首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Summary Photomixotrophic (Pm) micropropagation systems (ones that use a sugar-containing medium) have been used by many rescarchers for transplant production of St. John's wort. However, these methods have not yet been adopted for commercial applications, probably due to the low percentage of regeneration in vitro, and a low growth rate after transplanting ex vitro. In contrast, it is well known that the use of a photoautotrophic (Pa) micropropagation system (one that uses sugar-free medium) can promote the growth and improve the quality of plantlets in vitro, and enhance the growth during acclimatization for many plant species. In the current study, leafy nodal cuttings were cultured under Pa conditions and the growth and quality were compared with those cultured under Pm conditions. After 21d of culture, Pa conditions enhanced the growth and quality of St. John's wort plantlets in vitro, and these plantlets showed faster growth after transplantaing ex vitro compared with those cultured under Pm conditions.  相似文献   

2.
Abutilon theophrasti (C3) and Amaranthus retroflexus (C4), were grown from seed at four partial pressures of CO2: 15 Pa (below Pleistocene minimum), 27 Pa (pre-industrial), 35 Pa (current), and 70 Pa (future) in the Duke Phytotron under high light, high nutrient, and wellwatered conditions to evaluate their photosynthetic response to historic and future levels of CO2. Net photosynthesis at growth CO2 partial pressures increased with increasing CO2 for C3 plants, but not C4 plants. Net photosynthesis of Abutilon at 15 Pa CO2 was 70% less than that of plants grown at 35 Pa CO2, due to greater stomatal and biochemical limitations at 15 Pa CO2. Relative stomatal limitation (RSL) of Abutilon at 15 Pa CO2 was nearly 3 times greater than at 35 Pa CO2. A photosynthesis model was used to estimate ribulose-1,5-bisphosphate carboxylase (rubisco) activity (Vcmax), electron transport mediated RuBP regeneration capacity (J max), and phosphate regeneration capacity (PiRC) in Abutilon from net photosynthesis versus intercellular CO2 (AC i) curves. All three component processes decreased by approximately 25% in Abutilon grown at 15 Pa compared with 35 Pa CO2. Abutilon grown at 15 Pa CO2 had significant reductions in total rubisco activity (25%), rubisco content (30%), activation state (29%), chlorophyll content (39%), N content (32%), and starch content (68%) compared with plants grown at 35 Pa CO2. Greater allocation to rubisco relative to light reaction components and concomitant decreases in J max and PiRC suggest co-regulation of biochemical processes occurred in Abutilon grown at 15 Pa CO2. There were no significant differences in photosynthesis or leaf properties in Abutilon grown at 27 Pa CO2 compared with 35 Pa CO2, suggesting that the rise in CO2 since the beginning of the industrial age has had little effect on the photosynthetic performance of Abutilon. For Amaranthus, limitations of photosynthesis were balanced between stomatal and biochemical factors such that net photosynthesis was similar in all CO2 treatments. Differences in photosynthetic response to growth over a wide range of CO2 partial pressures suggest changes in the relative performance of C3 and C4 annuals as atmospheric CO2 has fluctuated over geologic time.  相似文献   

3.
Summary Methods were developed to study the effects of absorbent materials from diapers on microbial survival, growth and toxic shock syndrome toxin-1 (TSST-1) production under specified in vitro conditions. Growth of representative skin and fecal flora organisms was equivalent in cultures in which materials from cotton cloth diapers, disposable diapers or disposable diapers containing absorbent gelling material were added as the sole carbon source. In urine used as an enrichment medium, growth of the test organisms in media containing material from the three diaper types was equivalent and no contribution to growth from the diaper material was detected. TSST-1 was not produced byStaphylococcus aureus under conditions in which urine was added to the diaper materials. Pathogenic strains of organisms purposefully introduced onto diapers failed to survive and the few microbial cells normally found in diaper material did not multiply when stored under conditions favorable to microbial growth. The data indicate that all three diaper types tested were the same with respect to growth and survival of representative skin and fecal organisms.  相似文献   

