共查询到20条相似文献,搜索用时 15 毫秒
1.
Carmen Bergareche Roberto Ayuso Carles Masgrau Esther Simon 《Physiologia plantarum》1994,91(2):257-262
Regulation by the active form of phytochrome (PFR ) and the effect of Ca2+ was examined with nitrate reductase (NR) in etiolated cucumber ( Cucumis sativus cv. Beilpuig). Nitrate reductase activity (NRA) was studied in excised cotyledons of cucumber seedlings grown in distilled water and in darkness for seven days at 24 ± 0.5°C. All experiments were performed in the dark and a dim green safelight was used during analyses. In etiolated cucumber cotyledons NRA was induced by nitrate and a brief irradiation (15 min) with red light (R) resulted in 62% increase in NRA. This effect was nullified when R was followed immediately by a brief (5 min) far-red light (FR). NRA also showed a semidian (12 h) rhythmicity. Both PFR , and nitrate effects were age dependent. Calcium seemed to be involved since the phytochrome effect was only observed when calcium was supplied in the external solution. The effect of R on NRA depended on the period of calcium nitrate incubation. An external supply of calcium ionophore mimicked the effect of R and, if supplied to R-irradiated cotyledons, produced a higher NR level than that caused by R alone. This suggested that intracellular free calcium was involved. 相似文献
2.
The thermomorphological responses of young cucumber plants to a temperature drop lasting 2, 4 and 6 hours applied at the beginning, in the middle and at the end of the night were examined. Plant height, leaf petiole length and plant dry weight were measured and, based on the experimental data, the regression dependences of growth variables on the temperature drop were fitted. A method to determine the optimal temperature drop (the duration and time of exposure) which results in shortened plant height and leaf petiole length without a decrease in plant dry weight is proposed. 相似文献
3.
Uptake of calcium in wheat and cucumber roots 总被引:1,自引:0,他引:1
Uptake of Ca2+ (45 Ca) was investigated in plants of wheat ( Triticum aestivum L. var. Svenno) and cucumber ( Cucumis sativus L. var. Cilla) cultivated in a nutrient solution with various Ca2+ concentrations. The adsorption of Ca2+ was higher in cucumber roots than in wheat roots especially at lower Ca2+ levels in the external medium. The intracellular fraction of Ca2+ was less than 20% of the total Ca2+ in wheat roots and less than 10% of the total Ca2+ in cucumber roots. The uptake of Ca2+ in cucumber was about 40 times higher than in wheat. Transport of Ca2+ in the roots towards the endodermis is suggested to take place mainly in the apoplastic pathway regulated by the availability of negatively charged binding sites along the cell wall continuum. Further transport of Ca2+ towards the stele may involve diffusion of Ca2+ into the symplasm in the vicinity of the endodermis. An active extrusion of Ca2+ towards the stele or towards the external medium is suggested to play a role in the regulation of Ca2+ uptake. 相似文献
4.
Cotyledons excised without the hypocotyl hook from 6-day-old etiolated cucumber ( Cucumis sativus L. var. Elem) seedlings accumulated a significantly higher amount of chlorophyll than cotyledons excised with hooks or intact cotyledons. It was found that maximum ehancement of greening was achieved after 2 h of dark incubation following excision. Pretreatments with red light effected an additive rise in chlorophyll level in subsequent white light after a dark incubation, suggesting that the effects of excision and phytochrome on greening act independently. Etiolated seedlings were variously dissected before greening and it was found that enhancement occurred only when cotyledons were excised at the level of the hypocotyl hook or above it. Similar results were obtained when the dissected plants were pre-treated with red light. 相似文献
5.
I. Horváth L. Vigh Ph. R. van Hasselt J. Woltjes P. J. C. Kuiper 《Physiologia plantarum》1983,57(4):532-536
The lipid composition of leaves has been investigated in different genotypes of cucumber ( Cucumis sativus L.), which differ in temperature requirement for cultivation. In addition the effects of hardening by low but non-chilling temperature, soil heating and grafting (on the chilling-resistant C. ficifolia L.) on lipid composition have been studied. Content and composition of phospholipids and sterols were determined as well as phospholipid/sterol ratio, and fatty acid composition of total lipids and the different phospholipids.
