首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Gramicidin-doped asymmetric bilayers made by the Montal-Mueller method exhibited an asymmetric current-voltage relationship. The asymmetric conductance was shown to be the product of two components, a rectifying single-channel conductance and an asymmetric voltage dependence of the reaction which leads to the conducting channel. The single-channel conductance was asymmetric in both asymmetric bilayers made of charged lipids and asymmetric bilayers made only of neutral lipids. The single-channel asymmetry decreased with increasing ion concentration. From the comparison of the singlechannel conductance in symmetric and asymmetric bilayers and the dependence of the asymmetry on the solution ion concentrations, it was concluded that (1) the rate of ion entry into the channel is dependent on the lipid composition of the membrane and is asymmetric in asymmetric bilayers; (2) the entry step is rate determining at low ion concentrations; and (3) at higher ion concentrations the rate-determining step is the translocation across the main barrier in the membrane; and this translocation appears insensitive to lipid asymmetry.  相似文献   

2.
The electrical responses of individual hemocyanain channels in oxidized cholesterol membranes demonstrate that the voltage-dependent conductance of many-chanel membranes arises from two different mechanisms. These are the voltage-dependent redistribution of channels among several discrete single-channel conductance states themselves. The relaxation time for the discrete conductance changes is of the order of seconds nd the relaxation time of the continuous conductance changes is of the order 10(-4) seconds. As salt concentration in the bathing medium is increased, the single-channel conductance first increases lineary and then saturates. The characteristics of the saturation curves suggest that the continuous conductance changes occur at the edges of the channel and that the mean time an ion spends in the channel is 4 nanoseconds...  相似文献   

3.
Trichotoxin_A50E is an 18-residue peptaibol whose crystal structure has recently been determined. In this study, the conductance properties of trichotoxin_A50E have been investigated in neutral planar lipid bilayers. The macroscopic current-voltage curves disclose a moderate voltage-sensitivity and the concentration-dependence suggests the channels are primarily hexameric. Under ion gradients, shifts of the reversal potential indicate that cations are preferentially transported. Trichotoxin displays only one single-channel conductance state in a given experiment, but an ensemble of experiments reveals a distribution of conductance levels. This contrasts with the related peptaibol alamethicin, which produces multiple channel levels in a single experiment, indicative of recruitment of additional monomers into different multimeric-sized channels. Based on these conductance measurements and on the recently available crystal structure of trichotoxin_A50E, which is a shorter and straighter helix than alamethicin, a tightly-packed hexameric model structure has been constructed for the trichotoxin channel. It has molecular dimensions and surface electrostatic potential compatible with the observed conductance properties of the most probable and longer-lived channel.  相似文献   

4.
Characterization of a chloroplast inner envelope K+ channel.   总被引:2,自引:2,他引:0       下载免费PDF全文
F Mi  J S Peters    G A Berkowitz 《Plant physiology》1994,105(3):955-964
A K(+)-conducting protein of the chloroplast inner envelope was characterized as a K+ channel. Studies of this transport protein in the native membrane documented its sensitivity to K+ channel blockers. Further studies of native membranes demonstrated a sensitivity of K+ conductance to divalent cations such as Mg2+, which modulate ion conduction through interaction with negative surface charges on the inner-envelope membrane. Purified chloroplast inner-envelope vesicles were fused into an artificial planar lipid bilayer to facilitate recording of single-channel K+ currents. These single-channel K+ currents had a slope conductance of 160 picosiemens. Antibodies generated against the conserved amino acid sequence that serves as a selectivity filter in the pore of K+ channels immunoreacted with a 62-kD polypeptide derived from the chloroplast inner envelope. This polypeptide was fractionated using density gradient centrifugation. Comigration of this immunoreactive polypeptide and K+ channel activity in sucrose density gradients further suggested that this polypeptide is the protein facilitating K+ conductance across the chloroplast inner envelope.  相似文献   