4.
The aim of the present study was to evaluate music effects (Mozart, K525) on gilthead seabream Sparus aurata and investigate whether its response to music was differentiated when combined with different lighting conditions. Therefore, S. aurata (mean ±s .e . 1·51 ± 0·01 g) were reared in re‐circulating water system under 80 and 200 lx and subjected to 2 and 4 h of music transmissions or to no music at all (control, ambient noise only). Underwater ambient noise of the equipment (e.g. pumps and aerators) in all experimental tanks was 121 dB re 1 μPa and music transmitted was set at 140 dB re 1 μPa. During the first 89 days of rearing, music resulted in enhanced growth. Nevertheless, at the end of the experiment (on day 117) no significant differences were found for body mass but music treatment resulted in more homogeneous fish populations than controls. Brain neurotransmitter levels were reduced especially when music transmission was combined with 200 lx. Feed utilization was significantly improved when fish were subjected to 4 h of music and 200 lx, while stomach proteolytic enzymes and intestine total carbohydrases were lower and higher, respectively, compared to controls. Some differences were also observed in liver and plasma fatty acids composition. The present results provide the initial evidence that music transmission under specific rearing conditions could have enhancing effects on S. aurata growth performance, at least at specific fish sizes. Moreover, the observed music effects on several aspects of fish physiology (e.g. digestive enzymes, fatty acid composition and brain neurotransmitters) imply that music could possibly provide even further enhancement in growth, quality, welfare and production.  相似文献   

5.
Productivity of aridland plants is predicted to increase substantially with rising atmospheric carbon dioxide (CO2) concentrations due to enhancement in plant water-use efficiency (WUE). However, to date, there are few detailed analyses of how intact desert vegetation responds to elevated CO2. From 1998 to 2001, we examined aboveground production, photosynthesis, and water relations within three species exposed to ambient (around 38 Pa) or elevated (55 Pa) CO2 concentrations at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility in southern Nevada, USA. The functional types sampled—evergreen (Larrea tridentata), drought-deciduous (Ambrosia dumosa), and winter-deciduous shrubs (Krameria erecta)—represent potentially different responses to elevated CO2 in this ecosystem. We found elevated CO2 significantly increased aboveground production in all three species during an anomalously wet year (1998), with relative production ratios (elevated:ambient CO2) ranging from 1.59 (Krameria) to 2.31 (Larrea). In three below-average rainfall years (1999–2001), growth was much reduced in all species, with only Ambrosia in 2001 having significantly higher production under elevated CO2. Integrated photosynthesis (mol CO2 m−2 y−1) in the three species was 1.26–2.03-fold higher under elevated CO2 in the wet year (1998) and 1.32–1.43-fold higher after the third year of reduced rainfall (2001). Instantaneous WUE was also higher in shrubs grown under elevated CO2. The timing of peak canopy development did not change under elevated CO2; for example, there was no observed extension of leaf longevity into the dry season in the deciduous species. Similarly, seasonal patterns in CO2 assimilation did not change, except for Larrea. Therefore, phenological and physiological patterns that characterize Mojave Desert perennials—early-season lags in canopy development behind peak photosynthetic capacity, coupled with reductions in late-season photosynthetic capacity prior to reductions in leaf area—were not significantly affected by elevated CO2. Together, these findings suggest that elevated CO2 can enhance the productivity of Mojave Desert shrubs, but this effect is most pronounced during years with abundant rainfall when soil resources are most available.  相似文献   

6.
Microlunatus phosphovorus is an activated-sludge bacterium with high levels of phosphorus-accumulating activity and phosphate uptake and release activities. Thus, it is an interesting model organism to study biological phosphorus removal. However, there are no studies demonstrating the polyhydroxyalkanoate (PHA) storage capability of M. phosphovorus, which is surprising for a polyphosphate-accumulating organism. This study investigates in detail the PHA storage behavior of M. phosphovorus under different growth conditions and using different carbon sources. Pure culture studies in batch-growth systems were conducted in shake-flasks and in a bioreactor, using chemically defined growth media with glucose as the sole carbon source. A batch-growth system with anaerobic–aerobic cycles and varying concentrations of glucose or acetate as the sole carbon source, similar to enhanced biological phosphorus removal processes, was also employed. The results of this study demonstrate for the first time that M. phosphovorus produces significant amounts of PHAs under various growth conditions and with different carbon sources. When the PHA productions of all cultivations were compared, poly(3-hydroxybutyrate) (PHB), the major PHA polymer, was produced at about 20–30% of the cellular dry weight. The highest PHB production was observed as 1,421 mg/l in batch-growth systems with anaerobic–aerobic cycles and at 4 g/l initial glucose concentration. In light of these key results regarding the growth physiology and PHA-production capability of M. phosphovorus, it can be concluded that this organism could be a good candidate for microbial PHA production because of its advantages of easy growth, high biomass and PHB yield on substrate and no significant production of fermentative byproducts.  相似文献   