The effects of genetic differentiation and of the various culture treatments on lipid composition of the leaves were very different. Genetic differentiation was evident as higher levels of Iinolenic acid in several phospholipids in the more cold-tolerant cultivars. Hardening the plants by low temperature resulted in a higher phospholipid level (especially phosphatidyl choline), more unsaturated phospholipid, and lowering of the sterol/phiospholipid ratio, all properties which may contribute to a higher membrane fluidity and lower growth temperature limit. Soil healing reduced the phospholipid level of the leaves slightly, and a higher content of 3- trans -hexadece-noic acid in phosphatidyl glycerol was observed. Grafting cucumber on the cold-resistant rootstock of C. ficifolia also raised the level of trans -hexadecenoic acid in phosphatidyl glycerol. The role of this fatty acid in the functioning of the chloroplast is discussed. 相似文献
The effects of genetic differentiation and of the various culture treatments on lipid composition of the leaves were very different. Genetic differentiation was evident as higher levels of Iinolenic acid in several phospholipids in the more cold-tolerant cultivars. Hardening the plants by low temperature resulted in a higher phospholipid level (especially phosphatidyl choline), more unsaturated phospholipid, and lowering of the sterol/phiospholipid ratio, all properties which may contribute to a higher membrane fluidity and lower growth temperature limit. Soil healing reduced the phospholipid level of the leaves slightly, and a higher content of 3- trans -hexadece-noic acid in phosphatidyl glycerol was observed. Grafting cucumber on the cold-resistant rootstock of C. ficifolia also raised the level of trans -hexadecenoic acid in phosphatidyl glycerol. The role of this fatty acid in the functioning of the chloroplast is discussed. 相似文献
6.
A variety of electrolytes (10-30 mol m-3) increased the relative growth rate of etiolated cucumber (Cucumis sativus L. cv. Burpee's Pickler) hypocotyls by 20-50% relative to water-only controls. The nonelectrolyte mannitol inhibited growth by 10%. All salts tested were effective, regardless of chemical composition or valence. Measurements of cell-sap osmolality ruled out an osmotic mechanism for the growth stimulation by electrolytes. This, and the nonspecificity of the response, indicate that an electrical property of the solutions was responsible for their growth-stimulating activity. Measurements of surface electrical potential supported this reasoning. Treatment with electrolytes also enhanced nutation and altered the pattern of phototropic curvature development. A novel analytical method for quantitating these effects on growth was developed. The evidence indicates that electrolytes influence an electrophysiological parameter that is involved in the control of cell expansion and the coordination of growth underlying tropisms and nutations. 相似文献
7.
8.
Uptake and translocation of calcium in cucumber 总被引:1,自引:0,他引:1
Bengt Bengtsson 《Physiologia plantarum》1982,54(2):107-111
Uptake and translocation of Ca2+ (45 Ca) were compared with water translocation in 12-day old intact plants and excised roots of cucumber ( Cucumis sativus L. var. Cilla), which had been cultivated in nutrient solution. No immediate reduction of Ca2+ uptake was found when water translocation was reduced by excision of the shoot. In the presence of 2,4-dinitrophenol Ca2+ translocation was reduced in the intact plants while water translocation was unchanged. It is suggested that regulation of Ca2+ uptake is primarily achieved in the root. The DNP-sensitive mechanism of Ca2+ uptake was associated with the root and probably represented transport through the endodermis into the stele. 相似文献
9.
Changes of polyamines and ethylene in cucumber seedlings in response to chilling stress 总被引:5,自引:0,他引:5
Chien Yi Wang 《Physiologia plantarum》1987,69(2):253-257
Cucumber ( Cucumis sativus L. cv. Victory) seedlings were exposed to chilling at 5°C and endogenous levels of polyamines and 1-aminocyclopropane-1-carboxylic acid (ACC) were measured after chilling and after warming at 20°C. The level of spermidine was higher in the chilled seedlings than in the non-chilled seedlings. Treatment with a plant bioregulator, (2RS,3RS)-1-(4-cholorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol (paclobutrazol), reduced the chilling injury and the levels of spermidine in the chilled seedlings. The levels of ACC and production of ethylene showed sharp increases after warming following exposure to chilling. These increases were suppressed by the application of aminooxyacetic acid (AOA). However, AOA treatment did not reduce chilling injury or affect the levels of polyamines in the tissue. These data indicate that the increase in ACC and ethylene is a response of the tissue to the chilling exposure and is not a cause of the injury. The data also suggest that the syntheses of polyamines and ethylene are not competitive with each other even under chilling stress conditions. 相似文献
10.
