various size and composition by superprecise calorimetry has revised several long-held beliefs concerning the forces responsible for the formation of the double helix. It was established that: 1) the enthalpy and the entropy of duplex unfolding are temperature dependent, increasing with temperature rise and having the same heat capacity increment for CG and AT pairs; 2) the enthalpy of AT melting is greater than that of the CG pair, so the stabilizing effect of the CG pair in comparison with AT results not from its larger enthalpic contribution (as expected from its extra hydrogen bond), but from the larger entropic contribution of the AT pair that results from its ability to fix ordered water in the minor groove and release it upon duplex unfolding; 3) the translation entropy, resulting from the appearance of a new kinetic unit on duplex dissociation, determines the dependence of duplex stability on its length and its concentration (it is an order-of-magnitude smaller than predicted from the statistical mechanics of gases and is fully expressed by the stoichiometric correction term); 4) changes in duplex stability on reshuffling the sequence (the “nearest-neighbor effect”) result from the immobilized water molecules fixed by AT pairs in the minor groove; and 5) the evaluated thermodynamic components permit a quantitative expression of DNA duplex stability.  相似文献   

8.
The structure of the self-complementary octamer d(GGGATCCC) has been analysed by single crystal X-ray diffraction methods at a nominal resolution of 2.5 A. With acceptable stereochemistry of the model the crystallographic R factor was 16.6% after restrained least-squares refinement. In the crystal, d(GGGATCCC) forms an A-DNA double helix with slightly varying conformation of the two strands. The average displacement of the base pairs from the helix axis is unusually large and is accompanied by pronounced sliding of the base pairs along their long axes at all dinucleotide steps except for the central AT. With 12 base pairs per complete turn the helix is considerably underwound. As observed with most oligodeoxyribonucleotides analysed by X-ray crystallography so far, the octamer displays reduced base pair tilt, increased rise per base pair and a more open major groove compared with canonical A-DNA. We propose that, based on these parameters, three A-helical sub-families may be defined; d(GGGATCCC) then is a representative of the class with intermediate tilt, rise, and major groove width.  相似文献   

9.
J Feigon  W A Denny  W Leupin  D R Kearns 《Biochemistry》1983,22(25):5930-5942
A variety of one-dimensional proton NMR methods have been used to investigate the properties of two synthetic DNA decamers, d(ATATCGATAT) and d(ATATGCATAT). These results, in conjunction with the results of two-dimensional NMR experiments, permit complete assignment of the base proton resonances. Low-field resonances were assigned by sequential "melting" of the A . T base pairs and by comparison of the spectra of the two decamers. Below 20 degree C spin-lattice relaxation is dominated by through-space dipolar interactions. A substantial isotope effect on the G imino proton relaxation is observed in 75% D2O, confirming the importance of the exchangeable amino protons in the relaxation process. A somewhat smaller isotope effect is observed on the T imino proton relaxation. At elevated temperatures spin-lattice relaxation of the imino protons is due to proton exchange with solvent. Apparent activation energies for exchange vary from 36 kcal/base pair for base pairs (3,8) to 64 kcal/mol for the most interior base pairs (5,6), indicating that disruption of part, or all, of the double helix contributes significantly to the exchange of the imino protons in these decamers. By contrast, single base pair opening events are the major low-temperature pathways for exchange from A X T and G X C base pairs in the more stable higher molecular weight DNA examined in other studies. The temperature dependence of the chemical shifts and line widths of certain aromatic resonances indicates that the interconversion between the helix and coil states is not in fast exchange below the melting temperature, Tm. Within experimental error, no differential melting of base pairs was found in either molecule, and both exhibited melting points Tm = 50-52 degrees C. Spin-spin and spin-lattice relaxation rates of the nonexchangeable protons (TH6, AH8, and AH2) are consistent with values calculated by using an isotropic rotor model with a rotational correlation time of 6 ns and interproton distances appropriate for B-family DNA. The faster decay of AH8 compared with GH8 is attributed to an interaction between the thymine methyl protons and the AH8 protons in adjacent adenines (5'ApT3'). The base protons (AH8, GH8, and TH6) appear to be located close (1.9-2.3 A) to sugar H2',2" protons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Abstract