7.
Pseudomonas sp. strain 267 isolated from soil promoted growth of different plants under field conditions and enhanced symbiotic nitrogen fixation in clover under gnotobiotic conditions. This strain produced pyoverdine-like compound under low-iron conditions and secreted vitamins of the B group. The role of fluorescent siderophore production in the beneficial effect of strain 267 on nodulated clover plants was investigated. Several non-fluorescent (Pvd-) Tn5 insertion mutants of Pseudomonas sp. strain 267 were isolated and characterized. The presence of Tn5 insertions was confirmed by Southern analysis of EcoRI digested genomic DNA of each derivative strain. The siderophore-negative mutants were compared to the parental strain with respect to their growth promotion of nodulated clover infected with Rhizobium leguminosarum bv. trifolii 24.1. We found that all isolated Pvd- mutants stimulated growth of nodulated clover plants in a similar manner to the parental strain. No consistent differences were observed between strain 267 and Pvd- derivatives strains with respect to their plant growth promotion activity under gnotobiotic conditions.Dr Deryto died in august 1994  相似文献   

8.
The production of ethanol, acetate ion and ethyl acetate from glucose by the yeast Candida pseudotropicalis NCYC 143 was investigated under aerobic and anaerobic growth conditions. Acetate and ethyl acetate only accumulated under aerobic conditions, whereas production of the alcohol was favoured by anaerobic conditions. Ester production during aerobic growth was enhanced substantially by growth in iron-deficient media. Possible conditions for optimising ester production from ethanol in dilute product streams were characterised.  相似文献   

9.
With the objective to develop a practical method of screening potato for drought tolerance, shoot and root growth in plantlets raised in vitro (from nodal cuttings drawn from in vivo as well as in vitro grown plantlets) were studied in three genotypes with known root mass production under field conditions. Different levels of water stress were induced using five concentrations of agar in MS (Murashige and Skoog in Physiol Plant 15:473–497, 1962) medium. Water potential of various media ranged from −0.70 MPa to −0.98 MPa. Water stress in culture adversely affected plantlet growth, and the responses varied with genotype and explant source. Genotype IWA-1 was less affected than Konafubuki and Norin-1. In the experiment with explants from in vivo grown plants, the time to rooting was considerably delayed in Konafubuki and Norin-1 by an increase in agar concentration, but no such effect was observed in IWA-1. In all media, the mean number of roots and root length was greater in IWA-1 than Konafubuki and Norin-1, and the latter two genotypes were at par. At 10 gl−1 agar, IWA-1 had taller plantlets, heavier foliage dry weight, root volume, as well as root dry weight than Konafubuki and Norin-1, whereas the latter two genotypes were at par for all these characteristics. This pattern was similar to the reported pattern of these genotypes for root dry weight under field conditions. However, such similarity in the in vitro and field behavior of the tested genotypes was not observed when nodal cuttings drawn from in vitro plantlets were used as explants. It is concluded that in vitro screening of potato under specific and limited water stress conditions by raising plantlets from nodal cuttings drawn from in vivo grown plants may provide a system for effectively differentiating the genotypes for their expected root mass production under field conditions.  相似文献   

10.
Cell growth and extracellular pullulanase production ofBacillus stearothermophilus G-82 were investigated in batch culture using a defined medium with glucose, maltose, pullulan or amylopectin as carbon source. Maximum enzyme activity was with pullulan or amylopectin. Cell growth in batch culture was better under oxygen unlimited conditions, while higher total and specific enzyme activities, using pullulan or amylopectin, were obtained in oxygen-limited conditions. Enzyme accumulation took place in the late growth phase. The highest enzyme production of 300 U/I was reached when pullulan was used as carbon source in conditions of oxygen limitation.  相似文献   

