首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dose-response relationship in brain, plasma, and adrenal monoamine changes after acute oral ethanol administration (1, 2, 4 g/kg body wt) was studied in virgin rats to determine whether the response to the highest dose differed in 21-day pregnant animals, and to assess the potential consequences of ethanol on the neurotransmitter systems of their fetuses. Blood ethanol and acetaldehyde concentrations in blood increased progressively with the ethanol dose in virgin rats, and values in pregnant animals were very similar. Ethanol concentration in fetal blood and amniotic fluid did not differ from that in mother's blood whereas fetal acetaldehyde concentrations were negligible. In a dose-related manner, ethanol decreased brain DA, DOPAC and 5HT concentrations did not affect those of NA and 5HIAA, or adrenal A and NA concentrations, whereas it enhanced plasma NA levels. Basal levels of monoamines and their changes after ethanol intake did not differ in pregnant and virgin rats. Monoamine and metabolite concentrations were much lower in fetal than in maternal brains whereas plasma and adrenal catecholamine concentrations were very similar and maternal ethanol intake did not modify these fetal parameters in the fetus. Results are in agreement with the known similar metabolic response to ethanol in fed pregnant and virgin rats. The lack of fetal monoamine response to maternal ethanol intake may be a consequence of the incapacity of fetal liver to form acetaldehyde and the ability of the placenta to oxidize maternal acetaldehyde which protects the fetus from maternal alcohol intake at late gestation.  相似文献   

2.
The objective of this study was to determine the effect of chronic maternal administration of moderate-dose ethanol on alcohol dehydrogenase, low Km aldehyde dehydrogenase, and high Km aldehyde dehydrogenase activities in the guinea pig at near-term pregnancy. The activity of each enzyme in the maternal liver, fetal liver, and placenta of the guinea pig at 59 days of gestation (term, 66 days) was determined spectrophotometrically following chronic daily oral administration of two doses of 1 g ethanol/kg maternal body weight or isocaloric sucrose solution. There was no experimental evidence of ethanol-induced malnutrition in the mother or growth retardation in the fetus. There was a statistically significant increase (65%) in the microsomal cytochrome P-450 content of the maternal liver for the ethanol treatment compared with the sucrose treatment. The alcohol dehydrogenase, low Km aldehyde dehydrogenase, and high Km aldehyde dehydrogenase activities in the maternal liver, fetal liver, and placenta were not statistically different for the ethanol-treated compared with the sucrose-treated animals. This also was the case for the maternal blood and fetal blood ethanol and acetaldehyde concentrations, determined at 2h after maternal administration of 1 g ethanol/kg maternal body weight. These data demonstrate that the ethanol- and acetaldehyde-oxidizing enzyme activities in the maternal-placental-fetal unit of the guinea pig at near-term pregnancy were not changed by chronic administration of moderate-dose ethanol.  相似文献   

3.
Acute alcohol administration is harmful especially for the developing nervous system, where it induces massive apoptotic neurodegeneration leading to alcohol-related disorders of newborn infants. Neuroprotection against ethanol-induced apoptosis may save neurons and reduce the consequences of maternal alcohol consumption. Previously we have shown that taurine protects immature cerebellar neurons in the internal granular layer of cerebellum from ethanol-induced apoptosis. Now we describe a similar protective action for taurine in the external layer of cerebellum of 7-day-old mice. The mice were divided into three groups: ethanol-treated, ethanol + taurine-treated and controls. Ethanol (20% solution) was administered subcutaneously at a total dose of 5 g/kg (2.5 g/kg at time 0 h and 2.5 g/kg at 2 h) to the ethanol and ethanol + taurine groups. The ethanol + taurine group also received subcutaneously two injections of taurine (1 g/kg each, 1 h before the first dose of ethanol and 1 h after the second dose of ethanol). To verify apoptosis, immunostaining for activated caspase-3 and TUNEL staining were made in the mid-sagittal sections containing lobules I–X of the cerebellar vermis at 8 h after the first ethanol injection. Ethanol induced apoptosis in the cerebellar external granular layer. Taurine treatment significantly reduced the number of activated caspase-3-immunoreactive and TUNEL-positive cells. Taurine has thus a neuroprotective antiapoptotic action in the external granular layer of the cerebellum, preserving a number of neurons from ethanol-induced apoptosis.  相似文献   

