首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Because the maximal rate of O2 consumption (VO2max) of the horse is 2.6 times larger than that of steers of equal size, we wondered whether their pulmonary gas exchanger is proportionately larger. Three Standardbred racehorses [body mass (Mb) = 447 kg] and three domestic steers (Mb = 474 kg) whose cardiovascular function at VO2max had been thoroughly studied (Jones et al. J. Appl. Physiol. 67: 862-870, 1989) were used to study their lungs by morphometry. The basic morphometric parameters were similar in both species. The nearly 2 times larger lung volumes of the horses caused the gas exchange surfaces and capillary blood volume to be 1.6 to 1.8 times larger. Morphometric pulmonary diffusing capacity was 2 times larger in the horse than in the steer; the 2.6-fold greater rate of O2 uptake thus required the alveolar-capillary PO2 difference to be 1.3 times larger in the horse than in the steer. Combining physiological and morphometric data, we calculated capillary transit time at VO2max to be 0.4-0.5 s. Bohr integration showed capillary blood to be equilibrated with alveolar air after 75 and 58% of transit time in horses and steers, respectively; horses maintain a smaller degree of redundancy in their pulmonary gas exchanger.  相似文献   

2.
Oxygen transport during steady-state submaximal exercise in chronic hypoxia   总被引:3,自引:0,他引:3  
Arterial O2 delivery during short-term submaximal exercise falls on arrival at high altitude but thereafter remains constant. As arterial O2 content increases with acclimatization, blood flow falls. We evaluated several factors that could influence O2 delivery during more prolonged submaximal exercise after acclimatization at 4,300 m. Seven men (23 +/- 2 yr) performed 45 min of steady-state submaximal exercise at sea level (barometric pressure 751 Torr), on acute ascent to 4,300 m (barometric pressure 463 Torr), and after 21 days of residence at altitude. The O2 uptake (VO2) was constant during exercise, 51 +/- 1% of maximal VO2 at sea level, and 65 +/- 2% VO2 at 4,300 m. After acclimatization, exercise cardiac output decreased 25 +/- 3% compared with arrival and leg blood flow decreased 18 +/- 3% (P less than 0.05), with no change in the percentage of cardiac output to the leg. Hemoglobin concentration and arterial O2 saturation increased, but total body and leg O2 delivery remained unchanged. After acclimatization, a reduction in plasma volume was offset by an increase in erythrocyte volume, and total blood volume did not change. Mean systemic arterial pressure, systemic vascular resistance, and leg vascular resistance were all greater after acclimatization (P less than 0.05). Mean plasma norepinephrine levels also increased during exercise in a parallel fashion with increased vascular resistance. Thus we conclude that both total body and leg O2 delivery decrease after arrival at 4,300 m and remain unchanged with acclimatization as a result of a parallel fall in both cardiac output and leg blood flow and an increase in arterial O2 content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Oxygen toxicity and reactive oxygen metabolites in mammals   总被引:5,自引:0,他引:5  
  相似文献   

4.
5.
Five normal men performed seven sets of seven squats at a load equal to 80% of their seven repetition maximum. Plasma growth hormone (GH) and lactate levels increased during and after the completion of the exercise. A significant (r = 0.93, P less than 0.001) linear correlation was found between GH changes and the corresponding oxygen Demand/Availability (D/A) ratio expressed by (equation; see text) (where f = [lactate at time x]/[lactate at time 0]). A retrospective examination of previously published data from our laboratory and others also demonstrated the existence of a significant correlation between changes in plasma GH levels and the D/A ratios over a wide variety of exercise; aerobic and anaerobic, continuous and intermittent, weight lifting and cycling, in both fit and unfit subjects under normoxic and hypoxic conditions. It is suggested that the balance between oxygen demand and availability may be an important regulator of GH secretion during exercise.  相似文献   

6.
Journal of Comparative Physiology A - At the onset of moderate swimming activity,Callinectes sapidus rapidly increased branchial ventilation, heart rate, and oxygen uptake, reaching steady state...  相似文献   