11.
Sullivan PF  Welker JM 《Oecologia》2005,142(4):616-626
We examined the effects of passive open-top warming chambers on Eriophorum vaginatum production near Toolik Lake, Alaska, USA. During the 2002 growing season, chamber warming was consistent with the magnitude and seasonality observed in recent decades throughout northwestern North America. Leaf-growth rates were higher in late May and early June; maximum growth rates in each leaf cohort occurred earlier and peak biomass was observed 20 days earlier within the chambers. Consequently, plants within the chambers maintained more live leaf biomass during the period of highest photosynthetically active radiation. Annual leaf production within the chambers (21±2 mg tiller) was not significantly different than under ambient conditions (17±2 mg tiller) (P=0.2256) despite higher early-season growth rates. Root growth began earlier; growth rates were higher in late May and early June, and maximum growth rates occurred earlier within the chambers. Therefore, plants within the chambers maintained greater root biomass during what earlier studies have identified as a period of relatively high nutrient availability. Annual root production within the chambers (191±42 g m–2) was not significantly different than under ambient conditions (119±48 g m–2) (P=0.1979), although there was a trend toward higher production within the chambers. The tendency toward higher root production within the chambers is consistent with previous laboratory experiments and with the predictions of biomass allocation theory.  相似文献   

12.
In the present study, a food-borne pathogen strain of Bacillus cereus (F4430/73) was anaerobically grown in controlled-batch conditions under low initial oxidoreduction potential (ORP=–148 mV) using hydrogen gas as reducing agent. Its physiological characteristics, including growth, glucose fermentation capacity and enterotoxin production, were compared with anaerobic conditions generated by nitrogen gas (ORP=+ 45 mV). The results showed that low ORP affected growth mainly during the early stages. Maximal specific rates of growth and glucose consumption were reduced, and drastic changes in time profiles of fermentation product concentration were observed. Production of lactate was promoted at the expense of acetate. Nevertheless, low ORP did not affect final biomass yield. Under both ORP conditions, Non-haemolytic enterotoxin (Nhe) was produced early during the exponential growth phase as a first enterotoxin and Haemolysin BL (Hbl) later during the early stationary growth phase as a second enterotoxin. The major effect of low ORP was the strong stimulation of Hbl production and, to a lesser extent, Nhe production. This control was complex, involving different levels of regulation. We discussed the regulation of enterotoxin expression and the involvement of the pleiotropic regulator PlcR.  相似文献   

13.
The effect of pH, aeration and mixing on the growth and production of carbonyl reductase by Candida viswanathii was investigated in a 6.6-l fermentor. Controlling the pH at 8.0 had a very significant effect on the enzyme production. Aeration and agitation influenced the dissolved oxygen concentration which in turn affected growth as well as enzyme production. A maximum carbonyl reductase activity (53 Umg−1) was attained in 24 h under the optimal cultivation conditions of controlled pH at 8.0, aeration rate 1 vvm and an agitation speed of 250 rpm at 25°C. The enzyme activity was twice as high (56 Umg−1) in the fermentor as compared to a shake flask. Further, the duration of growth and enzyme production in the fermentor was shortened. Cells cultivated under the optimized conditions were used for the preparative scale reduction of N, N-dimethyl-(3-keto)-2-thienyl-propanamine to (S)-N, N-dimethyl-(3-hydroxy)-2-thienyl-propanamine, a key intermediate in the production of the important antidepressant drug (S)-duloxetine.  相似文献   

14.
The elongation growth of the hypocotyls of radish and cucumber seedlings was examined under hypergravity in a newly developed centrifuge (Kasaharaet al. 1995). The effects of hypergravity on elongation growth differed between the two species. The rate of elongation of radish hypocotyls was reduced under basipetal hypergravity (H+20g) but not under acropetal hypergravity (H-13g), as compared to growth under the control conditions (C+1g and C-1g). In cucumber hypocotyls, elongation growth was inhibited not only by basipetal but also by acropetal hypergravity. Under these conditions, the reduction in the elongation growth of both radish and cucumber hypocotyls was accompanied by an increase in their thickness. Although no distinct differences in relative composition of neutral sugars were found, the amounts of cell-wall components (pectic substances, hemicelluloses and cellulose) per unit length of hypocotyls were increased by exposure to hypergravity.  相似文献   