DNA interstrand cross-links are usually formed due to bidentate covalent or coordination binding of a cross-linking agent to nucleotides of different strands. However interstrand linkages can be also caused by any type of chemical modification that gives rise to a strong local stabilization of the double helix. These stabilized sites conserve their helical structure and prevent local and total strand separation at temperatures above the melting of ordinary AT and GC base pairs. This local stabilization makes DNA melting fully reversible and independent of strand concentration like ordinary covalent interstrand cross-links. The stabilization can be caused by all the types of chemical modifications (interstrand cross-links, intrastrand cross-links or monofunctional adducts) if they give rise to a strong enough local stabilization of the double helix. Our calculation demonstrates that an increase in stability by 25 to 30 kcal in the free energy of a single base pair of the double helix is sufficient for this “cross-linking effect” (i.e. conserving the helicity of this base pair and preventing strand separation after melting of ordinary base pairs). For the situation where there is more then one stabilized site in a DNA duplex (e.g., 1 stabilized site per 1000 bp), a lower stabilization per site is sufficient for the “cross-linking effect” (18–20 kcal). A substantial increase in DNA stability was found in various experimental studies for some metal-based anti-tumor compounds. These compounds may give rise to the effect described above. If ligand induced stabilization is distributed among several neighboring base pairs, a much lower minimum increase per stabilized base pair is sufficient to produce the cross-linking effect (1 bp- 24.4 kcal; 5 bp- 5.3 kcal; 10 bp- 2.9 kcal, 25 bp- 1.4 kcal; 50 bp- 1.0 kcal). The relatively weak non-covalent binding of histones or protamines that cover long regions of DNA (20–40 bp) can also cause this effect if the salt concentration of the solution is sufficiently low to cause strong local stabilization of the double helix. Stretches of GC pairs more than 25 bp in length inserted into poly(AT) DNA also exhibit properties of stabilizing interstrand cross-links.  相似文献   

11.
DNA interstrand cross-links are usually formed due to bidentate covalent or coordination binding of a cross-linking agent to nucleotides of different strands. However interstrand linkages can be also caused by any type of chemical modification that gives rise to a strong local stabilization of the double helix. These stabilized sites conserve their helical structure and prevent local and total strand separation at temperatures above the melting of ordinary AT and GC base pairs. This local stabilization makes DNA melting fully reversible and independent of strand concentration like ordinary covalent interstrand cross-links. The stabilization can be caused by all the types of chemical modifications (interstrand cross-links, intrastrand cross-links or monofunctional adducts) if they give rise to a strong enough local stabilization of the double helix. Our calculation demonstrates that an increase in stability by 25 to 30 kcal in the free energy of a single base pair of the double helix is sufficient for this "cross-linking effect" (i.e. conserving the helicity of this base pair and preventing strand separation after melting of ordinary base pairs). For the situation where there is more then one stabilized site in a DNA duplex (e.g., 1 stabilized site per 1000 bp), a lower stabilization per site is sufficient for the "cross-linking effect" (18 - 20 kcal). A substantial increase in DNA stability was found in various experimental studies for some metal-based anti-tumor compounds. These compounds may give rise to the effect described above. If ligand induced stabilization is distributed among several neighboring base pairs, a much lower minimum increase per stabilized base pair is sufficient to produce the cross-linking effect (1 bp- 24.4 kcal; 5 bp- 5.3 kcal; 10 bp- 2.9 kcal, 25 bp- 1.4 kcal; 50 bp- 1.0 kcal). The relatively weak non-covalent binding of histones or protamines that cover long regions of DNA (20- 40 bp) can also cause this effect if the salt concentration of the solution is sufficiently low to cause strong local stabilization of the double helix. Stretches of GC pairs more than 25 bp in length inserted into poly(AT) DNA also exhibit properties of stabilizing interstrand cross-links.  相似文献   

