首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In Drosophila melanogaster the doublesex (dsx) and fruitless (fru) regulatory genes act at the bottom of the somatic sex determination pathway. Both are regulated via alternative splicing by an upstream female-specific TRA/TRA-2 complex, recognizing a common cis element. dsx controls somatic sexual differentiation of non-neural as well as of neural tissues. fru, on the other hand, expresses male-specific functions only in neural system where it is required to built the neural circuits underlying proper courtship behaviour. In the mosquito Aedes aegypti sex determination is different from Drosophila. The key male determiner M, which is located on one of a pair of homomorphic sex chromosomes, controls sex-specific splicing of the mosquito dsx orthologue. In this study we report the genomic organization and expression of the fru homologue in Ae. aegypti (Aeafru). We found that it is sex-specifically spliced suggesting that it is also under the control of the sex determination pathway. Comparative analyses between the Aeafru and Anopheles gambiae fru (Angfru) genomic loci revealed partial conservation of exon organization and extensive divergence of intron lengths. We find that Aeadsx and Aeafru share novel cis splicing regulatory elements conserved in the alternatively spliced regions. We propose that in Aedes aegypti sex-specific splicing of dsx and fru is most likely under the control of splicing regulatory factors which are different from TRA and TRA-2 found in other dipteran insects and discuss the potential use of fru and dsx for developing new genetic strategies in vector control.  相似文献   

2.
V Heinrichs  B S Baker 《The EMBO journal》1995,14(16):3987-4000
The SR proteins represent a family of splicing factors several of which have been implicated in the regulation of sex-specific alternative splicing of doublesex (dsx) pre-mRNA in Drosophila. The dsx gene is involved in Drosophila sex determination. We have identified two RNA target sequence motifs recognized by the SR protein RBP1 from Drosophila using an in vitro selection approach. Several copies of these RBP1 target sequences were found within two regions of the dsx pre-mRNA which are important for the regulation of dsx alternative splicing, the repeat region and the purine-rich polypyrimidine tract of the regulated female-specific 3' splice site. We show that RBP1 target sequences within the dsx repeat region are required for the efficient splicing of dsx pre-mRNA. Moreover, our studies reveal that RBP1 contributes to the activation of female-specific dsx splicing in vivo by recognizing the RBP1 target sequences within the purine-rich polypyrimidine tract of the female-specific 3' splice site.  相似文献   

3.
M L Hedley  T Maniatis 《Cell》1991,65(4):579-586
Somatic sex determination in Drosophila involves a hierarchy of regulated alternative pre-mRNA processing. Female-specific splicing and/or polyadenylation of doublesex (dsx) pre-mRNA, the final gene in this pathway, requires transformer (tra) and transformer-2 (tra-2) proteins. The mechanisms by which these proteins regulate RNA processing has not been characterized. In this paper we show that tra-2 produced in Escherichia coli binds specifically to a site within the female-specific exon of dsx pre-mRNA. This site, which contains six copies of a 13 nucleotide repeat, is required not only for female-specific splicing, but also for female-specific polyadenylation. These observations suggest that tra-2 is a positive regulator of dsx pre-mRNA processing.  相似文献   

4.
5.
Alternative pre-mRNA splicing may be the most efficient and widespread mechanism to generate multiple protein isoforms from single genes. Here, we describe the genomic analysis of one of the most frequent types of alternative pre-mRNA splicing, alternative 5'- and 3'-splice-site selection. Using an EST-based alternative splicing database recording >47,000 alternative splicing events, we determined the frequency and location of alternative 5'- and 3'-splice sites within the human genome. The most common alternative splice sites used in the human genome are located within 6 nucleotides (nt) of the dominant splice site. We show that the EST database overrepresents alternative splicing events that maintain the reading frame, thus supporting the concept that RNA quality-control steps ensure that mRNAs that encode for potentially harmful protein products are destroyed and do not serve as templates for translation. The most frequent location for alternative 5'-splice sites is 4 nt upstream or downstream from the dominant splice site. Sequence analysis suggests that this preference is a consequence of the U1 snRNP binding sequence at the 5'-splice site, which frequently contains a GU dinucleotide 4 nt downstream from the dominant splice site. Surprisingly, approximately 50% of duplicated 3'-YAG splice junctions are subject to alternative splicing. This high probability of alternative 3'-splice-site activation in close proximity of the dominant 3'-splice site suggests that the second step of the splicing may be prone to violate splicing fidelity.  相似文献   