4.
Ethanol causes oxidative stress and tissue damage. The aim of this study was to investigate the effect of antioxidant carnosine on the oxidative stress induced by ethanol in the rat brain tissue. Forty male rats were divided equally into four groups as control, carnosine (CAR), ethanol (EtOH), and ethanol plus carnosine (EtOH + CAR). Rats in the control group (n = 10) were injected intraperitoneally (i.p.) with 0.9% saline; EtOH group (n = 10) with 2 g/kg/day ethanol, CAR group (n = 10) received carnosine at a dose of 1 mg/kg/day and EtOH + CAR group (n = 10) received carnosine (orally) and ethanol (i.p.). All animals were sacrificed using ketamine and brain tissues were removed. Malondialdehyde (MDA), protein carbonyl (PCO) and tissue carnosine levels, and superoxide dismutase (SOD) activities were measured. Endogenous CAR levels in the rat brain tissue specimens were significantly increased in the CAR and EtOH groups when compared to the control animals. MDA and PCO levels in the EtOH group were significantly increased as compared to the other groups (P < 0.05). CAR treatment also decreased MDA levels in the CAR group as compared to the control group. Increased SOD activities were obtained in the EtOH + CAR group as compared to the control (P < 0.05). CAR levels in the rat brain were significantly increased in the CAR, EtOH and CAR + EtOH groups when compared to the control animals. These findings indicated that carnosine may appear as a protective agent against ethanol-induced brain damage.  相似文献   

5.
6.
Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and l-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75–2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal l-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. l-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid–base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, l-glutamine supplementation mitigates alcohol-induced acid–base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy.  相似文献   

7.
Cell proliferation and differentiation are critical processes in a developing fetal rat brain, during which programmed cell death (PCD) also plays an important role. One of the decisive factors for PCD is Bcl-2 family proteins, where Bax induces cell death, whereas Bcl-2 acts as an inhibitor of PCD. As maternal drinking is known to cause fetal alcohol syndrome (FAS) or malformation of the fetal brain during pregnancy, the objective of the present study was to investigate whether maternal ethanol exposure alters the PCD-related Bax and Bcl-2 protein expression during fetal brain development. Pregnant female rats were orally treated with 10% ethanol and the subsequent expressions of the Bax and Bcl-2 proteins examined in the fetal brain, including the forebrain, midbrain, and hindbrain, from gestational day (GD) 15.5 to GD 19.5, using Western blots, in situ hybridization, and immunohistochemistry. With regard to the ratio of Bcl-2 to Bax proteins (Bcl-2/Bax), the Bax protein was dominant in the forebrain and midbrain of the control GD 15.5 fetuses, except for the hindbrain, when compared with the respective ethanol-treated groups. Moreover, Bcl-2 became dominant in the midbrain of the control GD 17.5 fetuses when compared with the ethanoltreated group, representing an alternation of the natural PCD process by ethanol. Furthermore, a differential expression of the Bcl-2 and Bax proteins was found in the differentiating and migrating zones of the cortex, hippocampus, thalamus, and cerebellum. Thus, when taken together, the present results suggest that ethanol affects PCD in the cell differentiation and migration zones of the prenatal rat brain by modulating Bax and Bcl-2 expression in an age- and area-dependent manner. Therefore, this is the first evidence that ethanol may alter FAS-associated embryonic brain development through the alteration of Bax and Bcl-2 expression.  相似文献   

