首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azospirillum-plant association is accompanied by biochemical changes in roots which, in turn, promote plant-growth and tolerance to water stress. To shed light on the possible factors underlying these effects, roots from Azospirillum brasilense Sp245-inoculated Triticum aestivum seedlings growing in darkness under osmotic stress were analyzed for phospholipid (PL) composition, fatty acid (FA) distribution profiles and degree of unsaturation of the major PL classes. Azospirillum inoculation diminished ion leakage and increased 2,3,5-tripheniltetrazolium reducing ability in roots of well irrigated and water-stressed wheat seedlings. Total root PL content remained unaltered in all treatments. Six PL classes were detected, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) comprising over 80% of the total. While water stress increased PC content and diminished that of PE, none of these changes were observed either under Azospirillum inoculation alone or when both treatments were combined. The major FAs found in both PC and PE were 16:0, 18:0, 18:1, 18:2, and 18:3. Higher PC and lower PE unsaturation than in well irrigated controls were observed in roots from Azospirillum-inoculated, water-stressed seedlings. Azospirillum inoculation could contribute to protect wheat seedlings from water stress through changes in the FA distribution profiles of PC and PE major root phospholipids.  相似文献   

2.
l-Aspartate-[U-14C] was quickly metabolized in rice seedlings into amino acids, organic acids and sugars. On feeding simultaneously with ammonium for 2 hr, about 1% of the total soluble radioactivity was recovered as asparagine. Major amino acids labelled were aspartate, glutamate, glutamine and alanine in both shoots and roots. On the other hand, on feeding l-aspartate-[U-14C] to rice seedlings precultured in an ammonium medium, asparagine accounted for 35% of the total soluble radioactivity in the roots. Different labelling patterns in amino acids from those of non-precultured tissues were observed, and the main amino acids labelled in this case were asparagine and γ-aminobutyrate in the roots; glutamate, asparagine and glutamine in the shoots. It was observed in the roots that this increase of asparagine labelling was associated with a decrease of label in glutamate.  相似文献   

3.
The effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism (alpha and beta amylases, sucrose phosphate synthase, sucrose synthase, acid and alkaline invertases) in wheat (Triticum aestivum L.) was investigated in the seedlings of drought-sensitive (PBW 343) and drought-tolerant (C 306) cultivars. The water deficit was induced by adding 6% mannitol (water potential -0.815 Mpa) in the growth medium. The water deficit reduced starch content in the shoots of tolerant seedlings as compared to the sensitive ones, but increased sucrose content in the shoots and roots of tolerant seedlings, indicating their protective role during stress conditions. It also decreased the alpha-amylase activity in the endosperm of seedlings of both the cultivars, but increased alpha and beta amylase activities in the shoots of tolerant ones. Sucrose phosphate synthase (SPS) activity showed a significant increase at 6 days of seedling growth (DSG) in the shoots of stressed seedlings of tolerant cultivar. However, SPS activity in the roots of stressed seedlings of sensitive cultivar was very low at 4 DSG and appeared significantly only at day 6. Sucrose synthase (SS) activity was lower in the shoots and roots of stressed seedlings of tolerant cultivar than sensitive ones at early stage of seedling growth. Higher acid invertase activity in the shoots of seedlings of tolerant cultivar appeared to be a unique characteristic of this cultivar for stress tolerance. Alkaline invertase activity, although affected under water deficit conditions, but was too low as compared to acid invertase activity to cause any significant affect on sucrose hydrolysis. In conclusion, higher sucrose content with high SPS and low acid invertase and SS activities in the roots under water deficit conditions could be responsible for drought tolerance of C 306.  相似文献   

