首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
J C Coffey  T E Harvey  W L Carr 《Steroids》1979,33(2):223-232
Tritiated 4-androstene-3,17-dione and testosterone were incubated with submaxillary gland homogenates of male and female rats. The metabolism was predominately reductive. In 15 and 180 min incubations submaxillary tissue converted 4-androstene-3,17-dione chiefly to androsterone. Less testosterone, 17 beta-hydroxy-5 alpha-androstan-3-one, 5 alpha-androstane-3,17-dione, 5 alpha-androstane-3 alpha, 17 beta-diol, and 4-androstene-3 alpha, 17 beta-diol were also identified. Testosterone was converted to the same products plus 4-androstene-3,17-dione. 5 alpha-Androstane-3 alpha, 17 beta-diol was the major testosterone metabolite. Qualitatively the metabolism by male and female submaxillary gland was similar.  相似文献   

2.
W Sch?nzer  G Opfermann  M Donike 《Steroids》1992,57(11):537-550
The 17-epimers of the anabolic steroids bolasterone (I), 4-chlorodehydromethyltestosterone (II), fluoxymesterone (III), furazabol (IV), metandienone (V), mestanolone (VI), methyltestosterone (VII), methandriol (VIII), oxandrolone (IX), oxymesterone (X), oxymetholone (XI), stanozolol (XII), and the human metabolites 7 alpha,17 alpha-dimethyl-5 beta-androstane-3 alpha,17 beta-diol (XIII) (metabolite of I), 6 beta-hydroxymetandienone (XIV) (metabolite of V), 17 alpha-methyl-5 beta-androst-1-ene-3 alpha,17 beta-diol (XV) (metabolite of V), 3'-hydroxystanozolol (XVI) (metabolite of XII), as well as the reference substances 17 beta-hydroxy-17 alpha-methyl-5 beta-androstan-3-one (XVII), 17 beta-hydroxy-17 alpha-methyl-5 beta-androst-1-en-3-one (XVIII) (also a metabolite of V), the four isomers 17 alpha-methyl-5 alpha-androstane-3 alpha,17 beta-diol (XIX) (also a metabolite of VI, VII, and XI), 17 alpha-methyl-5 alpha-androstane-3 beta,17 beta-diol (XX), 17 alpha-methyl-5 beta-androstane-3 alpha,17 beta-diol (XXI) (also a metabolite of V, VII, and VIII), 17 alpha-methyl-5 beta-androstane-3 beta,17 beta-diol (XXII), and 17 beta-hydroxy-7 alpha,17 alpha-dimethyl-5 beta-androstan-3-one (XXIII) were synthesized via a 17 beta-sulfate that spontaneously hydrolyzed in water to several dehydration products, and to the 17 alpha-hydroxy-17 beta-methyl epimer. The 17 beta-sulfate was prepared by reaction of the 17 beta-hydroxy-17 alpha-methyl steroid with sulfur trioxide pyridine complex. The 17 beta-methyl epimers are eluted in gas chromatography as trimethylsilyl derivatives from a capillary SE-54 or OV-1 column 70-170 methylen units before the corresponding 17 alpha-methyl epimer. The electron impact mass spectra of the underivatized and trimethylsilylated epimers are in most cases identical and only for I, II, and V was a differentiation between the 17-epimers possible. 1H nuclear magnetic resonance (NMR) spectra show for the 17 beta-methyl epimer a chemical shift for the C-18 protons (singlet) of about 0.175 ppm (in deuterochloroform) to a lower field. 13C NMR spectra display differences for the 17-epimeric steroids in shielding effects for carbons 12-18 and 20. Excretion studies with I-XII with identification and quantification of 17-epimeric metabolites indicate that the extent of 17-epimerization depends on the A-ring structure and shows a great variation for the different 17 alpha-methyl anabolic steroids.  相似文献   