5.
The three-dimensional structure of the malto-oligosaccharide-specific LamB-channel of Escherichia coli (also called maltoporin) is known from x-ray crystallography. The central constriction of the channel formed by the external loop 3 is controlled by a tyrosine residue (Y118). Y118 was replaced by site-directed mutagenesis by ten other amino acids (alanine, isoleucine, asparagine, serine, cysteine, aspartic acid, arginine, histidine, phenylalanine, and tryptophane) including neutral ones, negatively and positively charged amino acids to study the effect of their size, hydrophobicity, and charge on ion transport through LamB. The mutant proteins were purified to homogeneity. They were reconstituted into lipid bilayer membranes and single-channel conductance and ion selectivity were measured to get insight into the mechanism of ion transport through LamB. The mutation of Y118 to any other nonaromatic amino acid led to a substantial increase of the single-channel conductance by more than a factor of six at maximum. The highest effect was observed for Y118D. Additionally, a nonlinear relationship between the salt concentration in the aqueous phase and the channel conductance was observed for this mutant, indicating strong discrete charge effects on ion conductance. For all other mutants, with the exception of Y118R, linear relationships were found between single-channel conductance and bulk aqueous concentration. The individual hydrophobicity indices of the amino acids introduced inside the central constriction of the LamB channel had a somewhat smaller effect on the single-channel conductance as compared with the effect of their size and charge.  相似文献   

6.
Colicin E1 belongs to a group of bacteriocins whose cytotoxicity toward Escherichia coli is exerted through formation of ion channels that depolarize the cytoplasmic membrane. The lipid dependence of colicin single-channel conductance demonstrated intimate involvement of lipid in the structure of this channel. The colicin formed "small" conductance 60-picosiemens (pS) channels, with properties similar to those previously characterized, in 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (C20) or thinner membranes, whereas it formed a novel "large" conductance 600-pS state in thicker 1,2-dierucoyl-sn-glycero-3-phosphocholine (C22) bilayers. Both channel states were anion-selective and voltage-gated and displayed a requirement for acidic pH. Lipids having negative spontaneous curvature inhibited the formation of both channels but increased the ratio of open 600 pS to 60 pS conductance states. Different diameters of small and large channels, 12 and 16 A, were determined from the dependence of single-channel conductance on the size of nonelectrolyte solute probes. Colicin-induced lipid "flip-flop" and the decrease in anion selectivity of the channel in the presence of negatively charged lipids implied a significant contribution of lipid to the structure of the channel, most readily described as toroidal organization of lipid and protein to form the channel pore.  相似文献   

7.
We studied the effects of guanosine 3',5'-cyclic monophosphate (cGMP) and nitroprusside on ion channels in the apical membrane of confluent A6 cells (a distal nephron cell line) cultured on permeable supports for 10-14 days using patch clamp techniques. In cell-attached patches without any detectable channel activity, activity of a non-selective cation channel with a single-channel conductance of 1 pS was observed after adding nitroprusside. After adding cGMP to the cytosolic surface of inside-out patches with no detectable channel activity, we observed single channel activity similar to the channel observed after adding nitroprusside. These observations imply that nitroprusside activates a non-selective cation channel with small single channel conductance (1 pS) via an increase in cGMP which activates the channel.  相似文献   

8.
We investigated the mechanism whereby ions cross dihydropyridine- sensitive (L-type) Ca channels in guinea pig ventricular myocytes. At the single-channel level, we found no evidence of an anomalous mole- fraction effect like that reported previously for whole-cell currents in mixtures of Ba and Ca. With the total concentration of Ba + Ca kept constant at 10 (or 110) mM, neither conductance nor absolute unitary current exhibits a paradoxical decrease when Ba and Ca are mixed, thereby weakening the evidence for a multi-ion permeation scheme. We therefore sought independent evidence to support or reject the multi- ion nature of the L-type Ca channel by measuring conductance at various permeant ion concentrations. Contrary to the predictions of models with only one binding site in the permeation pathway, single-channel conductance does not follow Michaelis-Menten kinetics as Ba activity is increased over three orders of magnitude. Two-fold variation in the Debye length of permeant ion solutions has little effect on conductance, making it unlikely that local surface charge effects could account for these results. Instead, the marked deviation from Michaelis- Menten behavior was best explained by supposing that the permeation pathway contains three or more binding sites that can be occupied simultaneously. The presence of three sites helps explain both a continued rise in conductance as [Ba2+] is increased above 110 mM, and the high single-channel conductance (approximately 7 pS) with 1 mM [Ba2+] as the charge carrier; the latter feature enables the L-type channel to carry surprisingly large currents at physiological divalent cation concentrations. Thus, despite the absence of an anomalous mole- fraction effect between Ba and Ca, we suggest that the L-type Ca channel in heart cells supports ion flux by a single-file, multi-ion permeation mechanism.  相似文献   