4.
Abstract

The geomagnetic field effect hypothesis and the variability among replications in germination and growth tests in Triticum. – During previous eperiments on germination and growth of Triticum, we have often found many cases of heteroscedasticity and of statistically significant differences among contemporary replications (i.e. germinators). In such experiments all the caryopses were oriented in the same way inside the germinators, whilst the germinators were randomly set inside the thermostats: therefore the seeds of different germinators might result differently oriented. Some researchers report that seeds differently oriented according to the lines of force of the geomagnetic field, may respond with different germination, growth rates and growth directions of shoots and roots (magnetotropism). The present investigation was designed to ascertain if these effects might be responsible of the variability among the contemporary replications. The different caryopses orientation within laboratory geomagnetic field, does not give evidence of any effect on germination, growth rate and direction. The caryopses show no germination sensibility neither related to different age, light and temperature conditions, neither to different cultivars, neither to varying orientation from the geomagnetic North every 15° and to varying time of ? preorientation ? in dry conditions. Differences between the variability of randomly and North oriented subsamples are not observed. No statistically significant differences are observed among shoots and roots lenghts of seedlings from differently oriented caryopses neither in different environmental conditions, nor as function of the orientation (24 angles of 15°), nor after different preorientations, nor after repeating the test on 608 subsamples (12.000 seedlings). Therefore the variability among contemporary replications is not imputable to the geomagnetic field. The variability and the distributions structure analysis suggest that both the heteroscedasticity and the significant differences among the replications may be due to an interaction among the caryopses inside the germinators through the substrate. This is probably related to the cultivar characteristics. We emphasize that an accurate evaluation of the variability is particularly necessary in germination and growth tests.  相似文献   

5.
The maintenance of membrane function is critical to the ability of plants to resist environmental stresses; specifically, the stability and appropriate fluidity of membranes are crucial to their normal function. We previously demonstrated that plants adapt to long term potassium (K+) deficiency by accumulation of membrane lipids in leaves and maintenance of the lipid composition in roots. In this study, which involved Arabidopsis thaliana and its K+ deficiency tolerant relative Crucihimalaya himalaica, we first calculated the double bond index (DBI) as an indicator of membrane fluidity. After exposure to long term K+ deficiency stress, the DBI of the total lipids in leaves of Athaliana and Chimalaica showed no significant changes, whereas the DBI of the total lipids in the roots of these species showed slight increases. Changes in lysophospholipids (lysoPLs) levels, and digalactosyldiacylglycerol/monogalactosyldiacylglycerol (DGDG/MGDG) and phosphatidylcholine/phosphatidylethanolamine (PC/PE) ratios, all of which strongly reflect membrane stability, were also studied in K+ stressed Athaliana and Chimalaica. After long term K+ deficiency, total lysoPLs levels increased in Athaliana and Chimalaica leaves, but showed no significant changes in roots. DGDG/MGDG and PC/PE ratios were higher in Chimalaica leaves and roots than in those of Athaliana. These results indicate that Chimalaica exhibits superior membrane stability compared with Athaliana. This may explain its superior growth and tolerance under K+ deficient conditions.  相似文献   

6.
Phytochelatins (PCs) are peptides that function in heavy-metal chelation and detoxification in plants and fungi. A recent study showed that PCs have the ability to undergo long-distance transport in a root-to-shoot direction in transgenic Arabidopsis (Arabidopsis thaliana). To determine whether long-distance transport of PCs can occur in the opposite direction, from shoots to roots, the wheat (Triticum aestivum) PC synthase (TaPCS1) gene was expressed under the control of a shoot-specific promoter (CAB2) in an Arabidopsis PC-deficient mutant, cad1-3 (CAB2TaPCS1/cad1-3). Analyses demonstrated that TaPCS1 is expressed only in shoots and that CAB2TaPCS1/cad1-3 lines complement the cadmium (Cd) and arsenic metal sensitivity of cad1-3 shoots. CAB2TaPCS1/cad1-3 plants exhibited higher Cd accumulation in roots and lower Cd accumulation in shoots compared to wild type. Fluorescence HPLC coupled to mass spectrometry analyses directly detected PC2 in the roots of CAB2:TaPCS1/cad1-3 but not in cad1-3 controls, suggesting that PC2 is transported over long distances in the shoot-to-root direction. In addition, wild-type shoot tissues were grafted onto PC synthase cad1-3 atpcs2-1 double loss-of-function mutant root tissues. An Arabidopsis grafting technique for mature plants was modified to obtain an 84% success rate, significantly greater than a previous rate of approximately 11%. Fluorescence HPLC-mass spectrometry showed the presence of PC2, PC3, and PC4 in the root tissue of grafts between wild-type shoots and cad1-3 atpcs2-1 double-mutant roots, demonstrating that PCs are transported over long distances from shoots to roots in Arabidopsis.  相似文献   