3.
Rat ventral prostate and liver were investigated for the binding in vitro to particulate fractions and for the metabolism of 5 alpha-androstane-3 beta, 17 beta-diol. Comparative investigations were carried out on the metabolism of 5 alpha-androstane-3 alpha, 17 beta-diol. Preparations of the liver were investigated in order to establish the organ specificity of the method. In the prostate, the bulk of the metabolites of 5 alpha-androstane-3 beta, 17 beta-diol was present as steroids of high polarity. Of the less polar metabolites, 17 beta-hydroxy-5 alpha-androstan-3-one, 3 beta-hydroxy-5 alpha-androstan, 17-one and 5 alpha-androstane-3 alpha, 17 beta-diol were detectable. The binding of a 5 alpha-androstane-3 beta, 17 beta-diol to mitochondria and microsomes was unspecific. In the liver, among the less polar metabolites, 3 beta-hydroxy-5 alpha-androstan-17-one was the main metabolite, and the binding was unspecific. The main metabolite in the prostate homogenate of 5 alpha-androstane-3 alpha, 17 beta-diol was 17 beta-hydroxy-5 alpha-androstan-3-one. The portion of highly polar steroids was very low. The portion of unmetabolized hormone was distributed almost equally among the different cell preparations except the nuclei, in which 17 beta-hydroxy-5 alpha-androstan-3-one was higher and 5 alpha-androstane-3 alpha, 17 beta-diol was lower than in the remaining cell fractions.  相似文献   

4.
The four possible isomers 16beta-hydroxymethyl-5alpha-androstane-3beta,17beta-diol 1, 16alpha-hydroxymethyl-5alpha-androstane-3beta,17beta-diol 2, 16beta-hydroxymethyl-5alpha-androstane-3beta,17alpha-diol 3 and 16alpha-hydroxymethyl-5alpha-androstane-3beta,17alpha-diol 4 with proven configuration were converted into the corresponding 16beta-methyl-5alpha-androstane-3beta,17beta-diol 5, 16alpha-methyl-5alpha-androstane-3beta,17beta-diol 6, 16beta-methyl-5alpha-androstane-3beta,17alpha-diol 7, 16alpha-methyl-5alpha-androstane-3beta,17alpha-diol 8, furthermore into the 16beta-methyl-17beta-hydroxy-5alpha-androstane-3-one 13, 16alpha-methyl-17beta-hydroxy-5alpha-androstan-3-one 14, 16beta-methyl-17alpha-hydroxy-5alpha-androstan-3-one 15 and 16alpha-methyl-17alpha-hydroxy-5alpha-androstan-3-one 16. The steric structures of the resulting epimers were determined by means of 1H-, and 13C-NMR spectroscopy. In this way, comparison was possible with the C-16 epimers 5, 6 and 13, 14 prepared earlier by a different route, and the series of isomers could be completed with the steric structures of 16beta-methyl-17alpha-hydroxy-5alpha-androstan-3beta-ol 7 and 16alpha-methyl-17alpha-hydroxy-5alpha 8 and with their 3-keto derivatives 15 and 16. The relative binding affinities of the 16-methyl-5alpha-androstane-3beta,17-diols 5, 6, 7, 8 and 17-hydroxy-16-methyl-5alpha-androstan-3-ones 13, 14, 15, 16 were studied. The introduction of a 16-methyl substituent into 5alpha-androstane molecules substantially decreases the binding affinity to the androgen receptor and 16alpha-methyl derivatives were always bound more weakly than the 16beta-methyl isomers.  相似文献   

5.
As a result of studies of guinea-pig live testosterone 17beta-dehydrogenase (NADP+) (EC 1.1.1.64), a new testosterone 17beta-dehydrogenase was discovered. The new enzyme was purified to a single homogeneous protein from the 105 000 g-supernatant fraction of guinea-pig liver by (NH4)2SO4 fractional precipitation and two gel-filtration stages, DEAE-cellulose column chromatography and hydroxyapatite column chromatography. It was characterized by many properties. The enzyme has almost the same properties as the classical testosterone 17beta-dehydrogenase (NADP+) (EC 1.1.1.64), with respect to cofactor requirement, pH optima for dehydrogenation, effect of phosphate ion on the NAD+-dependent reaction and molecular weight, but characteristic differences were observed in substrate-specificity between the two dehydrogenases. With various androstane derivatives, the configuration of the A/B-ring junction was closely connected with enzyme activity. 5alpha-Androstanes, such as 5alpha-androstane-3alpha,17beta-diol, 5alpha-androstane-3beta,17beta-diol and 17beta-hydroxy-5alpha-androstan-3-one, and 5beta-congeners, such as 5beta-androstane-3alpha,17beta-diol, 5beta-androstane-3beta,17beta-diol and 17beta-hydroxy-5beta-androstan-3-one, served as substrates for both the EC 1.1.1.64 enzyme and the new enzyme. The EC 1.1.1.64 enzyme oxidized testosterone more rapidly than did the new enzyme. These comparisons were based on the relative activities, apparent Km values and apparent Vmax values.  相似文献   