9.
Functional modification of a Ca2+-activated K+ channel by trimethyloxonium   总被引:3,自引:0,他引:3  
R MacKinnon  C Miller 《Biochemistry》1989,28(20):8087-8092
Single Ca2+-activated K+ channels from rat skeletal muscle plasma membranes were studied in neutral phospholipid bilayers. Channels were chemically modified by briefly exposing the external side to the carboxyl group modifying reagent trimethyloxonium (TMO). TMO modification, in a "multi-hit" fashion, reduces the single-channel conductance without affecting ion selectivity. Modification also shifts the voltage activation curve toward more depolarized voltages and reduces the affinity of the channel blocker charybdotoxin (CTX). CTX, bound to the channel during the TMO exposure, prevents the TMO-induced reduction of the single-channel conductance. These data suggest that the high-conductance Ca2+-activated K+ channel has carboxyl groups on its external surface. These groups influence ion conduction, gating, and the binding of CTX.  相似文献   

10.
A mechanosensitive Ca(2+)-permeable cation channel was recorded by patch clamp in isolated rat aortic endothelial cells. A low level of channel activity could be observed after seal formation. The channel displayed some inward rectification and had a conductance for inward current of approx. 32 pS in Ca(2+)-free pipette and bath solutions. Negative suction of -10 to -20 mmHg increased the probability of the channel being open. When the negative pressure in the pipette was raised to -35 to -45 mmHg, the channel underwent an abrupt transition to a large conductance substate that was interrupted occasionally by two other low conductance levels. Under this condition, the overwhelming majority of openings and closings were between a main level of 83 pS and the closed level. Compared to the 32 pS substate, the 83 pS large conductance substate had shorter mean open and closed times. The two channel substates had similar ionic selectivity and both were sensitive to the inhibition of cGMP and protein kinase G. This is the first demonstration showing that mechanostress can change the single channel conductance level of an ion channel in eukaryotic cells.  相似文献   

11.
A conductance maximum observed in an inward-rectifier potassium channel   总被引:5,自引:2,他引:3  
One prediction of a multi-ion pore is that its conductance should reach a maximum and then begin to decrease as the concentration of permeant ion is raised equally on both sides of the membrane. A conductance maximum has been observed at the single-channel level in gramicidin and in a Ca(2+)-activated K+ channel at extremely high ion concentration (> 1,000 mM) (Hladky, S. B., and D. A. Haydon. 1972. Biochimica et Biophysica Acta. 274:294-312; Eisenmam, G., J. Sandblom, and E. Neher. 1977. In Metal Ligand Interaction in Organic Chemistry and Biochemistry. 1-36; Finkelstein, P., and O. S. Andersen. 1981. Journal of Membrane Biology. 59:155-171; Villarroel, A., O. Alvarez, and G. Eisenman. 1988. Biophysical Journal. 53:259a. [Abstr.]). In the present study we examine the conductance-concentration relationship in an inward-rectifier K+ channel, ROMK1. Single channels, expressed in Xenopus oocytes, were studied using inside-out patch recording in the absence of internal Mg2+ to eliminate blockade of outward current. Potassium, at equal concentrations on both sides of the membrane, was varied from 10 to 1,000 mM. As K+ was raised from 10 mM, the conductance increased steeply and reached a maximum value (39 pS) at 300 mM. The single-channel conductance then became progressively smaller as K+ was raised beyond 300 mM. At 1000 mM K+, the conductance was reduced to approximately 75% of its maximum value. The shape of the conductance-concentration curve observed in the ROMK1 channel implies that it has multiple K(+)-occupied binding sites in its conduction pathway.  相似文献   

12.
Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

13.
Temperature dependence of ion permeation at the endplate channel   总被引:4,自引:1,他引:3       下载免费PDF全文
The dependence of acetylcholine receptor mean single-channel conductance on temperature was studied at garter snake twitch-muscle endplates using fluctuation analysis. In normal saline under conditions where most of the endplate current was carried by Na+, the channel conductance increased continuously from near 0 degrees C to approximately 23 degrees C with a Q10 of 1.97 +/- 0.14 (mean +/- SD). When 50% of the bath Na+ was replaced by either Li+, Rb+, or Cs+, the Q10 did not change significantly; however, at any temperature the channel conductance was greatest in Cs-saline and decreased with the ion sequence Cs greater than Rb greater than Na greater than Li. The results were fit by an Eyring-type model consisting of one free-energy well on the extracellular side of a single energy barrier. Ion selectivity appeared to result from ion-specific differences in the well and not in the barrier of this model. With a constant barrier enthalpy for different ions, well free-energy depth was greatest for Cs+ and graded identical to the permeability sequence. The correlation between increased well depth (i.e., ion binding) and increased channel conductance can be accounted for by the Boltzmann distribution of thermal energy.  相似文献   