7.
The existence of sphingolipid- and sterol-enriched microdomains, known as lipid rafts, in the plasma membrane (PM) of eukaryotic cells is well documented. To obtain more insight into the lipid molecular species required for the formation of microdomains in plants, we have isolated detergent (Triton X-100)-resistant membranes (DRMs) from the PM of Arabidopsis (Arabidopsis thaliana) and leek (Allium porrum) seedlings as well as from Arabidopsis cell cultures. Here, we show that all DRM preparations are enriched in sterols, sterylglucosides, and glucosylceramides (GluCer) and depleted in glycerophospholipids. The GluCer of DRMs from leek seedlings contain hydroxypalmitic acid. We investigated the role of sterols in DRM formation along the secretory pathway in leek seedlings. We present evidence for the presence of DRMs in both the PM and the Golgi apparatus but not in the endoplasmic reticulum. In leek seedlings treated with fenpropimorph, a sterol biosynthesis inhibitor, the usual Delta(5)-sterols are replaced by 9beta,19-cyclopropylsterols. In these plants, sterols and hydroxypalmitic acid-containing GluCer do not reach the PM, and most DRMs are recovered from the Golgi apparatus, indicating that Delta(5)-sterols and GluCer play a crucial role in lipid microdomain formation and delivery to the PM. In addition, DRM formation in Arabidopsis cells is shown to depend on the unsaturation degree of fatty acyl chains as evidenced by the dramatic decrease in the amount of DRMs prepared from the Arabidopsis mutants, fad2 and Fad3+, affected in their fatty acid desaturases.  相似文献   

8.
Inhibition of glutathione synthesis reduces chilling tolerance in maize   总被引:8,自引:0,他引:8  
 The role of glutathione (GSH) in protecting plants from chilling injury was analyzed in seedlings of a chilling-tolerant maize (Zea mays L.) genotype using buthionine sulfoximine (BSO), a specific inhibitor of γ-glutamylcysteine (γEC) synthetase, the first enzyme of GSH synthesis. At 25 °C, 1 mM BSO significantly increased cysteine and reduced GSH content and GSH reductase (GR: EC 1.6.4.2) activity, but interestingly affected neither fresh weight nor dry weight nor relative injury. Application of BSO up to 1 mM during chilling at 5 °C reduced the fresh and dry weights of shoots and roots and increased relative injury from 10 to almost 40%. Buthionine sulfoximine also induced a decrease in GR activity of 90 and 40% in roots and shoots, respectively. Addition of GSH or γEC together with BSO to the nutrient solution protected the seedlings from the BSO effect by increasing the levels of GSH and GR activity in roots and shoots. During chilling, the level of abscisic acid increased both in controls and BSO-treated seedlings and decreased after chilling in roots and shoots of the controls and in the roots of BSO-treated seedlings, but increased in their shoots. Taken together, our results show that BSO did not reduce chilling tolerance of the maize genotype analyzed by inhibiting abscisic acid accumulation but by establishing a low level of GSH, which also induced a decrease in GR activity. Received: 9 November 1999 / Accepted: 17 February 2000  相似文献   

9.
The possible roles of phytochelatin (PC) and glutathione (GSH) in the heavy metal detoxification in plants were examined using two varieties (CSG-8962 and C-235) of chickpea (Cicer arietinum L.). The seedlings were grown for 5 days and the roots were treated with 0–20 μM CdSO4 for 3 days. The CSG-8962 seedlings exhibited more Cd-tolerant characteristics than did the C-235, where the roots, rather than shoots, suffered from more toxic effects by Cd. Both the seedlings synthesized the large amounts of PCs and homo-phytochelatins (hPCs) in roots, but only a little in shoots in response to Cd. The Cd treatments also caused a marked increase in the levels of GSH and cysteine in both the root and shoot tissues, suggesting that Cd may activate the GSH biosynthesis and, hence, enhance PC synthesis in the plants. Such a Cd-sensitive PC synthesis in chickpea plants does not explain the difference in Cd sensitivity in the varieties, but can be used as a biochemical indicator for Cd contamination in various environments. In the chickpea plants, possible PC-dependent and independent mechanisms for Cd tolerance are discussed. Electronic Publication  相似文献   