7.
Oxygen consumption during constant-load exercise   总被引:5,自引:0,他引:5  
  相似文献   

8.
Oxygen delivery and consumption after hemodilution with a perfluorocarbon-based oxygen carrier (PFCOC) was evaluated at sea level and at 2,600 m above sea level. Fifteen anesthetized rats were subjected to a two-exchange normovolemic hemodilution of 40% of the circulating blood volume each. First exchange was performed with a colloid solution. Second exchange was with 80% PFCOC and 20% colloid. Animals were then ventilated with 100% oxygen. Experiments were performed at barometric pressure of 1.0 atm (sea-level group, n=9) or 0.74 atm (2,600-m group, n=6). Blood gases, hematocrit, fluorocrit, and hemoglobin content were measured at baseline and 15 min after each exchange. After hemodilution, total arterial content was not modified by the PFCOC in either group. In contrast, arteriovenous oxygen difference increased significantly in both groups, as did the oxygen extraction ratio. In the second exchange, although total arterial content was similar between the two groups, the perfluorocarbon and plasma phases contributed significantly more at sea level. Arteriovenous oxygen difference was significantly less at sea level with a higher contribution from the perfluorocarbon and plasma phases. In conclusion, hemodilution with a PFCOC induced changes in oxygen delivery and consumption that differ with altitude. The 2,600-m group exhibited a higher oxygen extraction ratio and arteriovenous oxygen difference, with reduced oxygen delivery and unloading from both the fluorocarbon and plasma phase. Therefore, the efficacy of PFCOCs at 2,600 m above sea level is reduced, and altitude must be taken into account when PFCOCs are used.  相似文献   

9.
Fish were maintained in sea water equilibrated with a gas mixture containing a non-equilibrium mixture of the three molecular species of oxygen, O18-O18 (mass 36), O18-O16 (mass 34), and O16-O16 (mass 32). Analyses in the mass spectrometer, of the gases secreted into the swim-bladder showed that no change in the relative abundance of these three molecular species had occurred during the secretory process and that therefore no exchange of atoms between oxygen molecules had occurred. Scission of the oxygen-oxygen bond probably does not occur during the transport process. It is concluded that the active transport of oxygen into the swim-bladder by the gas gland is a transport of molecular oxygen.  相似文献   

10.
A decrease in maximal O2 uptake has been demonstrated with increasing altitude. However, direct measurements of individual links in the O2 transport chain at extreme altitude have not been obtained previously. In this study we examined eight healthy males, aged 21-31 yr, at rest and during steady-state exercise at sea level and the following inspired O2 pressures (PIO2): 80, 63, 49, and 43 Torr, during a 40-day simulated ascent of Mt. Everest. The subjects exercised on a cycle ergometer, and heart rate was recorded by an electrocardiograph; ventilation, O2 uptake, and CO2 output were measured by open circuit. Arterial and mixed venous blood samples were collected from indwelling radial or brachial and pulmonary arterial catheters for analysis of blood gases, O2 saturation and content, and lactate. As PIO2 decreased, maximal O2 uptake decreased from 3.98 +/- 0.20 l/min at sea level to 1.17 +/- 0.08 l/min at PIO2 43 Torr. This was associated with profound hypoxemia and hypocapnia; at 60 W of exercise at PIO2 43 Torr, arterial PO2 = 28 +/- 1 Torr and PCO2 = 11 +/- 1 Torr, with a marked reduction in mixed venous PO2 [14.8 +/- 1 (SE) Torr]. Considering the major factors responsible for transfer of O2 from the atmosphere to the tissues, the most important adaptations occurred in ventilation where a fourfold increase in alveolar ventilation was observed. Diffusion from alveolus to end-capillary blood was unchanged with altitude. The mass circulatory transport of O2 to the tissue capillaries was also unaffected by altitude except at PIO2 43 Torr where cardiac output was increased for a given O2 uptake. Diffusion from the capillary to the tissue mitochondria, reflected by mixed venous PO2, was also increased with altitude. With increasing altitude, blood lactate was progressively reduced at maximal exercise, whereas at any absolute and relative submaximal work load, blood lactate was higher. These findings suggest that although glycogenolysis may be accentuated at low work loads, it may not be maximally activated at exhaustion.  相似文献   

11.
Oxygen transport from capillaries to exercising skeletal muscle is studied by use of a Krogh-type cylinder model. The goal is to predict oxygen consumption under conditions of high demand, on the basis of a consideration of transport processes occurring at the microvascular level. Effects of the decline in oxygen content of blood flowing along capillaries, intravascular resistance to oxygen diffusion, and myoglobin-facilitated diffusion are included. Parameter values are based on human skeletal muscle. The dependence of oxygen consumption on oxygen demand, perfusion, and capillary density are examined. When demand is moderate, the tissue is well oxygenated and consumption is slightly less than demand. When demand is high, capillary oxygen content declines rapidly with axial distance and radial oxygen transport is limited by diffusion resistance within the capillary and the tissue. Under these conditions, much of the tissue is hypoxic, consumption is substantially less than demand, and consumption is strongly dependent on capillary density. Predicted consumption rates are comparable with experimentally observed maximal rates of oxygen consumption.  相似文献   