6.
Significant metabolism of 5 alpha-androstane-3 beta,17 beta-diol to 17 beta-hydroxy-5 alpha-androstan-3-one was recorded in several tissues and organs from rats and humans. This bioconversion was further investigated in rat testis homogenates. 5 alpha-Androstane-3 beta,17 beta-diol was readily metabolized to 17 beta-hydroxy-5 alpha-androstan-3-one with NAD and/or NADP added as cofactors. When a NADPH generating system was included in the incubation, 5 alpha-androstane-3 beta,17 beta-diol was metabolized to 5 alpha-androstan-3 alpha,17 beta-diol. Only small amounts of 17 beta-hydroxy-5 alpha-androstan-3-one accumulated under the latter condition.  相似文献   

7.
The retro steroids 17beta-hydroxy-5beta,9beta,10alpha-androstan-3-one and 5beta,9beta,10alpha-androstane-3,17-dione were good substrates for cortisone reductase in the presence of NADH, and the products corresponded to the respective 3beta-hydroxy compounds, in which the 3beta-hydroxyl group is axial and the absolute configuration is 3S. The analogous natural steroids 17beta-hydroxy-5beta,9alpha,10beta-androstan-3-one and 5beta,9alpha,10beta-androstane-3,17-dione were very poor substrates, and gave the corresponding 3alpha(equatorial,3R)-hydroxy compounds, and, in the latter case, also an appreciable amount of 3beta(axial, 3S)-hydroxy-5beta,9alpha,10beta-androstan-17-one. The natural steroids 17beta-hydroxy-5alpha,9alpha,10beta-androstan-3-one and 5alpha,9alpha,10beta-androstane-3,17-dione were better substrates than the retro steroid 17beta-hydroxy-5alpha,9beta,10alpha-androstan-3-one, but were not such good substrates as the retro steroids 17beta-hydroxy-5beta,9beta,10alpha-androstan-3-one and 5beta,9beta,10alpha-androstane-3,17-dione. Unlike these retro steroid 5beta,9beta,10alpha-androstan-3-ones, the natural steroids 17beta-hydroxy-5alpha,9alpha,10beta-androstan-3-one and 5alpha,9alpha,10beta-androstane-3,17-dione gave the corresponding 3alpha(axial,3R)-hydroxy compounds. The retro steroid 17beta-hydroxy-5alpha,9beta,10alpha-androstan-3-one was not a good substrate, and the product of reaction corresponded to the 3alpha(axial,3R)-hydroxy compound. The nature of substrate recognition by this enzyme is discussed in the light of these structure-activity relationships.  相似文献   

8.
Although 19-hydroxy-4beta,5-oxido-5beta-androstane-3,17 dione (2a) is converted to estradiol-17beta by human placental microsomes, the incubation of 17beta-hydroxy-4beta,5-oxido-5beta-androstan-3-one (2b) under the same conditions produces only metabolites which are more polar than 17beta-estradiol. The metabolites have been isolated and identified as 3alpha-hydroxy-4beta,5-oxido-5beta-androstan-17-one (4a), 4beta,5-oxido-5beta-androstane-3beta, 17beta-diol (5a) and 4beta,5-oxido-5beta-androstane-3alpha,17beta-diol (6a). These results indicate that functionalization at C-19 is a prerequisite for the biological aromatization of such androgen epoxides.  相似文献   

9.
17 alpha-Methyltestosterone and the reduced metabolites, 17 alpha-methyl-5 alpha-androstane-3 alpha, 17 beta-diol, 17 alpha-methyl-5 alpha-androstane-3 beta, 17 beta-diol and 17 alpha-methyl-5 beta-androstane-3 alpha, 17 beta-diol, together with three hydroxylated metabolites, 17 alpha-methyl-5 beta-androstane-3 alpha, 16 alpha, 17 beta-triol, 17 alpha-methyl-5 beta-androstane-3 alpha, 16 beta, 17 beta-triol and a new metabolite, 17 alpha-methyl-5 alpha-androstane-3 beta, 6 alpha, 17 beta-triol, were isolated and identified in the urine of rabbits dosed with 17 alpha-methyltestosterone. No hydroxylated 5 alpha-metabolite of 17 alpha-methyltestosterone has been identified previously. No of 17 alpha-methyltestosterone has been identified previously. No evidence for epimerization at the C-17 position was observed.  相似文献   