10.
Enhanced amylase activity was observed during a 7-day-growth period in the cotyledons of PEG imposed water stressed chickpea seedlings grown in the presence of GA3 and kinetin, when compared with stressed seedlings. During the first 5 days of seedling growth, the seedlings growing under water deficit conditions as well as those growing in the presence of PGRs had a higher amylase activity in shoots than that of control seedlings. Neither GA3 nor kinetin increased the amylase activity of roots whereas IAA reduced root amylase activity. Activity of acid and alkaline invertases was maximum in shoots and at a minimum in cotyledons. Compared with alkaline invertase, acid invertase activity was higher in all the tissues. The reduced acid and alkaline invertase activities in shoots of stressed seedlings were enhanced by GA3 and kinetin. Roots of stressed seedlings had higher alkaline invertase activity and GA3 and IAA helped in bringing the level near to those in the controls. GA3 and kinetin increased the sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities in cotyledons of stressed seedlings, whereas they brought the elevated level of SPS of stressed roots to near normal level. The higher level of reducing sugars in the shoots of GA3 and kinetin treated stressed seedlings could be due to the high acid invertase activity observed in the shoots, and the high level of bound fructose in the cotyledons of stressed seedlings could be due to the high activity of SPS in this tissue.  相似文献   

11.
Theanine synthetase (TS) is a key enzyme involved in theanine biosynthesis. In our recent study, it has been revealed that theanine biosynthesis derived from nitrogen metabolism in tea (Camellia sinensis) plants can be influenced by shading treatment. The expression patterns of CsTS protein in the roots and shoots of tea seedlings were examined by western blot using a self-prepared polyclonal antibody with high specificity and sensitivity. The effect of long-term shade treatment on the levels of theanine synthesis was also investigated using roots and shoots of tea seedlings. Levels of theanine and total free amino acids gradually increased in shoots, reaching their maximum after 22 days of treatment (DOT). The immunoblotting analysis suggested that CsTS protein levels increased gradually up to 22 DOT and expression remained at a high level, except after 1 DOT where levels were low in both roots and shoots. The increased theanine concentration we observed in the shading treatment may be due to increased nitrogen assimilation and reduced theanine catabolism under shade conditions.  相似文献   

12.
Seven-day-old seedlings obtained from seeds primed with mannitol (4%)and water showed three to four fold more growth with respect to root and shootlength in comparison with seedlings obtained from non-primed seeds. Seedlingswere grown under water deficit stress conditions created by 15% polyethyleneglycol (PEG) 6000 in the medium. Priming of chickpea seeds with NaCl and PEGwasnot effective in increasing seedling growth under these water deficit stressconditions. The activities of amylase, invertases (acid and alkaline), sucrosesynthase (SS) and sucrose phosphate synthase (SPS) were higher in shoots ofprimed seedlings. An increase in the activities of SS, and both the acid andalkaline invertases was also observed in roots of primed seedlings. The twofoldincrease in specific activity of sucrose phosphate synthase was observed incotyledons of primed seedlings. The higher amylase activity in shoots of primedseedlings enhanced the rapid hydrolysis of transitory starch of the shootleading to more availability of glucose for shoot growth and this was confirmedby the low level of starch in shoots of primed seedlings.  相似文献   

