首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spleen cells from mice with chronic Trypanosoma cruzi infection generate a minimal plaque-forming response to SRBC in vitro. Addition of granulocyte-macrophage (GM)-CSF to cultures of spleen cells from chronically infected mice restored the plaque-forming cells (PFC) response to normal levels. Splenic adherent cells from chronically infected mice were deficient in their ability to reconstitute the PFC response of accessory cell-depleted normal spleen cells. Preincubation of splenic adherent cells from infected mice with GM-CSF restored their ability to reconstitute the PFC response of adherent cell depleted cultures. Ia Ag expression by splenic adherent cells from chronically infected mice was significantly lower compared to Ia Ag expression of cells from normal mice. Incubation of splenic adherent cells from chronically infected mice for 48 h with GM-CSF increased levels of Ia Ag expression to approximately those of uninfected mice. Peritoneal macrophages from infected mice produced IL-1 after incubation with GM-CSF at levels equivalent to those produced by similarly treated control macrophages. Spleen cells from chronically infected mice showed significant induction of IL-2 mRNA after GM-CSF treatment, and the addition of the anti-IL-2 mAb to GM-CSF supplemented cultures of spleen cells from infected mice blocked the restoration of the anti-SRBC PFC response. Thus, the ability of GM-CSF to restore the anti-PFC response to SRBC appears to involve the up-regulation of accessory cell function that includes increased Ia Ag expression and the induction of IL-1 production. These events also involve increased IL-2 production with resultant up-regulation of the response to SRBC by spleen cells from infected mice. Finally, it was shown that treatment of infected mice with rGM-CSF completely restored their depressed PFC production in vivo.  相似文献   

2.
We studied the effects of murine recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) on murine hemopoiesis in methylcellulose culture. The GM-CSF was purified from cultures of Saccharomyces cerevisiae transfected with a cloned murine GM-CSF cDNA. In cultures of spleen cells from normal mice, only granulocyte-macrophage (GM) colonies were supported by GM-CSF. Blast cell colonies were the predominant type in cultures of spleen cells from 5-fluorouracil (5-FU)-treated mice. Dose-response studies revealed that maximal GM and blast cell colony formation is achieved with 100 U/ml GM-CSF. Blast cell colonies revealed variable but high replating efficiencies, and the secondary colonies included multilineage colonies. Serial replating of washed blast cell colonies in cultures with GM-CSF provided evidence for the direct effects of GM-CSF on the proliferation of multipotential blast cells. A combination of GM-CSF and interleukin-3 (IL-3) did not increase the number of blast cell colonies over the level supported by IL-3. This observation indicates that the progenitors for blast cell colonies that responded to GM-CSF are a subpopulation of multipotential progenitors that are supported by IL-3. Cytological studies of colonies derived from GM-CSF and/or IL-3 suggest that the eosinophilopoietic ability of murine GM-CSF is less than that of IL-3.  相似文献   

3.
The effect of s.c. inoculation of purified recombinant derived granulocyte-macrophage (GM)-CSF on resident murine peritoneal macrophages was assessed in this study. From 18 to 24 h after s.c. administration of GM-CSF to normal mice, the resident peritoneal macrophages were harvested and the levels of membrane-bound IL-1, FcR, Mac-1 cell-surface Ag, and class II MHC expression were assessed. Peritoneal cells from GM-CSF-inoculated mice had significantly greater levels of membrane-bound IL-1 than did control mice. In addition when resident peritoneal macrophages from normal mice were purified by adherence and grown in the presence of GM-CSF, they produced greater levels of both membrane-bound and secreted IL-1. The peritoneal cells from GM-CSF-inoculated mice did not differ from controls in the expression of class II MHC-encoded Ag. This observation was confirmed by the finding that GM-CSF was unable to induce class II MHC expression on P388D1 cells, whereas a secondary mixed leukocyte culture supernatant was. Peritoneal cells from GM-CSF-inoculated mice also exhibited greater levels of expression of FcR and the Mac-1 cell-surface Ag. This resulted in an increase in their ability to phagocytose opsonized SRBC in vitro.  相似文献   

4.
5.
The effects of granulocyte-macrophage (GM)-CSF on the synthesis of MHC class II molecules and on the Ag presentation capacity by bone marrow derived macrophages (BMM phi) was investigated. BMM phi obtained by in vitro culture in the presence of macrophage-CSF were negative for synthesis of I-A molecules and induced the Ag-mediated proliferation of insulin-specific T clone cells with lower efficiency than splenic accessory cells. After pulse treatment with GM-CSF for 24 to 48 h, day 12 BMM phi exhibited highly efficient Ag presentation function which was superior to that induced by IFN-gamma. Expression of membrane-bound IL-1 was augmented significantly by GM-CSF, but not by IFN-gamma. However, the T cell clone used to probe for accessory cell function of BMM phi was not dependent on IL-1 for optimal proliferation. Concomitantly, GM-CSF induced the de novo synthesis of I-A molecules, although to a lesser extent than optimal doses of IFN-gamma. Thus GM-CSF appears to elicit properties in addition to Ia molecule synthesis and membrane IL-1 expression in BMM phi being essential for efficient accessory cell function to the T clone cells. The activation of BMM phi by GM-CSF was reversible and could be repeated. These data show that GM-CSF exerts a modulatory influence on preformed BMM phi, reversibly activating cells to Ia biosynthetic potential and pronounced accessory cell capacity, thus rendering the explanation unlikely that differentiation of precursor cells into a constitutively functional state had occurred.  相似文献   