15.
Two closely related anise cell-culture lines, Pa15 and Pa19, differ considerably in growth rate, potential to form somatic embryoids, triacylglycerol (TAG) storage and pattern of lipid-body proteins. Line Pa15 grows very fast (doubling rate: 3 d), mainly as single cells, exhibits a low potential for somatic embryogenesis and its TAG content is relatively low (5–20 mg TAG per g dry weight). In contrast, the line Pa19 shows lower growth rates (doubling rate: 8 d), tends to form clusters of somatic cells, has a higher TAG content (100–150 mg TAG per g dry weight), and somatic embryoids are easily induced. Under defined culture conditions, the TAG content of the line Pa19 can be increased to approximately 70% of that of ripe anise seeds (150 and 220 mg TAG per g dry weight, respectively). Polyclonal antibodies prepared against the most abundant protein (relative molecular mass 18.4 kDa) from the lipid-body fraction of anise seeds (Radetzky et al. 1993, Planta 191, 166–172) react also with a 18.4-kDa protein from the lipid-body fraction of cells of the Pa19 culture. In contrast, only fairly low levels of the 18.4-kDa oleosin were detected in Pal5. Limited sucrose supply in the medium resulted in TAG degradation and the concomitant decrease in the amount of immunodetectible 18.4-kDa protein in the Pa19 cell culture. Treatment with sorbitol, or abscisic acid and sorbitol in combination, enhanced TAG contents and also the amount of immunostained 18.4-kDa protein in the cell culture Pa19, whereas no effect was found on either TAG content or 18.4-kDa protein in the cell-culture line Pa15. The 18.4-kDa protein can be classified as an oleosin, a proposal which is supported by the similarity in molecular mass compared with other known oleosins, its occurrence in the lipid-body fraction and the fact that its amount correlates with the TAG content. The results of this study indicate that the Pa19 cell culture provides a valid model system for investigations of lipid storage and mobilization in higher-plant cells.Abbreviations ABA cis-abscisic acid - TAG triacylglycerol(s) - 2,4-D 2,4-dichlorophenoxyacetic acid The authors thank Christiane Bernshausen for kind technical assistance.  相似文献   

16.
Biocontrol of root-knot nematode Meloidogyne incognita was studied on tomato using 15 isolates of fluorescent Pseudomonads isolated from pathogen suppressive soils. Pseudomonas aeruginosa (isolates Pa8, Pa9 and Pa3) caused greater inhibitory effect on hatching of M. incognita than other isolates. In addition, isolates Pa8, Pa9 and Pa3 caused greater colonisation of tomato roots and also caused a greater increase in the growth of tomato seedlings. These isolates also caused a greater increase in growth of tomato and higher reduction in galling and nematode multiplication in a green house test than is caused by other isolates. Isolates Pf1, Pf5, Pf6 and Pa13 were unable to increase growth of tomato and caused less reduction in galling and nematode multiplication compared to other isolates. Only 10 isolates produced siderophores on chromo-azurol sulfonate (CAS) agar medium and isolate Pa12 showed greater production of siderophore followed by Pa11, Pa9, Pf10, Pa3 and Pf5. Similarly, isolates Pa14, Pa12, Pf10, Pa9, Pa8, Pa7 and Pa6 produced greater amount of HCN than the other isolates tested. Isolates Pa8 and Pa9 showed greater production of IAA than the other 13 isolates tested. This study suggests that P. aeruginosa isolates Pa8 and Pa9 may be used for the biocontrol of M. incognita on tomato.  相似文献   

17.
In this study, carotenoid and glycerol production in two unicellular green algae (Dunaliella salina and D. viridis) isolated from the Gave-Khooni salt marsh grown in media containing five different salt concentrations (0.17, 1, 2, 3, and 4 M NaCl) were evaluated under sterile conditions. Algae growth decreased as the medium salinity increased. Optimum growth of D. salina and D. viridis were obtained at 2 and 1 M NaCl, respectively. As salinity increased, glycerol and carotenoid production were increased in D. salina, whereas lower values for these products were produced in D. viridis under the same conditions. Furthermore, the cell color of D. salina changed from green to orange-red following accumulation of carotenoid, but the color of D. viridis was not changed. Thereby, it seems that the Iranian D. salina may be suitable for carotenoid production (betacarotene) on a large scale. In addition, since carotenoid compounds enhance the efficiency of photosynthesis and glycerol synthesis, it appears that the pathway for glycerol production and mechanisms of salt tolerance in D. viridis are unique from those of D. salina.  相似文献   