8.
In pH 8.4 Tris–HCl buffer solutions, alcohol dehydrogenase catalyzed the reaction between ethanol and nicotinamide adenine dinucleotide to produce acetaldehyde. In the medium of HCl, acetaldehyde reduced HAuCl4 to form gold particles that exhibited a strong resonance scattering (RS) peak at 600 nm. The RS peak increased with ethanol concentration. The increased RS intensity at 600 nm (ΔI 600 nm) was proportional to the ethanol concentration (C) from 0.068 to 10.2 mmol/L, with a regression equation of ΔI 600 nm?=?35.59?C?+?16.1, and a detection limit (3σ) of 3.2 μmol/L. This proposed method was applied to detect ethanol in saliva and plant cell culture medium samples, with satisfactory results.  相似文献   

9.
《Bone and mineral》1990,8(1):1-6
The mechanism of the acute hypocalcemia that follows acute ethanol administration has not been established. Measurements of parathyroid hormone (PTH) performed during this hypocalcemia reveal conflicting results. We compared the response of ionized calcium (Ca2+), immunoreactive PTH and bone Gla protein (BGP) after ethanol- and EDTA-induced hypocalcemia. 103 male Sprague Dawley rats each weighing approximately 300 g received ethanol and 100 rats of similar weight received EDTA. In each of these studies the animals were divided into experimental and control groups. The ethanol-treated rats received ethanol, 2 g/kg body weight, by ip injection and the EDTA-treated rats received 100 mg EDTA/kg body weight by im injection. Controls received normal saline by the corresponding route of administration. Rats were sacrificed at 0, 30, 60, 90, 180 and 360 min for the measurement of the above parameters. In both experimental groups Ca2+ levels were significantly reduced to the same degree by 30 min with return to control values by 360 min. There was no significant difference in immunoreactive PTH, and BGP between control and ethanol-treated groups. In the EDTA-treated rats, however, PTH values were significantly increased at 30 (P < 0.005) and BGP at 60 and 90 minutes (P < 0.005) vs. control. Therefore acute ethanol administration appears to blunt the PTH response to hypocalcemia. A direct inhibitory effect of ethanol on osteoblast function ie BGP production cannot be excluded. In addition, PTH may stimulate BGP.  相似文献   

10.
This study investigated the effect of quercetin on nucleoside triphosphate diphosphohydrolase (NTPDase), 5′-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes from cerebral cortex of adult rats exposed to cadmium (Cd). Rats were exposed to Cd (2.5 mg/Kg) and quercetin (5, 25 or 50 mg/Kg) by gavage for 45 days. Rats were randomly divided into eight groups (n = 8–10): saline/ethanol, saline/Querc 5 mg/kg, saline/Querc 25 mg/kg, saline/Querc 50 mg/kg, Cd/ethanol, Cd/Querc 5 mg/kg, Cd/Querc 25 mg/kg, and Cd/Querc 50 mg/kg. Results demonstrated that AChE activity increased in the Cd/ethanol group when compared to saline/ethanol group. Treatment with quercetin prevented the increase in AChE activity when compared to Cd/ethanol group. Quercetin treatment prevented the cadmium-induced increase in NTPDase, 5-nucleotidase, and ADA activities in Cd/ethanol group when compared to saline/ethanol group. Our data showed that quercetin have a protector effect against Cd intoxication. This way, is a promising candidate among the flavonoids to be investigated as a therapeutic agent to attenuate neurological disorders associated with Cd intoxication.  相似文献   