Cucumber (Cucumis sativus L.) seedlings carrying the long hypocotyl (Ih) mutation, which confers a lack of B-type phytochrome (phyB), were significantly shorter than their near-isogenic wild-type counterparts when grown in complete darkness. Relative growth rates determined for 5 mm hypocotyl regions were lower in Ih seedlings in all growing regions, and the zone of elongation was less extensive in Ih hypocotyls. Digital imaging microscopy revealed that the pattern of epidermal cell lengths along the stem axis differed between the Ih mutant and the iso-genic wild-type. These findings (and the fact that experiments were conducted under conditions where phytochrome photoconversion to the far-red-absorbing form does not occur) suggest that the red-absorbing form of phyB (PrB) is an active positive regulator of development in etiolated plants. 相似文献
11.
Phytochrome-mediated development of glycine oxidation by mitochondria in cucumber cotyledons 总被引:1,自引:0,他引:1
Yukio Morohashi 《Physiologia plantarum》1987,70(1):46-50
The development of glycine oxidation activity in mitochondria in etiolated cucumber ( Cucumis sativus L., cv. Shinfushinari) cotyledons is regulated by phytochrome. This conclusion is based on two lines of evidence. 1. The oxidation activity was increased by continuous illumination of far-red light. 2. It was also increased by brief red light pulses, the effect of which was reversed by brief far-red light pulses. The light-induced increase in glycine oxidation and in glycine decarboxylase (EC 2.1.2.10) activity in the cotyledons was inhibited by cycloheximide, but not by chloramphenicol. While glycine oxidation activity continued to increase during light-illumination for 20 h, malate oxidation activity increased for 6 to 8 h after illumination and decreased thereafter. This transient increase in the activity of malate oxidation was also induced by red light pulses and the effect of the red light was reversed by far-red light pulses. 相似文献
12.
13.
M.I. Sysoeva E.F. Markovskaya T.G. Kharkina E.G. Sherudilo 《Plant Growth Regulation》1999,28(2):89-94
The study aimed to provide information on the involvement of plant cold resistance in a whole cucumber (Cucumis sativus L.) plant response to temperature drop treatments. The main objective was to explain the effects of a temperature drop on dry matter production and plant morphogenesis. The experimental design included temperature drops to 12°C for 0, 1, 2, 4 and 6 hours at the beginning, in the middle and at the end of the night. The overall average temperature for all treatments was 20°C. A 2-hour temperature drop resulted in the most significant reduction in plant dry weight and leaf petiole length, but the highest degree of cold resistance. With the extension of a temperature drop duration to 4--6 hours, dry matter production was similar to that in the control plants, leaf petiole length increased, but not up to the control level and cold resistance was reduced, but was still higher compared to that of the control plants. Changes in dry matter production, leaf petiole length and cold resistance, depending on the duration of the temperature drop, were interrelated and their patterns varied little with the timing (position effect) of the temperature drop. It is concluded that plant cold resistance mechanisms play an important role in a whole plant response to temperature drop treatments. Thus, plant response to temperature drop treatments can be considered as a response to stress. 相似文献
14.
Mitochondria isolated from cotyledons of dark-grown cucumber ( Cucumber sativus L., cv. Shimotsuki-Aonaga) seedlings after illumination with continuous far-red light showed an increased capacity for oxidation of malate or α-ketoglutarate, as compared with those from cotyledons of non-illuminated seedlings. This increase is supposed to be caused by phytochrome action (high irradiance response). Exogenous NAD+ had no effect on the rate of the oxidation of α-ketoglutarate or malate by mitochondria isolated from far-red light-treated cotyledons, but it enhanced the oxidation rate of mitochondria from control cotyledons to the level of mitochondria from light-treated ones. The NAD (NAD+ + NADH) content was higher in mitochondria isolated from continuously far-red light-treated cotyledons than in mitochondria from controls. The NAD content was also increased by the treatment with a red light pulse and this response was reversed by a subsequent far-red light pulse. It is proposed that phytochrome controls respiratory activities of cucumber mitochondria by changing the size of the NAD pool in the mitochondria. 相似文献
15.