13.
植物维持膜的功能是其抵御胁迫的关键问题,而维持膜功能必须要保持膜的稳定性和合适的流动性。我们前期的研究发现植物主要是通过积累叶片膜脂和保持根部膜脂基本不变来适应长期缺钾。在本研究中,以拟南芥和其具有耐受缺钾胁迫特性的近缘种须弥芥为对象,研究了与膜的流动性密切相关的双键指数(double bond index,DBI)的变化,发现长期缺钾条件下,两种植物叶片中总的DBI保持不变,根部总的DBI略有降低。同时研究了与膜稳定性密切相关的溶血磷脂的含量和DGDG/MGDG以及PC/PE这两个比值的变化,发现长期缺钾后拟南芥和须弥芥叶片中溶血磷脂的总量呈上升趋势,根部溶血磷脂总量基本保持不变;无论在对照还是缺钾条件下,拟南芥溶血磷脂的总含量要高于须弥芥。须弥芥叶片具有更高的DGDG/MGDG值,根部具有更高的PC/PE值,说明长期缺钾条件下须弥芥膜的稳定性可能更好。这可能是须弥芥耐缺钾的原因之一。  相似文献   

14.
The role of endogenous polyamines in the control of NaCl-inhibited growth of rice seedlings was investigated. Putrescine, spermidine and spermine were all present in shoots and roots of rice seedlings. NaCl treatment did not affect spermine levels in shoots and roots. Spermidine levels in shoots and roots were increased with increasing concentrations of applied NaCl. NaCl at a concentration of 50 mM, which caused only slight growth inhibition, drastically lowered the level of putrescine in shoots and roots. Addition of precursors of putrescine biosynthesis (L-arginine and L-ornithine) resulted in an increase in putrescine levels in NaCl-treated shoots and roots, but did not allow recovery of the growth inhibition of rice seedlings induced by NaCl. Pretreatment of rice seeds with putrescine caused an increase in putrescine level in shoots, but could not alleviate the inhibition effect of NaCl on seedling growth. The current results suggest that endogenous polyamines may not play a significant role in the control of NaCl-inhibited growth of rice seedlings.Abbreviations PUT putrescine - SPD spermidine - SPM spermine  相似文献   

15.
Rice seedlings (Oryza sativa L.) were incubated at 5-30 degrees C for 48 h and the effect of temperature on ethanolic fermentation in the seedlings was investigated in terms of low-temperature adaptation. Activities of alcohol dehydrogenase (ADH, EC 1.1.1.1) and pyruvate decarboxylase (PDC, EC 4.1.1.1) in roots and shoots of the seedlings were low at temperatures of 20-30 degrees C, whereas temperatures of 5, 7.5 and 10 degrees C significantly increased ADH and PDC activities in the roots and shoots. Temperatures of 5-10 degrees C also increased ethanol concentrations in the roots and shoots. The ethanol concentrations in the roots and shoots at 7.5 degrees C were 16- and 12-times greater than those in the roots and shoots at 25 degrees C, respectively. These results indicate that low temperatures (5-10 degrees C) induced ethanolic fermentation in the roots and shoots of the seedlings. Ethanol is known to prevent lipid degradation in plant membrane, and increased membrane-lipid fluidization. In addition, an ADH inhibitor, 4-methylpyrazole, decreased low-temperature tolerance in roots and shoots of rice seedlings and this reduction in the tolerance was recovered by exogenous applied ethanol. Therefore, production of ethanol by ethanolic fermentation may lead to low-temperature adaptation in rice plants by altering the physical properties of membrane lipids.  相似文献   

16.
The antioxidative system was studied during the development of pea plants. The reduced glutathione (GSH) content was higher in shoots than in roots, but a greater redox state of glutathione existed in roots compared with shoots, at least after 7 d of growth. The 3-d-old seedlings showed the highest content of oxidised ascorbate (DHA), which correlated with the ascorbate oxidase (AAO) activity. Also, the roots exhibited higher DHA content than shoots, correlated with their higher AAO activity. The activities of antioxidant enzymes were much higher in shoots than in roots. Ascorbate peroxidase (APX) activity decreased during the progression of growth in both shoots and roots, whereas peroxidase (POX) activity strongly increased in roots, reflecting a correlation between POX activity and the enhancement of growth. Catalase activity from shoots reached values nearly 3 or 4-fold higher than in roots. The monodehydroascorbate reductase (MDHAR) activity was higher in young seedlings than in more mature tissues, and in roots a decrease in MDHAR was noticed at the 11th day. No dehydroascorbate reductase (DHAR) was detected in roots from the pea plants and DHAR values detected in seedlings and in shoots were much lower than those of MDHAR. In shoots, GR decreased with the progression of growth, whereas in roots an increase was seen on the 9th and 11th days. Finally, superoxide dismutase (SOD) activity increased in shoots during the progression of growth, but specific SOD activity was higher in roots than in shoots.  相似文献   