10.
After oral administration of metandienone (17 alpha-methyl-androsta-1,4-dien-17 beta-ol-3-one) to male volunteers conjugated metabolites are isolated from urine via XAD-2-adsorption, enzymatic hydrolysis and preparative high-performance liquid chromatography (HPLC). Four conjugated metabolites are identified by gas chromatography-mass spectrometry (GC/MS) with electron impact (EI)-ionization after derivatization with N-methyl-N-trimethyl-silyl-trifluoroacetamide/trimethylsilyl-imidazole (MSTFA/TMS-Imi) and comparison with synthesized reference compounds: 17 alpha-methyl-5 beta-androst-1-en-17 beta-ol-3-one (II), 17 alpha-methyl-5 beta-androst-1-ene-3 alpha,17 beta-diol (III), 17 beta-methyl-5 beta-androst-1-ene-3 alpha,17 alpha-diol (IV) and 17 alpha-methyl-5 beta-androstane-3 alpha,17 beta-diol (V). After administration of 40 mg of metandienone four bis-hydroxy-metabolites--6 beta,12-dihydroxy-metandienone (IX), 6 beta,16 beta-dihydroxy-metandienone (X), 6 beta,16 alpha-dihydroxy-metandienone (XI) and 6 beta,16 beta-dihydroxy-17-epimetandienone (XII)--were detected in the unconjugated fraction. The metabolites III, IV and V are excreted in a comparable amount to the unconjugated excreted metabolites 17-epimetandienone (VI), 6 beta-hydroxy-metandienone (VII) and 6 beta-hydroxy-17-epimetandienone (VIII). Whereas the unconjugated excreted metabolites show maximum excretion rates between 4 and 12 h after administration the conjugated metabolites III, IV and V are excreted with maximum rates between 12 and 34 h.  相似文献   

11.
The incubation of [4-14C]testosterone with adult male hamster liver cytosol at pH 6.7 yielded 5 beta-androstane-3 alpha, 17 beta-diol and small quantities of 5 beta-androstane-3 beta, 17 beta-diol, 17 beta-hydroxy-5 beta-androstan-3-one, 3 alpha-hydroxy-5 beta-androstan-17-one and androstenedione. The use of [4-14C]androstenedione as substrate yielded the same 5 beta-metabolites and also testosterone and a trace of epitestosterone. 5 beta-Androstane-3 alpha, 17 beta-diol was the major metabolite at "low" concentrations of substrate but testosterone and 3 alpha-hydroxy-5 beta-androstan-17-one became the major metabolites as the concentration of the substrate was increased. Small quantities of 5 beta-androstane-3,17-dione and 3 beta-hydroxy-5 beta-androstan-17-one were detected at "high" while 5 beta-androstane-3 alpha, 17 alpha-diol was detected at "low" concentrations of androstenedione. NADPH was more effective than NADH except in the formation of the 3 beta-steroids. Furthermore, the 3 beta-steroids were formed in maximum quantities at a lower pH than the other metabolites. The relative production of the metabolites was consistent with their respective spectrophotometrically determined degree of hydroxyl dehydrogenation.  相似文献   

12.
The direct effect of ethanol on dihydrotestosterone (DHT) conversion to 5 alpha-androstan-3 beta,17 beta-diol (3 beta-diol) and 5 alpha-androstan-3 alpha,17 beta-diol (3 alpha-diol) by adult rat Leydig cells was examined. Concentrations of ethanol comparable to blood levels of alcoholic men (2.2 - 65 mM) increased DHT conversion to 3 beta - and 3 alpha-diol, in direct relation to the dose of ethanol added; a 2-fold or greater stimulation was observed. Because this effect was blocked by 4-methylpyrazole or a saturating NADH concentration, these results suggest that this action is mediated by Leydig cell alcohol dehydrogenase activity. These results may have significant impact in the testis and/or other DHT sensitive tissues because ethanol may decrease the availability of the proposed active androgen.  相似文献   