16.
Uptake and distribution of calcium, magnesium and potassium in cucumber of different age 总被引:1,自引:0,他引:1
Uptake and distribution of Ca+ , Mg2+ and K2+ were investigated in plants of cucumber ( Cucumis sativus L. var. Cila) which had been cultivated for 12, 19, 32, or 53 days in complete nutrient solution with 1.0 m M Ca2+ , 2.0 m M Mg2+ and 2.0 m M K+ . The + concentration was about the same in roots and shoots, while the Ca2+ and Mg2+ concentrations were low in roots compared to shoots. The K+ concentration decreased with increasing leaf age, while the Ca2+ and Mg2+ concentrations increased, except in older plants with flowers and fruits, where an increased concentration was found in the youngest leaves. This is discussed in connection with increased indoleacetic acid (IAA) synthesis in the shoot. Excision of leaves at different levels from 21-day-old plants, followed by uptake for 24 h from the nutrient solution on days 22 and 23, resulted in no immediate reduction in Ca2+ (45 Ca) uptake. Transport of Ca2+ increased to leaves above and below the excision point and total Ca2+ uptake remained at the same level as for the intact plant. It is suggested that regulation of Ca2+ uptake is primarily achieved in the root while the distribution in the shoot is regulated by the accessability of negative binding sites. 相似文献
17.
18.
19.
Growth and maintenance respiratory costs of cucumber fruits as affected by temperature, and ontogeny and size of the fruits 总被引:3,自引:0,他引:3
The rates of dry weight increase and respiration of fruits were measured throughout fruit ontogeny at 20, 25 and 30°C in cucumber ( Cucumis sativus L. cv. Corona). By maintaining one or five fruits per plant, which strongly affected fruit dry weight but not ontogeny, the effects of fruit size and ontogeny on respiration could be studied separately. The respiration rate per fruit followed a sigmoid curve during fruit ontogeny, while the specific respiration rate (respiration rate per unit dry weight) declined with time after anthesis. The specific respiration rate was almost linearly related to the relative growth rate. The specific respiratory costs for both growth and maintenance were highest in young fruits, but were not affected by fruit size. The average specific respiratory costs for growth and maintenance at 25°C were 3.3–3.9 mmol CO2 g−1 and 4.0 nmol CO2 g−1 s−1 , respectively. An increase in temperature had no effect on the specific respiratory costs for growth, while the costs for maintenance increased with a Q10 of about 2. The costs for growth agreed reasonably well with theoretical estimates based on the chemical composition of the fruits but not with estimates based on only the carbon and ash content. The respiratory losses as a fraction of the total carbon requirement of a fruit changed during fruit ontogeny, but were independent of temperature and were similar for slow- and fast-growing fruits. The cumulative respiratory losses accounted for 13–15% of the total carbon requirement. 相似文献
20.
Induction of chilling tolerance in cucumber (Cucumis sativus) seedlings by endogenous and applied ethanol 总被引:1,自引:0,他引:1
Five-day-old etiolated cucumber ( Cucumis sativus L.) seedlings cv. Marketmore held at 2°C for 72 h developed chilling injury, resulting in desiccation and collapse of the hypocotyl tissue and eventual plant death. Hypoxia-induced accumulation of ethanol and acetaldehyde led to tolerance of subsequent chilling, as evidenced by continued hypocotyl growth and freedom from injury. Attenuated accumulation of volatiles by applied bisulfite reduced the development of hypoxia-induced chilling tolerance in seedlings. In seedlings held in normoxia cold tolerance was induced by applied ethanol vapors, whereas acetaldehyde had a marginal effect, suggesting that hypoxia-induced cold tolerance may arise from the accumulation and activity of ethanol. Cold tolerance was also induced by exposure of seedlings to volatile anesthetics including n -propanol, n -butanol, chloroform and halothane, suggesting that ethanol activity may result from fluidization of membrane lipids. This view is consistent with results which showed that ethanol activity was not associated with lipid metabolism. However, development of cold tolerance in ethanol-enriched tissues was time dependent, indicating that ethanol activity probably also entails biosynthetic event(s). 相似文献