17.
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species composition of human erythrocytes changes upon intraerythrocytic development of Plasmodium falciparum. Though the activity of the phosphotransferases which catalyze the last step of the Kennedy pathway for the synthesis of PC and PE is dependent of the species on diacylglycerol, it appeared that this cannot, by itself, explain the alterations found in PC and PE molecular species composition. When the incorporation of radiolabeled palmitic and stearic acids in PC and PE was studied, it became clear that differences in the incorporation of fatty acids in those phospholipids might be responsible for the observed alterations in their molecular species composition.  相似文献   

18.
To examine the effects of vegetation cover on the resprouting abilities of Quercus crispula seedlings, in each of three consecutive years, we artificially clipped seedlings growing in microhabitats with differing degrees of vegetation cover. We also investigated the relationship between the level of total nonstructural carbohydrate (TNC) and resprouting ability. Seedlings with clipped shoots in gaps produced larger resprouting shoots than those in the understory. Moreover, both the percentage of resprouting seedlings and the survival ratio in seedlings with clipped shoots were negatively correlated with the degree of vegetation cover. Seedlings stored high levels of TNC, especially in their roots, and their TNC levels were negatively correlated with the degree of vegetation cover. There were also positive relationships between the TNC levels in their roots and the degree of resprouting. Hence, we conclude that release from vegetation cover enhanced the resprouting ability of Q. crispula seedlings by increasing their levels of stored carbohydrate. The key variables affected were the resprouting ratio (the proportion of seedlings capable of producing new shoots) and the size of the resprouted shoots.  相似文献   

19.
The relationship between root and leaf infection in 11 cultivars of barley ( Hordeum vulgare ) by different isolates of Bipolaris sorokiniana was investigated in young plants. Roots of 10-day-old seedlings, grown in filterpaper rolls, and the third leaf of 17-day-old seedlings were inoculated with the different isolates and a Disease Development Index (DDI) was calculated.
The rate of lesion development in leaves was higher than in roots, indicated by generally higher DDI after leaf inoculation than after root inoculation. Significant differences in resistance were found among the barley cultivars. Inoculation with different isolates of B. sorokiniana caused significant differences in DDI for both roots and leaves. In the leaves, but not in the roots, a significant cultivar–isolate interaction was found. No significant correlations, neither in isolate aggressiveness nor in cultivar reaction between root and leaf, were observed.  相似文献   

20.
Thiol-peptides synthesized as intermediates in phytochelatin (PC) biosynthesis confer cellular tolerance to toxic elements like arsenic, mercury, and cadmium, but little is known about their long-distance transport between plant organs. A modified bacterial gamma-glutamylcysteine synthetase (ECS) gene, S1ptECS, was expressed in the shoots of the ECS-deficient, heavy-metal-sensitive cad2-1 mutant of Arabidopsis (Arabidopsis thaliana). S1ptECS directed strong ECS protein expression in the shoots, but no ECS was detected in the roots of transgenic plant lines. The S1ptECS gene restored full mercury tolerance and partial cadmium tolerance to the mutant and enhanced arsenate tolerance significantly beyond wild-type levels. After arsenic treatment, the root concentrations of gamma-glutamylcysteine (EC), PC2, and PC3 peptides in a S1ptECS-complemented cad2-1 line increased 6- to 100-fold over the mutant levels and were equivalent to wild-type concentrations. The shoot and root levels of glutathione were 2- to 5-fold above those in wild-type plants, with or without treatment with toxicants. Thus, EC and perhaps glutathione are efficiently transported from shoots to roots. The possibility that EC or other PC pathway intermediates may act as carriers for the long-distance phloem transport and subsequent redistribution of thiol-reactive toxins and nutrients in plants is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号