6.
7.
In Drosophila melanogaster, the fruitless (fru) gene controls essentially all aspects of male courtship behavior. It does this through sex-specific alternative splicing of the fru pre-mRNA, leading to the production of male-specific fru mRNAs capable of expressing male-specific fru proteins. Sex-specific fru splicing involves the choice between alternative 5′ splice sites, one used exclusively in males and the other used only in females. Here we report that the Drosophila sex determination genes transformer (tra) and transformer-2 (tra-2) switch fru splicing from the male-specific pattern to the female-specific pattern through activation of the female-specific fru 5′ splice site. Activation of female-specific fru splicing requires cis-acting tra and tra-2 repeat elements that are part of an exonic splicing enhancer located immediately upstream of the female-specific fru 5′ splice site and are recognized by the TRA and TRA-2 proteins in vitro. This fru splicing enhancer is sufficient to promote the activation by tra and tra-2 of both a 5′ splice site and the female-specific doublesex (dsx) 3′ splice site, suggesting that the mechanisms of 5′ splice site activation and 3′ splice site activation may be similar.  相似文献   

8.
S Kuhn  V Sievert  W Traut 《Génome》2000,43(6):1011-1020
The well-known sex-determining cascade of Drosophila melanogaster serves as a paradigm for the pathway to sexual development in insects. But the primary sex-determining signal and the subsequent step, Sex-lethal (Sxl), have been shown not to be functionally conserved in non-Drosophila flies. We isolated doublesex (dsx), which is a downstream step in the cascade, from the phorid fly Megaselia scalaris, which is a distant relative of D. melanogaster. Conserved properties, e.g., sex-specific splicing, structure of the female-specific 3' splice site, a splicing enhancer region with binding motifs for the TRA2/RBP1/TRA complex that activates female-specific splicing in Drosophila, and conserved domains for DNA-binding and oligomerization in the putative DSX protein, indicate functional conservation of dsx in M. scalaris. Hence, the dsx step of the sex-determining pathway appears to be conserved among flies and probably in an even wider group of insects, as the analysis of a published cDNA from the silkmoth indicates.  相似文献   

9.
10.
Purine-rich enhancers are exon sequences that promote inclusion of alternative exons, usually via activation of weak upstream 3′ splice sites. A recently described purine-rich enhancer from the caldesmon gene has an additional activity by which it directs selection of competing 5′ splice sites within an alternative exon. In this study, we have compared the caldesmon enhancer with another purine-rich enhancer from the chicken cardiac troponin T (cTNT) gene for the ability to regulate flanking splice sites. Although similar in sequence and length, the two enhancers demonstrated strikingly different specificities towards 5′ splice site choice when placed between competing 5′ splice sites in an internal exon. The 32-nucleotide caldesmon enhancer caused effective usage of the exon-internal 5′ splice site, whereas the 30-nucleotide cTNT enhancer caused effective usage of the exon-terminal 5′ splice site. Both enhancer-mediated splicing pathways represented modulation of the default pathway in which both 5′ splice sites were utilized. Each enhancer is multipartite, consisting of two purine-rich sequences of a simple (GAR)n repeat interdigitated with two enhancer-specific sequences. The entire enhancer was necessary for maximal splice site selectivity; however, a 5- to 7-nucleotide region from the 3′ end of each enhancer dictated splice site selectivity. Mutations that interchanged this short region of the two enhancers switched specificity. The portion of the cTNT enhancer determinative for 5′ splice site selectivity was different than that shown to be maximally important for activation of a 3′ splice site, suggesting that enhancer environment can have a major impact on activity. These results are the first indication that individual purine-rich enhancers can differentiate between flanking splice sites. Furthermore, localization of the specificity of splice site choice to a short region within both enhancers indicates that subtle differences in enhancer sequence can have profound effects on the splicing pathway.  相似文献   