14.
The conduction properties of the alkaline earth divalent cations were determined in the purified sheep cardiac sarcoplasmic reticulum ryanodine receptor channel after reconstitution into planar phospholipid bilayers. Under bi-ionic conditions there was little difference in permeability among Ba2+, Ca2+, Sr2+, and Mg2+. However, there was a significant difference between the divalent cations and K+, with the divalent cations between 5.8- and 6.7-fold more permeant. Single-channel conductances were determined under symmetrical ionic conditions with 210 mM Ba2+ and Sr2+ and from the single-channel current-voltage relationship under bi-ionic conditions with 210 mM divalent cations and 210 mM K+. Single-channel conductance ranged from 202 pS for Ba2+ to 89 pS for Mg2+ and fell in the sequence Ba2+ greater than Sr2+ greater than Ca2+ greater than Mg2+. Near-maximal single-channel conductance is observed at concentrations as low as 2 mM Ba2+. Single-channel conductance and current measurements in mixtures of Ba(2+)-Mg2+ and Ba(2+)-Ca2+ reveal no anomalous behavior as the mole fraction of the ions is varied. The Ca(2+)-K+ reversal potential determined under bi-ionic conditions was independent of the absolute value of the ion concentrations. The data are compatible with the ryanodine receptor channel acting as a high conductance channel displaying moderate discrimination between divalent and monovalent cations. The channel behaves as though ion translocation occurs in single file with at most one ion able to occupy the conduction pathway at a time.  相似文献   

15.
Summary A potassium-specific tonoplast channel was identified by reconstitution of tonoplast polypeptides into planar lipid bilayer membranes. Highly purified tonoplast membranes were solubilized in Triton X-100-containing buffer and fractionated by size-exclusion chromatography. The protein fractions were assayed for ion channel activity in a planar bilayer system, and the potassium channel was routinely recovered in specific fractions corresponding to an apparent molecular mass of 80 kDa. In symmetrical electrolyte solutions of 100 mM potassium chloride, the potassium channel had a single-channel conductance of 72 pS. Substates of the channel with conductances of 17, 33 and 52 pS were frequently observed. After identification of the channel in low or high KCl, addition of sodium acetate or sodium chloride caused only insignificant conductance changes. This result suggested that the channel was not or little permeable for sodium or chloride, whereas it had similar single-channel conductance for rubidium and caesium ions as compared with potassium ions. The channel is presumably responsible for the equilibration of potassium between the vacuole and the cytosol. The role of the channel in the physiology of the barley cell under salt stress is discussed.The authors would like to thank U. Heber for many helpful discussions. This work was supported by grants of the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 176, projects B3 and B7) and by the Fonds der Chemischen Industrie.  相似文献   

16.
To examine the structural and functional importance of backbone amide groups in ion channels for subunit folding, hydrogen bonding, ion solvation, and ion permeation, we replaced the peptide bond between Val(1) and Gly(2) in gramicidin A by an ester bond. The substitution is at the junction between the two channel subunits, where it removes an intramolecular hydrogen bond between the NH of Gly(2) and the C==O of Val(7) and perturbs an intermolecular hydrogen bond between the C==O of Val(1) in one subunit and the NH of Ala(5) in the other subunit. The substitution thus perturbs not only subunit folding but also dimer assembly, in addition to any effects on ion permeation. This backbone modification has large effects on channel function: It alters channel stability, as monitored by the channel forming ability and channel lifetime, and ion permeability, as monitored by changes in single-channel conductance and cation permeability ratios. In fact, the homodimeric channels, with two ester-containing subunits, have lifetimes so short that it becomes impossible to characterize them in any detail. The peptide --> ester substitution, however, does not affect the basic subunit fold because heterodimeric channels can form between a subunit with an ester bond and a native subunit. These heterodimeric channels, with only a single ester bond, are more easily characterized; the lone ester reduces the single-channel conductance about 4-fold and the lifetime about 200-fold as compared to the native homodimeric channels. The altered channel function results from a perturbation/disruption of the hydrogen bond network that stabilizes the backbone, as well as the membrane-spanning dimer, and that forms the lining of the ion-conducting pore. Molecular dynamics simulations show the expected destabilization of the modified heterodimeric or homodimeric channels, but the changes in backbone structure and dynamics are remarkably small. The ester bond is somewhat unstable, which precluded further structural characterization. The lability also led to a hydrolysis product that terminates with an alcohol and lacks formyl-Val. Symmetric channels formed by the hydrolyzed product again have short lifetimes, but the channels are distinctly different from those formed by the ester gramicidin A. Furthermore, well-behaved asymmetric channels form between the hydrolysis product and reference subunits that have either an L- or a D-residue at the formyl-NH-terminus.  相似文献   