12.
D R Hare  B R Reid 《Biochemistry》1982,21(8):1835-1842
The NMR resonances from the hydrogen-bonded ring NH protons in the dihydrouridine stem of Escherichia colt tRNA1Val have been assigned by experiments involving the nuclear Overhauser effect (NOE) between adjacent base pairs. Irradiation of the 8-14 tertiary resonance produced a NOE to base pair 13. Irradiation of the CG13 ring NH produced NOEs to base pairs 12 and 14. Similarly, base pair 12 was shown to be dipolar coupled to 11 and 13, and base pair 11 was found to be coupled to 10 and 12. These sequential connectivities led to the assignment of CG13 at -13.05 ppm, UA12 at -13.84 ppm, CG11 at -12.23 ppm, and GC10 at -12.60 ppm. The results are compared with previous, less direct assignments for these four base pairs and with the expected proton positions from the crystal structure coordinates for this helix.  相似文献   

13.
Abstract

The double helical structure of the self-complementary DNA-RNA-DNA hybrid d(CG)r(CG) d(CG) was studied in solution by 500 MHz 1H-NMR spectroscopy. The non-exchangeable base protons and the (deoxy)ribose H1′, H2′ and H2″ protons were unambiguously assigned using 2D-J-correlated (COSY) and 2D-NOE (NOESY) spectroscopy techniques. A general strategy for the sequential assignment of 1H-NMR spectra of (double) helical DNA and RNA fragments by means of 2D-NMR methods is presented.

Conformational analysis of the sugar rings of d(CG)r(CG)d(CG) at 300 K shows that the central ribonucleotide part of the helix adopts an A-type double helical conformation. The 5′- and 3′-terminal deoxyribose base pairs, however, take up the normal DNA-type conformation. The A-to-B transition in this molecule involves only one (deoxyribose) base pair. It is shown that this A-to-B conformational transition can only be accomodated by two specific sugar pucker combinations for the junction base pair, i.e. N·S (C3′-endo-C2′-endo, 60%, where the pucker given first is that assigned to the junction nucleotide residue of the strand running 5′ → 3′ from A-RNA to B-DNA) and S·S (C2′-endo-C2′-endo, 40%).  相似文献   

14.
The various nearest neighbor stacking interaction energies of stacked base pairs in the DNA double helix are calculated for both A- and B-type conformations using an ab initio molecular orbital method. It is demonstrated that the sequence-dependent conformational preference for A- or B-type results from the stacking interaction. In particular, the base sequence showing the highest preference for an A-type conformation is revealed as GC/GC, and the one with the next highest preference, AT/AT; for a B-type conformation, the respective sequences are CG/CG and CA/TG. The overall conformation of a DNA fragment is not determined by these particular sequences only but is influenced by all base pair steps. An intrinsically favorable conformation is predicted from the constituent stacking interaction.  相似文献   

15.
D Hare  L Shapiro  D J Patel 《Biochemistry》1986,25(23):7445-7456
We report below on features of the three-dimensional structure of the d(C-G-T-G-A-A-T-T-C-G-C-G) self-complementary duplex (designated 12-mer GT) containing symmetrical G X T mismatches in the interior of the helix. The majority of the base and sugar protons in the 12-mer GT duplex were assigned by two-dimensional nuclear Overhauser effect (NOESY) spectra in H2O and D2O solution. A set of 92 short (less than 4.5-A) proton-proton distances defined by lower and upper bounds for one symmetrical half of the 12-mer GT duplex were estimated from NOESY data sets recorded as a function of mixing time. These experimental distances combined with nucleotide bond length parameters were embedded into Cartesian space; several trial structures were refined to minimize bond geometry and van der Waals and chirality error. Confidence in this approach is based on the similarity of the refined structures for the solution conformation of the 12-mer GT duplex. The G and T bases pair through two imino-carbonyl hydrogen bonds, and stacking is maintained between the G X T wobble pair and adjacent Watson-Crick G X C pairs. The experimental distance information is restricted to base and sugar protons, and hence structural features such as base pair overlap, glycosidic torsion angles, and sugar pucker are well-defined by this combination of NMR and distance geometry methods. By contrast, we are unable to define the torsion angles about the bonds C3'-O3'-P-O5'-C5'-C4' in the backbone of the nucleic acid.  相似文献   