11.
Methyltetrazolethiol (1-methyl-5-mercapto-1,2,3,4-tetrazole, MTT) is a heterocyclic substituent of the cephalosporin antibiotics, cefamandole, cefoperazone, and moxalactam. Pretreatment of rats with MTT has been reported to increase blood acetaldehyde concentration after ethanol administration. The time course of MTT-induced inhibition of hepatic aldehyde dehydrogenases (ALDH) was determined in adult, male Sprague-Dawley rats in comparison with the hepatic ALDH inhibition induced by calcium carbimide (calcium cyanamide, CC) and disulfiram (D). The apparent onset of maximal inhibition of hepatic low Km ALDH occurred at 2 h for 50 mg/kg MTT (subcutaneous, s.c.) and 7 mg/kg CC (oral) and at 24 h for 300 mg/kg D (oral). The relative magnitude of maximal inhibition of low Km ALDH was CC greater than D greater than MTT. The relative duration of enzyme inhibition was D greater than MTT greater than CC. High Km ALDH was only inhibited by CC. Hepatic low Km ALDH was selectively inhibited by s.c. and oral administration of 125 mg/kg MTT. For s.c. administration of 125 mg/kg MTT, the magnitude of maximal enzyme inhibition and the duration of inhibition were greater than for the 50 mg/kg dose. Oral administration of 125 mg/kg MTT produced similar inhibition of hepatic low Km ALDH compared with s.c. administration of the same dose. The time course of blood ethanol and acetaldehyde concentrations was determined for the intravenous infusion of two 0.3-g/kg doses of ethanol to rats that were pretreated orally with saline (1 h), MTT (125 mg/kg, 2 h), or CC (7 mg/kg, 1 h). The relative increase in blood acetaldehyde concentration compared with saline pretreatment was CC greater than MTT. The elimination of ethanol from blood was slower in the MTT- and CC-pretreated animals, and this effect was more pronounced for CC pretreatment. Overall, the data demonstrate that the characteristics of hepatic ALDH inhibition for MTT are different from those of the known ALDH inhibitors, CC and D.  相似文献   

12.
Guinea pig ethanol metabolism as well as distribution and activities of ethanol metabolizing enzymes were studied. Alcohol dehydrogenase (ADH; EC 1.1.1.1) is almost exclusively present in liver except for minor activities in the cecum. All other organ tissues tested (skeletal muscle, heart, brain, stomach, and testes) contained only negligible enzyme activities. In fed livers, ADH could only be demonstrated in the cytosolic fraction (2.94 μmol/g liver/min at 38 °C) and its apparent Km value of 0.42 mm for ethanol as substrate is similar to the average Km of the human enzymes. Acetaldehyde dehydrogenase (ALDH; EC 1.2.1.3) of guinea pig liver was measured at low (0.05 mm) and high (10 mm) acetaldehyde concentrations and its subcellular localization was found to be mainly mitochondrial. The total acetaldehyde activity in liver amounts to 3.56 μmol/g/ min. Fed and fasted animals showed similar zero-order alcohol elimination rates after intraperitoneal injection of 1.7 or 3.0 g ethanol/kg body wt. The ethanol elimination rate of fed animals after 1.7 g ethanol/kg body wt (2.59 μmol/g liver/min) was inhibited by 80% after intraperitoneal injection of 4-methylpyrazole. Average ethanol elimination rates in vivo after 1.7 g/kg ethanol commanded only 88% of the totally available ADH activity in fed guinea pig livers. Catalase (EC 1.11.1.6), an enzyme previously implicated in ethanol metabolism, is of 3.4-fold higher activity in guinea pig (10,400 U/g liver) than in rat livers (3,100 U/g liver), but 98% inhibition by 3-amino-1,2,4-triazole did not significantly alter ethanol elimination rates. After ethanol injection, fed and fasted guinea pigs reacted with prolonged hyperglycemia.  相似文献   

13.
Oxidative stress is one of the factors associated with decline in fertility and betaine has been shown to bear antioxidant and methyl donor properties in our recent studies. Thus, we designed the present study to examine antioxidant and methyl donor abilities of betaine in oxidative stress induced by ethanol in the rat testes. The adult male Sprague-Dawley rats were divided into four experimental groups and treated daily for 2?months as follows: control, ethanol (4?g/kg, orally), betaine (1.5?% of total diet, orally), and betaine plus ethanol (betaine, 1.5?% of total diet and after 120?min, ethanol 4?g/kg). Sperm motility and concentration significantly increased in betaine group when compared to the ethanol?Ctreated rats. The main antioxidant enzyme (GPx) activity significantly increased (in order compensatory) in ethanol-treated rats when compared to betaine group while, antiperoxidative enzyme (CAT) activity significantly increased in betaine plus ethanol group as compared to ethanol-treated rats. Total homocysteine (tHcy) and TBARS concentration (as a lipid peroxidation marker) also significantly decreased in betaine and betaine plus ethanol groups as compared to ethanol-treated rats. Overall, methyl donor and antioxidant properties of betaine are promising and reduce the elevated tHcy and TBARS concentrations in betaine plus ethanol group. Therefore, betaine might be used as a potential therapy in hyperhomocysteinemia and oxidative stress induced by ethanol in alcoholism.  相似文献   