13.
Cultured human skin fibroblasts were shown to contain an androgen binding activity (receptor) which was heat-labile and destroyed by trypsin. Specific binding was seen after incubations of these cells with 1,2-3-H-testosterone, 1,2-3-H17beta-hydroxy-5alpha-androstan-3-one (dihydrotestosterone, DHT) and 1,2-3-H-5alpha-androstane-3alpha, 17beta-diol. This receptor had a high affinity (Kd=0,2-1.6 nM) and a high degree of specificity for DHT. It was measured as a 3-H-DHT-protein complex by gel filtration chromatography using a method which distinguishes specific from nonspecific binding. Receptor activity was distributed about equally between nuclear and extranuclear components at all times studied and was present in both compartments when cell incubations were carried out at 4 degrees and 37 degrees. Saturation analysis indicated that there were 1250-18,600 binding sites per whole cell. By sucrose gradient centrifugation the receptor had a sedimentation coefficient (S20,w) of about 4. Cells grown for 8 days without serum in the medium maintained the same levels of 3-H-DHT binding. Within 15 hours puromycin (20 mug/ml) in serum-free medium caused a 40-60 percent decrease in binding for the same cell lines. Although the highest levels of 3-H-DHT binding were observed in fibroblasts from newborn foreskin, appreciable cytosol and nuclear binding were seen in cells from forearm, neck and abdominal skin. Receptor activity was stable during prolonged culture. Fibroblasts from several skin sites from patients with the androgen insensitivity syndrome (testicular feminization) had no detectable specific DHT binding. In this study it was demonstrated that skin fibroblasts can rapidly convert testosterone to its active form, DHT, bind DHT to a specific receptor protein and transport this complex to their nuclei. Therefore this may prove to be a convenient system for studying androgen action in vitro.  相似文献   

14.
Methyltrienolone (R 1881 - 17beta-hydroxy-17alpha-methyl-estra-4, 9, 11-trien-3-one) binding to rat ventral prostate cytosol has a specificity typical of an androgen receptor. In human benign prostatic hypertrophy (BPH) tissue, the specificity of [3H] R 1881 binding is different from that measured in rat prostate: progesterone and R 5020 (17, 21-dimethyl-19-nor-4, 9-pregnadiene-3, 20-dione) being more potent while 19-nortestosterone is less potent competitor. Moreover, the synthetic progestin [3H] R 5020 binds to BPH tissue with a similar specificity. These data suggest the presence of progestin binding components or of an atypical androgen receptor in human BPH cytosol.  相似文献   

15.
The bacterial degradation of cholic acid under anaerobic conditions by Pseudomonas sp. N.C.I.B. 10590 was studied. The major unsaturated neutral compound was identified as 12 beta-hydroxyandrosta-4,6-diene-3,17-dione, and the major unsaturated acidic metabolite was identified as 12 alpha-hydroxy-3-oxochola-4,6-dien-24-oic acid. Eight minor unsaturated metabolites were isolated and evidence is given for the following structures: 12 alpha-hydroxyandrosta-4,6-diene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-4,6-dien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 alpha-hydroxyandrosta-1,4-diene-3,17-dione, 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, 3,12-dioxochola-4,6-dien-24-oic acid and 12 alpha-hydroxy-3-oxopregna-4,6-diene-20-carboxylic acid. In addition, a major saturated neutral compound was isolated and identified as 3 beta,12 beta-dihydroxy-5 beta-androstan-17-one, and the only saturated acidic metabolite was 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholan-24-oic acid. Nine minor saturated neutral compounds were also isolated, and evidence is presented for the following structures: 12 beta-hydroxy-5 beta-androstane-3,17-dione, 12 alpha-hydroxy-5 beta-androstane-3,17-dione, 3 beta,12 alpha-dihydroxy-5 beta-androstan-17-one, 3 alpha,12 beta-androstan-17-one, 3 alpha,12 alpha-dihydroxy-5 beta-androstan-17-one, 5 beta-androstane-3 beta,12 beta,17 beta-triol, 5 beta-androstane-3 beta,12 alpha,17 beta-triol, 5 beta-androstane-3 alpha,12 beta,17 beta-triol and 5 beta-androstane-3 alpha,12 alpha,17 beta-triol. The induction of 7 alpha-dehydroxylase and 12 alpha-dehydroxylase enzymes is discussed, together with the significance of dehydrogenation and ring fission under anaerobic conditions.  相似文献   