12.
The hypothesis was tested that prolonged bed rest impairs O2 transport during exercise, which implies a lowering of cardiac output c and O2 delivery (aO2). The following parameters were determined in five males at rest and at the steady-state of the 100-W exercise before (B) and after (A) 42-day bed rest with head-down tilt at −6°: O2 consumption (O2), by a standard open-circuit method; c, by the pressure pulse contour method, heart rate ( f c), stroke volume (Q h), arterial O2 saturation, blood haemoglobin concentration ([Hb]), arterial O2 concentration (C aO2), and aO2. The O2 was the same in A and in B, as was the resting f c. The f c at 100 W was higher in A than in B (+17.5%). The Q h was markedly reduced (−27.7% and −22.2% at rest and 100 W, respectively). The c was lower in A than in B [−27.6% and −7.8% (NS) at rest and 100 W, respectively]. The C aO2 was lower in A than in B because of the reduction in [Hb]. Thus also aO2 was lower in A than in B (−32.0% and −11.9% at rest and at 100 W, respectively). The present results would suggest a down-regulation of the O2 transport system after bed rest. Accepted: 22 April 1998  相似文献   

13.
Changes in intracellular Po2 in myoglobin containing skeletal muscle during exercise were estimated in normal nonathlete subjects from measurements of shifts of CO between blood and muscle under conditions where the total body CO stores remained constant. Exercise was performed on a bicycle ergometer. In 1.5-2 and 6-7 min runs at Vo2 max with the subject breathing 21% O2, mean MbCO/HbCO increased 146 +/- 7 and 163 +/- 11% of resting values, respectively (P less than 0.05). With the subjects breathing 13-14% O2, in 1.5-2 and 6-7 min runs, Vo2 max fell an average of 4.3 +/- 5.1% and 12.0 +/- 5.2%, respectively, and mean MbCO/HbCO increased to 233 +/- 18% and 210 +/- 52% of resting value, respectively (P less than 0.05). These findings suggest that mean myoglobin Po2 fell during exercise at Vo2 max, with the subjects breathing 21% O2 and the decrease in mean myoglobin Po2 was greater with the subject breathing 13-14% O2. There was considerable variability in different subjects and in some, the data were not consistent with intracellular O2 availability limiting aerobic metabolism. The data support a postulate that there are several limiting factors for the aerobic capacity, including intracellular O2 availability.  相似文献   

14.
Ten foxhounds were studied during maximal and submaximal exercise on a motor-driven treadmill before and after 8-12 wk of training. Training consisted of working at 80% of maximal heart rate 1 h/day, 5 days/wk. Maximal O2 consumption (VO2max) increased 28% from 113.7 +/- 5.5 to 146.1 +/- 5.4 ml O2 X min-1 X kg-1, pre- to posttraining. This increase in VO2max was due primarily to a 27% increase in maximal cardiac output, since maximal arteriovenous O2 difference increased only 4% above pretraining values. Mean arterial pressure during maximal exercise did not change from pre- to posttraining, with the result that calculated systemic vascular resistance (SVR) decreased 20%. There were no training-induced changes in O2 consumption, cardiac output, arteriovenous O2 difference, mean arterial pressure, or SVR at any level of submaximal exercise. However, if post- and pretraining values are compared, heart rate was lower and stroke volume was greater at any level of submaximal exercise. Venous lactate concentrations during a given level of submaximal exercise were significantly lower during posttraining compared with pretraining, but venous lactate concentrations during maximal exercise did not change as a result of exercise training. These results indicate that a program of endurance training will produce a significant increase in VO2max in the foxhound. This increase in VO2max is similar to that reported previously for humans and rats but is derived primarily from central (stroke volume) changes rather than a combination of central and peripheral (O2 extraction) changes.  相似文献   