18.
The cultural characteristics of the fungusCladosporium phlei were assessed in order to develop an improved method for the production of the fungal pigment, phleichrome, which is an intermediate in the production of a photodynamic therapeutic agent. The growth ofC. phlei, as measured by the hyphal growth rate and increase in biomass, varies significantly depending on the culture media utilized (V8 juice-based medium proved optimal for both growth rate and biomass increase). How-ever, even on a V8 juice plate, the growth ofC. phlei occurred slowly and in a limited fashion, in that the colony covered only 75% of the agar surface after more than 4 weeks of cultivation at 20°C. Supplementations of glucose, fructose, galactose, and sucrose increased both hyphal expansion and mass production, whereas supplementations of other carbon sources, including glycerol and sorbitol, exerted no detectable effects. The effect of inorganic nitrogen supplementation was negligible, whereas organic nitrogen evidenced significant effects, with enhanced growth with malt extract and growth inhibition with yeast extract and tryptone. Sporulation was enhanced under conditions of continuous light, and a minimum of 103 spores per mL of liquid media was found to be necessary for the optimal mass increase. A simple extraction procedure was established in order to isolate the deep red pigment which was subsequently identified as phleichrome via NMR analysis. WhenC. phlei was cultured on V8 medium containing 5% glucose and 2% malt extract, the quantity of mycelial mass was estimated as 20.6 g (dry weight) per liter of culture. The expected phleichrome yields from the mycelia and culture filtrates were estimated to be 43 and 2 mg/L, repectively. There was an equal contribution of the reported research by the first two authors.  相似文献   

19.
Root explants of chicory (Cichorium intybus L.) were cultured in vitro under continuous light or darkness. On a standard medium (no plant growth regulators added), flowering-stems were initiated under continuous light while under continuous dark, vegetative-stems were formed. Different types of GA (gibberellin) biosynthesis inhibitors were added to the culture medium. Paclobutrazol and compounds belonging to the group of cyclohexanetriones clearly reduced flowering-stem growth under light conditions and vegetative-stem growth under dark conditions. Under light conditions, flower bud initiation was not affected. These and other results suggest that GA1 may be synthesized during the in vitro culture period and that it controls flowering-stem growth but not floral initiation.Abbreviations CCC chlormequat chloride - GA gibberellin - LAB 198 999 3,5-dioxo-4-butyryl-cyclohexane carboxylic acid ethyl ester - BAS 111..W 1-phenoxy-3-(1H-1,2,4-triazol-1-yl)-4-hydroxy-5,5-dimethylhexane  相似文献   

20.
Zn efficiency (ZE) is the ability of plants to maintain high yield under Zn-deficiency stress in the soil. Two bean (Phaseolus vulgaris L.) genotypes that differed in ZE, Voyager (Zn-efficient) and Avanti (Zn-inefficient), were used for this investigation. Plants were grown under controlled-environment conditions in chelate-buffered nutrient solution where Zn2+ activities were controlled at low (0.1 pM) or sufficient (150 pM) levels. To investigate the relative contribution of the root versus the shoot to ZE, observations of Zn-deficiency symptoms in reciprocal grafts of the two genotypes were made. After growth under low-Zn conditions, plants of nongrafted Avanti, self-grafted Avanti and reciprocal grafts that had the Avanti shoot scion exhibited Zn-deficiency symptoms. However nongrafted and self-grafted Voyager, as well as reciprocal grafts with the Voyager shoot scion, were healthy with no visible Zn-deficiency symptoms under the same growth conditions. More detailed investigations into putative shoot-localized ZE mechanisms involved determinations of leaf biomass production and Zn accumulation, measurements of subcellular Zn compartmentation, activities of two Zn-requiring enzymes, carbonic anhydrase and Cu/Zn-dependent superoxide dismutase (Co/ZnSOD), as well as the non-Zn-requiring enzyme nitrate reductase. There were no differences in shoot tissue Zn concentrations between the Zn-inefficient and Zn-efficient genotypes grown under the low-Zn conditions where differences in ZE were exhibited. Shoot Zn compartmentation was investigated using radiotracer (65Zn) efflux analysis and suggested that the Zn-efficient genotype maintains higher cytoplasmic Zn concentrations and less Zn in the leaf-cell vacuole, compared to leaves from the Zn-inefficient genotype under Zn deficiency. Analysis of Zn-requiring enzymes in bean leaves revealed that the Zn-efficient genotype maintains significantly higher levels of carbonic anhydrase and Cu/ZnSOD activity under Zn deficiency. While these data are not sufficient to allow us to determine the specific mechanisms underlying ZE, they certainly point to the shoot as a key site where ZE mechanisms are functioning, and could involve processes associated with Zn compartmentation and biochemical Zn utilization.Abbreviations CA Carbonic anhydrase - NR Nitrate reductase - SOD Superoxide dismutase - ZE Zinc efficiency This research was supported by a graduate fellowship awarded to G.H. by The Republic of Turkey  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号