17.
N-methyl-D-aspartate (NMDA) receptor channels in cultured CA1 hippocampal neurons were studied using patch-clamp techniques. The purpose of the research was to determine the occupancy of the channel by permeant cations and to determine the influence of charged residues in or near the pore. The concentration dependence of permeability ratios, the mole-fraction dependence of permeability ratios, the concentration dependence of the single-channel conductance, and a single-channel analysis of Mg2+ block all independently indicated that the NMDA receptor behaves as a singly-occupied channel. More precisely, there is one permeant cation at a time occupying the site or sites that are in the narrow region of the pore directly in the permeation pathway. Permeability-ratio measurements in mixtures of monovalent and divalent cations indicated that local charges in or near the pore do not produce a large local surface potential in physiologic solutions. In low ionic strength solutions, a local negative surface potential does influence the ionic environment near the pore, but in normal physiologic solutions the surface potential appears too small to significantly influence ion permeation. The results indicate that the mechanism for the high Ca2+ conductance of the NMDA receptor channel is not the same as for the voltage-dependent Ca2+ channel (VDCC). The VDCC has two high affinity, interacting binding sites that provide high Ca2+ selectivity and conductance. The binding site of the NMDA receptor is of lower affinity. Therefore, the selectivity for Ca2+ is not as high, but the lower affinity of binding provides a faster off rate so that interacting sites are not required for high conductance.  相似文献   

18.
Although mechanoelectrical transducer (MET) channels have been extensively studied, uncertainty persists about their molecular architecture and single-channel conductance. We made electrical measurements from mouse cochlear outer hair cells (OHCs) to reexamine the MET channel conductance comparing two different methods. Analysis of fluctuations in the macroscopic currents showed that the channel conductance in apical OHCs determined from nonstationary noise analysis was about half that of single-channel events recorded after tip link destruction. We hypothesized that this difference reflects a bandwidth limitation in the noise analysis, which we tested by simulations of stochastic fluctuations in modeled channels. Modeling indicated that the unitary conductance depended on the relative values of the channel activation time constant and the applied low-pass filter frequency. The modeling enabled the activation time constant of the channel to be estimated for the first time, yielding a value of only a few microseconds. We found that the channel conductance, assayed with both noise and recording of single-channel events, was reduced by a third in a new deafness mutant, Tmc1 p.D528N. Our results indicate that noise analysis is likely to underestimate MET channel amplitude, which is better characterized from recordings of single-channel events.  相似文献   

19.
The Golgi complex is present in every eukaryotic cell and functions in posttranslational modifications and sorting of proteins and lipids to post-Golgi destinations. Both functions require an acidic lumenal pH and transport of substrates into and by-products out of the Golgi lumen. Endogenous ion channels are expected to be important for these features, but none has been described. Ion channels from an enriched Golgi fraction cleared of transiting proteins were incorporated into planar lipid bilayers. Eighty percent of the single-channel recordings revealed the same anion channel. This channel has novel properties and has been named GOLAC (Golgi anion channel). The channel has six subconductance states with a maximum conductance of 130 pS, is open over 95% of the time, and is not voltage-gated. Significant for Golgi function, the channel conductance is increased by reduction of pH on the lumenal surface. This channel may serve two nonexclusive functions: providing counterions for the acidification of the Golgi lumen by the H(+)-ATPase and removal of inorganic phosphate generated by glycosylation and sulfation of proteins and lipids in the Golgi.  相似文献   

20.
Protein P from Pseudomonas aeruginosa outer membrane was reconstituted in lipid bilayer membranes from diphytanoylphosphatidylcholine. The reconstitution resulted in the formation of anion-selective channels with a conductance of 160 pS for 0.1 M chloride solution. The channels were at least 100-times more selective for anions than for cations as judged from zero-current membrane potentials. The single-channel conductance was dependent on the size of the different anions and saturated at higher salt concentrations suggesting single ion occupancy of the protein P channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号