14.
The effect of acute ethanol administration on rates of synthesis and utilization of hepatic glutathione (GSH) was studied in rats after a pulse of [35S]cysteine. A 35% decrease in hepatic GSH content 5h after administration of 4 g of ethanol/kg body wt. was accompanied by a 33% increase in the rate of GSH utilization. The decrease occurred without increases in hepatic oxidized glutathione (GSSG) or in the GSH/GSSG ratio. The rate of non-enzymic condensation of GSH with acetaldehyde could account for only 6% of the rate of hepatic GSH disappearance. The increased loss of [35S]GSH induced by ethanol was not accompanied by an increased turnover; rather, a 30% inhibition of GSH synthesis balanced the increased rate of loss, leaving the turnover rate unchanged. The rate of acetaldehyde condensation with cysteine in vitro occurred at about one-third of the rate of GSH loss in ethanol-treated animals. However, ethanol induced only a minor decrease in liver cysteine content, which did not precede, but followed, the decrease in GSH. The characteristics of 2-methylthiazolidine-4-carboxylic acid, the condensation product between acetaldehyde and cysteine, were studied and methodologies were developed to determine its presence in tissues. It was not found in the liver of ethanol-treated animals. Ethanol administration led to a marked increase (47%) in plasma GSH in the post-hepatic inferior vena cava, but not in its pre-hepatic segment. Data suggest that an increased loss of GSH from the liver constitutes an important mechanism for the decrease in GSH induced by ethanol. In addition, an inhibition of GSH synthesis is observed.  相似文献   

15.
Chronic ethanol ingestion, achieved by feeding ethanol at a constant rate using intragastric tube feeding, alters the expression of genes in the liver. This is done by epigenetic mechanisms, which depend on the blood alcohol levels at the time of killing. However, acute bolus feeding of ethanol changes gene expression without lasting epigenetic changes. This occurs with histone 3 methylation and acetylation modifications. The gene expression response to an acute bolus of ethanol might be modified by feeding S-adenosylmethionine (SAMe), a methyl donor. In the present study, rats were given a bolus of ethanol (6 g/kg body weight (bw), SAMe (1 g/kg bw), ethanol + SAMe, or isocaloric glucose. The group of rats (n = 3) were killed at 3 and 12 h post bolus, and gene microarray analysis was performed on their liver cells. SAMe reduced the 3 h blood ethanol levels and increased the ALT levels at 3 h. Venn diagrams showed that alcohol changed the expression of 646 genes at 3 h post bolus and 586 genes at 12 h. SAMe changed the expression of 1,012 genes when fed with ethanol 3 h post ethanol bolus and 554 genes at 12 h post ethanol bolus. SAMe alone changed the expression of 1,751 genes at 3 h and 1,398 at 12 h. There were more changes in gene expression at 3 h than at 12 h post ethanol when ethanol alone was compared to the dextrose control. The same was true when SAMe was compared to SAMe + ethanol. Ethanol up regulated gene expression in most functional pathways at 3 h. However, when SAMe was fed with ethanol at 3 h, most pathways were down regulated. At 12 h, however, when ethanol was fed, the pathways were half up regulated and half down regulated. The same was true when SAMe + ethanol was fed. The expression of epigenetically important genes, such as BHMT and Foxn3, was up regulated 3 h post alcohol bolus. At 3 h, SAMe down regulated the expression of genes, such as BHMT, Mat2a, Jun, Tnfrs9, Ahcy 1, Tgfbr1 and 2, and Pcaf. At 12 h, the insulin signaling pathways were half down regulated by ethanol, which was partly prevented by SAMe. The MAPK pathway was up regulated by ethanol, but SAMe did not prevent this. In conclusion, profound changes in gene expression evolved between 3 h and 12 post ethanol bolus. SAMe down regulated these changes in gene expression at 3 h, and less so at 12 h.  相似文献   