16.
Urinary androstanediol measurement, often in association with other androgens, is commonly used to support the clinical diagnosis of idiopathic hirsutism. In addition, androgen excess has been shown to be the endocrine abnormality which characterizes patients with breast cancer. We recently developed a method for the measurement of urinary testosterone employing solid-phase extraction and HPLC purification before quantitative measurement by gas chromatography. In the present report we verify the feasibility of the method for the simultaneous measurement of 5 alpha-androstane-3 alpha,17 beta-diol and 5 beta-androstane-3 alpha,17 beta-diol in addition to testosterone in the same urine sample. The mean recovery for the whole procedure was 89.8% for 5 alpha-androstane-3 alpha,17 beta-diol and 87.8% for 5 beta-androstane-3 alpha, 17 beta-diol. The estimates of the coefficients of variation were 4.9% (95% confidence limits: 3.9-6.5%) and 3.9% (95% confidence limits: 3.1-5.2%), respectively. Accuracy was evaluated by standard addition and dilution assays and a linear relationship was found between expected and observed values (r2 = 0.997 for 5 alpha-androstane-3 alpha,17 beta-diol and r2 = 0.999 for 5 beta-androstane-3 alpha,17 beta-diol). The method is rapid, effective and suitable for the measurement of testosterone, 5 alpha-androstanediol and 5 beta-androstanediol in the same urine sample.  相似文献   

17.
A gas chromatographic-mass spectrometric (GC-MS) method for analysis of unconjugated steroids in a rat testis is described. A combined solvent-solid extraction procedure, utilizing Lipidex 1000 and Sep-Pak C18, gives a 25-fold purified extract. Steroids in this extract are fractionated by straight phase high-performance liquid chromatography (HPLC) on a LiChrosorb DIOL column in n-hexane-2-propanol, 92:8 (v/v). Four fractions are collected and the steroids are converted to tert-butyldimethylsilyl (TBDMS), 3-enol-TBDMS, and mixed TBDMS-trimethylsilyl (TMS) derivatives using TBDMS- and TMS-imidazole with sodium formate as catalyst under conditions suitable for the steroids present in the respective fractions. The derivatives are purified by reversed phase HPLC in 100% methanol and are analyzed by GC-MS, using selected ion monitoring of the major ions of high mass. For quantification, a mixture of known amounts of ten 14C-labelled steroids, [3H]estradiol and [2H3]estradiol are added to the testis homogenate. The mean concentrations (ng/g wet wt) of the twelve steroids determined were: 4-androstene-3, 17-dione, 4.0; testosterone, 127; 17 beta-hydroxy-5 alpha-androstan-3-one, 4.5; 5 alpha-androstane-3 alpha, 17 beta-diol, 5.7; 5 alpha-androstane-3 beta, 17 beta-diol, 1.5; progesterone, 5.5; 17 alpha-hydroxyprogesterone, 14.4; 3 beta-hydroxy-5-androsten-17-one, 0.07; 5-androstene-3 beta, 17 beta-diol, 0.25; 3 beta-hydroxy-5-pregnen-20-one, 10.3; 3 beta, 17 beta-dihydroxy-5-pregnen-20-one, 0.95; and estradiol, 0.025. Variations between animals were large whereas testes from the same animal in most cases had similar steroid concentrations.  相似文献   

18.
A mixture of 3H-testosteron (T) and 14C-4-androstene-3, 17-dione (A) was injected intravenously into 2 (I and II) rhesus monkeys (Macaca mulatta). A third monkey (III) was injected with 3H-T only. Urine and bile samples were collected at intervals for 6 hours following the injection. The excretion, conjugation and aglycone metabolites of the steroids injected were studied using these samples. Of the injected dose, animal I (male) excreted 32% 3H and 23% 14C in the bile and 30% 3H and 21% 14C in the urine in 6 hours. Animal II (female), however, had a comparatively higher biliary excretion (66% 3H, 40% 14 C), but a urinary excretion (18% 3H, 13% 14C) comparable to that of animals I and III. The averages in the bile of the 3 animals were: unconjugated compounds 3%, glucosiduronates 78%, sulfates 9%, sulfoglucosiduronates 5% and disulfates 3%; and in urine, 5% unconjugated, 92% glucosiduronates and 3% sulfates. The aglycones obtained following hydrolysis were separated gy chromatography on Lipidex 5000, further purified by thin layer and paper chromatography and identified by co-crystallization. The major matabolites from 3H-T were androsterone and 5beta-androstane-3alpha,17beta-diol, whereas that from 14C-A was androsterone. Other metabolites identified were: etiocholanolone (3beta-hydroxy-5-beta-androstan-17-one); T, epitestosterone (epi-T), (17alpha-hydroxy-4-androsten-3-one); epiandrosterone (3-beta-hydroxy-5alpha-androstan-17-one) and 5alpha-androstane-3alpha, 17beta-diol. The results indicate that while androgen metabolism in the rhesus monkey is similar to that of the baboon and human in conjugate and metabolite formation, the rate of excretion was significantly different, resembline more closely that of the baboon than the human.  相似文献   