15.
Summary At the onset of moderate swimming activity,Callinectes sapidus rapidly increased branchial ventilation, heart rate, and oxygen uptake, reaching steady state values in 2–3 min, with a half-time of 30 sec. Although O2 extraction efficiency decreased slightly (50% to 43%) upon reaching steady state, O2 uptake was increased 2.6 fold over resting (routine) levels. HemolymphP O 2 did not change during sustained (30–60 min) exercise, but a marked decrease in pH (7.60 to 7.10), associated with a 14-fold increase in hemolymph lactate concentration, caused decreases in both pre-and postbranchial O2 content due to a large hemocyanin Bohr shift. The effect of the Bohr shift on O2 binding, however, was minimized by an increase in hemocyanin O2 affinity induced by lactate ions; the influence of lactate on hemocyaninP 50 was shown to be the same in vivo and in vitro. As a result of the interaction between the Bohr and lactate effects, only slight increases were observed in the a-v O2 difference (13%) and the quantitative role of hemocyanin in oxygen transport (11%) during exercise. The increase in O2 delivery was therefore attributed primarily to a 2.3 fold increase in cardiac output (Fick estimate), resulting from increases in both heart rate (1.61 X) and stroke volume (1.42X). During exercise hemocyanin remained 21% oxygenated upon leaving the tissues, thus maintaining a substantial venous O2 reserve which could be utilized to fuel more strenuous levels of exercise at least partly by aerobic pathways. The high hemolymph lactate levels, however, indicate that anaerobic metabolism makes a significant contribution to energy production even during moderate exercise. These results are similar to the respiratory and circulatory responses reported for other decapod crustaceans and fish during mild exercise.C. sapidus, however, appears to be highly resistant to fatigue, which correlates with its welldeveloped locomotor capabilities.  相似文献   

16.
Transcutaneous oxygen tension (TcPO2) was monitored during maximal exercise in 10 patients with stable moderate to severe claudication. The TcPO2 fell by 16% at the onset of claudication and 32% at the maximum walking distance. On resting this decrease reached a maximum of 66% roughly four minutes after exercise. This was followed by a steady recovery. The percentage changes were reproducible in each patient and were appreciably different from the TcPO2 exercise profiles of normal healthy volunteers. TcPO2 monitoring during exercise is a simple, reproducible, cheap, and useful technique for assessing claudication and compares favourably with other techniques used to quantify this condition.  相似文献   

17.
Summary The oxygen binding of whole blood from humans and two arctic mammals, reindeer and muskox, has been studied as a function of carbon dioxide and temperature. All bloods display a marked Bohr effect with Bohr coefficients in the range –0.44––0.73. The Bohr effect is more pronounced at 20°C. The temperature sensitivity of reindeer and muskox blood expressed by the apparent heat of oxygenation, H, is almost three times lower than that of human HbA under the same experimental conditions. This thermodynamic difference gives special benefits to arctic mammals with large heterothermy by safeguarding oxygen unloading at very low ambient temperatures.  相似文献   

18.
The most commonly observed effect of beta-blockade on cardiovascular function has been a reduction in heart rate both at rest and during exercise. The body attempts to compensate by increasing stroke volume and (or) increasing the extraction of O2 from the blood to maintain O2 delivery to the muscle. This paper examines the roles of muscle mass involved in the exercise as well as the time course of change in cardiac output and peripheral blood flow in an attempt to understand whether O2 supply is limited by beta-blockade. Experiments are reported in which the kinetics of cardiac output response at the onset of submaximal cycle exercise were slowed in subjects taking oral propranolol. Taken in consideration with other data from our laboratory and with data in the literature, it was concluded that beta-blockade does impair O2 transport. The degree of impairment is dependent on the total muscle mass involved and the metabolic demand.  相似文献   

19.
20.
The aim of this study was to determine whether excessive oxygen uptake (Vo2) occurs not only during exercise but also during recovery after heavy exercise. After previous exercise at zero watts for 4 min, the main exercise was performed for 10 min. Then recovery exercise at zero watts was performed for 10 min. The main exercises were moderate and heavy exercises at exercise intensities of 40 % and 70 % of peak Vo2, respectively. Vo2 kinetics above zero watts was obtained by subtracting Vo2 at zero watts of previous exercise (DeltaVo2). Delta Vo2 in moderate exercise was multiplied by the ratio of power output performed in moderate and heavy exercises so as to estimate the Delta Vo2 applicable to heavy exercise. The difference between Delta Vo2 in heavy exercise and Delta Vo2 estimated from the value of moderate exercise was obtained. The obtained Vo2 was defined as excessive Vo2. The time constant of excessive Vo2 during exercise (1.88+/-0.70 min) was significantly shorter than that during recovery (9.61+/-6.92 min). Thus, there was excessive Vo2 during recovery from heavy exercise, suggesting that O2/ATP ratio becomes high after a time delay in heavy exercise and the high ratio continues until recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号