16.
Uridine is uniquely conserved at position 8 in elongator tRNAs and binds to A14 to form a reversed Hoogsteen base pair which folds the dihydrouridine loop back into the core of the L-shaped molecule. On the basis of 1H NMR studies, Hurd and co-workers (Hurd, R. E., Robillard, G. T., and Reid, B. R. (1977) Biochemistry 16, 2095-2100) concluded that the interaction between positions 8 and 14 is absent in Escherichia coli tRNAs with only 3 base pairs in the dihydrouridine stem. We have taken advantage of the unique 15N chemical shift of N3 in thiouridine to identify 1H and 15N resonances for the imino units of S4U8 and s4U9 in E. coli tRNASer1 and tRNATyr2. Model studies with chloroform-soluble derivatives of uridine and 4-thiouridine show that the chemical shifts of the protons in the imino moieties move downfield from 7.9 to 14.4 ppm and from 9.1 to 15.7 ppm, respectively; whereas, the corresponding 15N chemical shifts move downfield from 157.5 to 162.5 ppm and from 175.5 to 180.1 ppm upon hydrogen bonding to 5'-O-acetyl-2',3'-isopropylidene adenosine. The large difference in 15N chemical shifts for U and s4U allows one to unambiguously identify s4U imino resonances by 15N NMR spectroscopy. E. coli tRNASer1 and tRNATyr2 were selectively enriched with 15N at N3 of all uridines and modified uridines. Two-dimensional 1H-15N chemical shift correlation NMR spectroscopy revealed that both tRNAs have resonances with 1H and 15N chemical shifts characteristic of s4UA pairs. The 1H shift is approximately 1 ppm upfield from the typical s4U8 resonance at 14.8 ppm, presumably as a result of local diamagnetic anisotropies. An additional s4U resonance with 1H and 15N shifts typical of interaction of a bound water or a sugar hydroxyl group with s4U9 was discovered in the spectrum of tRNATyr2. Our NMR results for tRNAs with 3-base pair dihydrouridine stems suggest that these molecules have an U8A14 tertiary interaction similar to that found in tRNAs with 4-base pair dihydrouridine stems.  相似文献   

17.
Y G Gao  Y C Liaw  H Robinson  A H Wang 《Biochemistry》1990,29(45):10307-10316
The three-dimensional molecular structures of the complexes between a novel antitumor drug nogalamycin and its derivative U-58872 with a modified DNA hexamer d[m5CGT(pS)Am5CG] have been determined at 1.7- and 1.8-A resolution, respectively, by X-ray diffraction analyses. Both structures (in space group P6(1)) have been refined with constrained refinement procedure to final R factors of 0.208 (3386 reflections) and 0.196 (2143 reflections). In both complexes, two nogalamycins bind to the DNA hexamer double helix in a 2:1 ratio with the elongated aglycon chromophore intercalated between the CpG steps at both ends of the helix. The aglycon chromophore spans across the GC Watson-Crick base pairs with its nogalose lying in the minor groove and the aminoglucose lying in the major groove of the distorted B-DNA double helix. Most of the sugars remain in the C2'-endo pucker family, except three deoxycytidine residues (terminal C1, C7, and internal C5). All nucleotides are in the anti conformation. Specific hydrogen bonds are found in the complex between the drug and guanine-cytosine bases in both grooves of the helix. One hydroxyl group of the aminoglucose donates a hydrogen bond to the N7 of guanine, while the other receives a hydrogen bond from the N4 amino group of cytosine. The orientation of these two hydrogen bonds suggests that nogalamycin prefers a GC base pair with its aglycon chromophore intercalating at the 5'-side of a guanine (between NpG), or at the 3'-side of a cytosine (between CpN) with the sugars pointing toward the GC base pair. The binding of nogalamycin to DNA requires that the base pairs in DNA open up transiently to allow the bulky sugars to go through, suggesting that nogalamycin prefers GC sequences embedded in a stretch of AT sequences.  相似文献   