19.
4-Hydroxyandrost-4-ene-3,17-dione is a second generation, irreversible aromatase inhibitor and commonly used as anti breast cancer medication for postmenopausal women. 4-Hydroxytestosterone is advertised as anabolic steroid and does not have any therapeutic indication. Both substances are prohibited in sports by the World Anti-Doping Agency, and, due to a considerable increase of structurally related steroids with anabolic effects offered via the internet, the metabolism of two representative candidates was investigated. Excretion studies were conducted with oral applications of 100mg of 4-hydroxyandrostenedione or 200mg of 4-hydroxytestosterone to healthy male volunteers. Urine samples were analyzed for metabolic products using conventional gas chromatography-mass spectrometry approaches, and the identification of urinary metabolites was based on reference substances, which were synthesized and structurally characterized by nuclear magnetic resonance spectroscopy and high resolution/high accuracy mass spectrometry. Identified phase-I as well as phase-II metabolites were identical for both substances. Regarding phase-I metabolism 4-hydroxyandrostenedione (1) and its reduction products 3beta-hydroxy-5alpha-androstane-4,17-dione (2) and 3alpha-hydroxy-5beta-androstane-4,17-dione (3) were detected. Further reductive conversion led to all possible isomers of 3xi,4xi-dihydroxy-5xi-androstan-17-one (4, 6-11) except 3alpha,4alpha-dihydroxy-5beta-androstan-17-one (5). Out of the 17beta-hydroxylated analogs 4-hydroxytestosterone (18), 3beta,17beta-dihydroxy-5alpha-androstan-4-one (19), 3alpha,17beta-dihydroxy-5beta-androstan-4-one (20), 5alpha-androstane-3beta,4beta,17beta-triol (21), 5alpha-androstane-3alpha,4beta,17beta-triol (26) and 5alpha-androstane-3alpha,4alpha,17beta-triol (28) were identified in the post administration urine specimens. Furthermore 4-hydroxyandrosta-4,6-diene-3,17-dione (29) and 4-hydroxyandrosta-1,4-diene-3,17-dione (30) were determined as oxidation products. Conjugation was diverse and included glucuronidation and sulfatation.  相似文献   

20.
Spermatozoa from bovine ejaculates and cauda epiditymidis were incubated with either tritiated 17 beta-hydroxy-5 alpha-androstane-3-one (DHT) or 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol). Examination of the medium incubations demonstrated metabolic conversion of both DHT and 3 alpha-diol when these steriods were incubated with ejaculated sperm. In addition to this interconversion, the following metabolities were identified: 5 alpha-androstane-3 beta, 17 beta-diol, (3 beta-diol), androsterone and 5 alpha-androstane-3, 17-dione (5 alpha-A-dione). Incubations with cauda spermatozoa showed similar metabolic patterns. Androgen binding was exhibited by both sperm types. Examination of the washed cauda sperm pellet, following incubations with 3 alpha-diol showed that the incubated steroid was the most abundantly bound. DHT and 5 alpha-androst-16-en-3 alpha-ol (delta 16-3 alpha-ol1 were also detected. The major part of the radioactivity bound in the sperm pellet was identified as DHT when this steroid was used as the substrate; the remaining radioactivity consisted of 3 alpha-diol and delta 16-3 alpha-ol. Investigations of ejaculated sperm pellets gave similar results apart from the additional identification of 5 alpha-androst-16-en-3 one (delta 16-3-one) and 5 alpha-androst-16-en-3 beta-ol (delta 16-3 beta-ol (delta 16-3 beta-ol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号