16.
17.
The pharmacokinetics of ethanol and its metabolite, acetaldehyde, were determined in the third-trimester pregnant guinea pig (56-59 days gestation) for oral intubation of four doses of 1 g ethanol/kg maternal body weight, administered at 1-h intervals. Animals (n = 4-7) were sacrificed at each of selected times during the 26-h study. Ethanol and acetaldehyde concentrations were determined by headspace gas-liquid chromatography. The maternal and fetal blood ethanol concentration-time curves were virtually superimposable, which indicated unimpeded bidirectional placental transfer of ethanol in the maternal-fetal unit. The blood and brain ethanol concentrations were similar in each of the maternal and fetal compartments during the study, which indicated rapid equilibrium distribution of ethanol. There was accumulation of ethanol in the amniotic fluid resulting in higher ethanol concentration compared with maternal and fetal blood during the elimination phase, which indicated that the amniotic fluid may serve as a reservoir for ethanol in utero. Acetaldehyde was measurable in all the biological fluids and tissues at concentrations that were at least 1,000-fold less than the respective ethanol concentrations and were variable. There was ethanol-induced fetolethality that was delayed and variable among animals, and was 55% at 23 h. At this time interval, the ethanol concentrations in maternal blood and brain, fetal brain, and amniotic fluid were 35- to 53-fold greater and the acetaldehyde concentrations in maternal blood and fetal brain were four- to five-fold higher in the animals with dead fetuses compared with the guinea pigs with live litters. These data indicated that decreased ethanol elimination from the maternal-fetal unit was related temporally to the fetolethality.  相似文献   

18.
A single intraperitoneal administration of ethanol (3.5 g/kg) to rats induced a marked increase in lipid peroxidation and a decrease of antioxidative activity in the liver after 1 h when assessed by chemi-luminescence in liver homogenates. The pretreatment with aldehyde dehydrogenase inhibitor, disulfiram (200 mg/kg 24 hr before ethanol), caused a 10-fold elevation of the blood acetaldehyde levels, with no effect on the hepatic lipid peroxidation compared to control. Cyanamide (50 mg/kg, 2 h before the ethanol) increased approximately 100-fold the acetaldehyde levels, however, the changes in lipid peroxidation were not significantly different from that produced by ethanol alone. The present results suggest, that the metabolism of acetaldehyde and not acetaldehyde itself is responsible for the in vivo activation of lipid peroxidation during acute alcohol intoxication. Disulfiram prevents the ethanol-induced lipid peroxidation in the rat liver.  相似文献   

19.
Toluene is an organic solvent that is toxic to humans. Caffeic acid phenethyl ester (CAPE) and thymoquinone (TQ) exhibit antioxidant and antitoxic effects. We investigated the protective effects of CAPE and TQ on toluene induced hepatotoxicity. Wistar albino rats were divided into seven groups of eight. The animals were injected intraperitoneally (i.p.) with 0.1 ml/10 g/day corn oil (control I), 0.1 ml/10 g/day corn oil + 2 ml/kg/day 10% ethanol (control II), 20 mg/kg/day TQ dissolved in 0.1 ml/10 g corn oil (TQ), 10 µmol/kg/day CAPE dissolved in 10% ethanol (CAPE), 500 mg/kg/day toluene (T), toluene and TQ together (T + TQ), or toluene and CAPE together (T + CAPE). All rats were sacrificed on day 15. Liver samples were obtained for histological analysis. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured to evaluate liver function. Liver sections from the control I and TQ groups exhibited normal histology. Sections from the T group exhibited sinusoid dilation, hemorrhage, vacuolization and necrosis. TQ and CAPE protected against toluene induced histopathological changes. AST and ALT levels were increased significantly in T group compared to both control groups. CAPE decreased significantly the toluene induced increase in AST and ALT levels, while TQ did not. CAPE and TQ exhibited some antitoxic and hepato-protective effects on toluene induced liver damage.  相似文献   

20.
Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD+-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号