18.
The formation of the C-U base pair in a duplex was observed in solution by means of the temperature profile of (15)N chemical shifts, and the precise geometry of the C-U base pair was also determined by NOE-based structure calculation. From the solution structure of the RNA oligomer, r[CGACUCAGG].r[CCUGCGUCG], it was found that a single C-U mismatch preferred being stacked in the duplex rather than being flipped-out even in solution. Moreover, it adopts an irregular geometry, where the amino nitrogen (N4) of the cytidine and keto-oxygen (O4) of the uridine are within hydrogen-bonding distance, as seen in crystals. To further prove the presence of a hydrogen bond in the C-U pair, we employed a point-labeled cytidine at the exocyclic amino nitrogen of the cytidine in the C-U pair. The temperature profile of its (15)N chemical shift showed a sigmoidal transition curve, indicating the presence of a hydrogen bond in the C-U pair in the duplex.  相似文献   

19.
Parallel-stranded (ps) DNAs with mixed AT/GC content comprising G.C pairs in a varying sequence context have been investigated. Oligonucleotides were devised consisting of two 10-nt strands complementary either in a parallel or in an antiparallel orientation and joined via nonnucleotide linkers so as to form 10-bp ps or aps hairpins. A predominance of intramolecular hairpins over intermolecular duplexes was achieved by choice of experimental conditions and verified by fluorescence determinations yielding estimations of rotational relaxation times and fractional base pairing. A multistate mode of ps hairpin melting was revealed by temperature gradient gel electrophoresis (TGGE). The thermal stability of the ps hairpins with mixed AT/GC content depends strongly on the specific sequence in a manner peculiar to the ps double helix. The thermodynamic effects of incorporating trans G.C base pairs into an AT sequence are context-dependent: an isolated G. C base pair destabilizes the duplex whereas a block of > or =2 consecutive G.C base pairs exerts a stabilizing effect. A multistate heterogeneous zipper model for the thermal denaturation of the hairpins was derived and used in a global minimization procedure to compute the thermodynamic parameters of the ps hairpins from experimental melting data. In 0.1 M LiCl at 3 degrees C, the formation of a trans G.C pair in a GG/CC sequence context is approximately 3 kJ mol(-)(1) more favorable than the formation of a trans A.T pair in an AT/TA sequence context. However, GC/AT contacts contribute a substantial unfavorable free energy difference of approximately 2 kJ mol(-)(1). As a consequence, the base composition and fractional distribution of isolated and clustered G.C base pairs determine the overall stability of ps-DNA with mixed AT/GC sequences. Thus, the stability of ps-DNA comprising successive > or =2 G.C base pairs is greater than that of ps-DNA with an alternating AT sequence, whereas increasing the number of AT/GC contacts by isolating G.C base pairs exerts a destabilizing effect on the ps duplex. Molecular modeling of the various helices by force field techniques provides insight into the structural basis for these distinctions.  相似文献   

20.
Emergence of thousands of crystal structures of noncoding RNA molecules indicates its structural and functional diversity. RNA function is based upon a large variety of structural elements which are specifically assembled in the folded molecules. Along with the canonical Watson‐Crick base pairs, different orientations of the bases to form hydrogen‐bonded non‐canonical base pairs have also been observed in the available RNA structures. Frequencies of occurrences of different non‐canonical base pairs in RNA indicate their important role to maintain overall structure and functions of RNA. There are several reports on geometry and energetic stabilities of these non‐canonical base pairs. However, their stacking geometry and stacking stability with the neighboring base pairs are not well studied. Among the different non‐canonical base pairs, the G:U wobble base pair (G:U W:WC) is most frequently observed in the RNA double helices. Using quantum chemical method and available experimental data set we have studied the stacking geometry of G:U W:WC base pair containing dinucleotide sequences in roll‐slide parameters hyperspace for different values of twist. This study indicates that the G:U W:WC base pair can stack well with the canonical base pairs giving rise to large interaction energy. The overall preferred stacking geometry in terms of roll, twist and slide for the eleven possible dinucleotide sequences is seen to be quite dependent on their sequences. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 328–338, 2015.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号