11.
Correct splice site recognition is critical in pre-mRNA splicing. We find that almost all of a diverse panel of exonic splicing silencer (ESS) elements alter splice site choice when placed between competing sites, consistently inhibiting use of intron-proximal 5' and 3' splice sites. Supporting a general role for ESSs in splice site definition, we found that ESSs are both abundant and highly conserved between alternative splice site pairs and that mutation of ESSs located between natural alternative splice site pairs consistently shifted splicing toward the intron-proximal site. Some exonic splicing enhancers (ESEs) promoted use of intron-proximal 5' splice sites, and tethering of hnRNP A1 and SF2/ASF proteins between competing splice sites mimicked the effects of ESS and ESE elements, respectively. Further, we observed that specific subsets of ESSs had distinct effects on a multifunctional intron retention reporter and that one of these subsets is likely preferred for regulation of endogenous intron retention events. Together, our findings provide a comprehensive picture of the functions of ESSs in the control of diverse types of splicing decisions.  相似文献   

12.
13.
The Drosophila melanogaster sex determination factor Tra2 positively regulates the splicing of both doublesex (dsx) and fruitless (fru) pre-mRNAs but negatively affects the splicing of the M1 intron in tra2 pre-mRNA. Retention of the M1 intron is known to be part of a negative-feedback mechanism wherein the Tra2 protein limits its own synthesis, but the mechanism responsible for accumulation of M1-containing RNA is unknown. Here we show that the recombinant Tra2 protein specifically represses M1 splicing in Drosophila nuclear extracts. We find that the Tra2 protein binds directly to several sites in and near the M1 intron and that, when Tra2 binding is competed with other RNAs, the splicing of M1 is restored. Mapping the RNA sequences functionally required for M1 repression identified both a 34-nucleotide (nt) A/C-rich sequence immediately upstream of the M1 5' splice site and a region within the intron itself. The AC-rich sequence is largely composed of a repeated 4-nt sequence that also forms a subrepeat within the repeated 13-nt splicing enhancer elements of fru and dsx RNAs. Although required for repression, the element also enhances M1 splicing in the absence of Tra2. We propose that Tra2 represses M1 splicing by interacting with multiple sequences in the pre-mRNA and interfering with enhancer function.  相似文献   

14.
15.
We have compared the RNA sequences and secondary structures of the Drosophila melanogaster and Drosophila virilis doublesex (dsx) splicing enhancers. The sequences of the two splicing enhancers are highly divergent except for the presence of nearly identical 13-nt repeat elements (six in D. melanogaster and four in D. virilis) and a stretch of nucleotides at the 5' and 3' ends of the enhancers. In vitro RNA structure probing of the two enhancers revealed that the 13-nt repeats are predominantly single-stranded. Thus, both the primary sequences and single-stranded nature of the repeats are conserved between the two species. The significance of the primary sequence conservation was demonstrated by showing that the two enhancers are functionally interchangeable in Tra-/Tra2-dependent in vitro splicing. In addition, inhibition of splicing enhancer activity by antisense oligonucleotides complementary to the repeats demonstrated the importance of the conserved single-stranded structure of the repeats. In vitro binding studies revealed that Tra2 interacts with each of the D. melanogaster repeat elements, except for repeat 2, with affinities that are indistinguishable, whereas Tra binds nonspecifically to the enhancer. Taken together, these observations indicate that the organization of sequences within the dsx splicing enhancers of D. melanogaster and D. virilis results in a structure in which each of the repeat elements is single-stranded and therefore accessible for specific recognition by the RNA-binding domain of Tra2.  相似文献   

16.
17.
Tra2β regulates a number of splicing switches including activation of the human testis-specific exon HIPK3-T in the Homeodomain Interacting Protein Kinase 3 gene. By testing HIPK3-T exons of different intrinsic strengths, we found Tra2β most efficiently activated splicing inclusion of intrinsically weak exons, although these were spliced at a lower overall level. Both the RRM and N-terminal RS-rich region of Tra2β were required for splicing activation. Bioinformatic searches for splicing enhancers and repressors mapped four physically distinct exonic splicing enhancers (ESEs) within HIPK3-T, each containing the known Tra2β AGAA-rich binding site. Surprisingly disruption of each single ESE prevented Tra2β-mediated activation, although single mutated exons could still bind Tra2β protein by gel shifts and functional splicing analyses. Titration experiments indicate an additive model of HIPK3-T splicing activation, requiring availability of an array of four distinct ESEs to enable splicing activation. To enable this efficient Tra2β-mediated splicing switch to operate, a closely adjacent downstream and potentially competitive stronger 5'-splice site is actively repressed. Our data indicate that a novel arrangement of multiple mono-specific AGAA-rich ESEs coupled to a weak 5'-splice site functions as a responsive gauge. This gauge monitors changes in the specific nuclear concentration of the RNA binding protein Tra2β, and co-ordinately regulates HIPK3-T exon splicing inclusion.  相似文献   

18.
19.
In Drosophila melanogaster, female-specific expression of Sex-lethal (SXL) and Transformer (TRA) proteins controls sex-specific alternative splicing and/or translation of a handful of regulatory genes responsible for sexual differentiation and behavior. Recent findings in 2009 by Telonis-Scott et al. document widespread sex-biased alternative splicing in fruitflies, including instances of tissue-restricted sex-specific splicing. Here we report results arguing that some of these novel sex-specific splicing events are regulated by mechanisms distinct from those established by female-specific expression of SXL and TRA. Bioinformatic analysis of SXL/TRA binding sites, experimental analysis of sex-specific splicing in S2 and Kc cells lines and of the effects of SXL knockdown in Kc cells indicate that SXL-dependent and SXL-independent regulatory mechanisms coexist within the same cell. Additional determinants of sex-specific splicing can be provided by sex-specific differences in the expression of RNA binding proteins, including Hrp40/Squid. We report that sex-specific alternative splicing of the gene hrp40/squid leads to sex-specific differences in the levels of this hnRNP protein. The significant overlap between sex-regulated alternative splicing changes and those induced by knockdown of hrp40/squid and the presence of related sequence motifs enriched near subsets of Hrp40/Squid-regulated and sex-regulated splice sites indicate that this protein contributes to sex-specific splicing regulation. A significant fraction of sex-specific splicing differences are absent in germline-less tudor mutant flies. Intriguingly, these include alternative splicing events that are differentially spliced in tissues distant from the germline. Collectively, our results reveal that distinct genetic programs control widespread sex-specific splicing in Drosophila melanogaster.  相似文献   

20.
Strength of splice signal sequence plays an important role in mammalian pre-mRNA splicings. In the splicing of human beta-globin thalassemia pre-mRNA, a 25-nucleotide deletion covering the signal sequence at 3'-splice site of intron 1 causes unsplicing of intron 1, while splicing of intron 2 occurs normally. This gives abnormal mRNA and beta-thalassemia disease. If 3'-splice site of intron 1 is inactivated, two 5'-splice signals of introns 1 and 2 compete with each other for the 3'-splice site of intron 2. Our quantification analysis revealed that the 5'-splice signal of intron 2 is stronger than that of intron 1, explaining the mechanism for unsplicing of intron 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号