6.
The effects of an orally administered hot-water extract (HW) from cultured mycelia of Cordyceps sinensis on the activation of macrophages and the intestinal immune system were studied in mice. The general composition of HW was 83.9% carbohydrate, 11.8% protein, 1.9% lipid and 2.4% ash, and the carbohydrates were mainly composed of glucose, mannose, galactose and arabinose (molar ratio of 1.0:0.8:0.5:0.1). HW stimulated the activation (1.7-fold of the saline control) of macrophages and IL-6 production (1.5-fold) at 2.0 g/kg/day. Analyzing the culture supernatant of Peyer's patch cells from C3H/HeJ mice that had been fed with HW at 1.0 g/kg/day for 7 days indicated that the bone marrow cells had significantly proliferated (1.9-fold). In addition, the amounts of GM-CSF and IL-6 in the culture supernatant of Peyer's patch cells at the same dose were significantly increased (1.8-fold and 2.2-fold, respectively). These results indicate that an oral administration of HW may modulate IL-6 production by the activation of macrophages, and also enhance the secretion of hematopoietic growth factors such as GM-CSF and IL-6 from Peyer's patch cells. Since such cytokines as GM-CSF and IL-6 from Peyer's patch cells act on the systemic immune system, it can be assumed that orally administered HW modulated not only the local but also systemic immune system.  相似文献   

7.
8.
We investigated the effects of interferon gamma (IFN-gamma) on the growth of murine hematopoietic progenitors. IFN-gamma inhibited granulocyte colony-stimulating factor (G-CSF)- and interleukin-3 (IL-3)-dependent colony growth by granulocyte-macrophage (GM) progenitors derived from the bone marrow cells of normal mice. However, the number of IL-3-dependent GM colonies formed by the bone marrow cells of 5-fluorouracil (5-FU)-treated mice was not influenced by the addition of IFN-gamma. Replating experiments suggested that IFN-gamma suppressed GM colony growth directly and that it exerted an inhibitory effect on the proliferation, but not on the commitment, of GM progenitors. In contrast, IFN-gamma failed to suppress colony growth by mast cell progenitors. Erythroid and megakaryocytic progenitors exhibited different responses to IFN-gamma depending on mouse strains. These results suggest that potent negative regulators are not always inhibitors of hematopoietic progenitors.  相似文献   

9.
10.
To determine the role played by lymphocytes and cytokines in the growth of sympathetic neurons in vivo, the innervation and cytokine levels were examined in the spleens of SCID mice that lack T and B cells. Splenic noradrenaline, nerve growth factor (NGF), and IL-1beta levels were elevated in SCID mice. Immunohistochemical examination revealed that the density of tyrosine hydroxylase-positive (TH(+)) fibers of splenic central arteries in SCID mice was increased compared with wild-type C.B-17 mice, while SCID mice had significantly fewer TH(+) fibers in their periarteriolar lymphatic sheaths (PALS). Two weeks after SCID mice were injected with C.B-17 splenic T cells, their TH(+) fiber staining increased in the PALS. IL-3 levels increased significantly in SCID mice following T cell reconstitution, and the administration of anti-IL-3 Ab blocked the above T cell-induced increase in innervation in the PALS. Anti-IL-3 treatment also inhibited the regeneration of splenic sympathetic neurons in C.B-17 mice after they were chemically sympathetomized with 6-hydroxydopamine. Depletion of NK cells by anti-asialo GM1 promoted the splenic innervation in SCID mice, while there were no significant changes in the innervation between CD8(+) T cell-deficient beta(2)-microglobulin knockout mice and their wild type. Our results suggest that T cells (probably CD4(+) Th cells but not CD8(+) CTLs) play a role in regulating the sympathetic innervation of the spleen; this effect appeared to be mediated, at least in part, by IL-3. On the contrary, NK cells may exert an inhibitory effect on the sympathetic innervation.  相似文献   

11.
One of the morphologic hallmarks of human gliomas are inflammatory infiltrates with accumulation of macrophages in the tumor site. The signals leading to the macrophage response are only at the beginning of being understood. Novel chemotactic factors that have recently been characterized as secretory products of glioblastoma cells may attract mononuclear cells from the blood. Within the tumor tissue blood-derived monocytes and macrophages of the brain tissue, the microglial cells, may increase in cell numbers due to tumor-derived growth factors. Both astrocytoma cell lines and cultured astrocytes have been shown recently to produce granulocyte-macrophage (GM)-CSF. We show that in vitro not only astrocytoma but also glioblastoma cell lines secrete GM-CSF when stimulated with TNF-alpha or IL-1. However, there is no evidence for GM-CSF production by glioblastoma cells in vivo: fresh tumor samples lack the mRNA for GM-CSF and the protein is not detectable in the tumor cyst fluids or the cerebrospinal fluids of glioblastoma patients. This contrasts IL-1 and IL-6 that are detectable in the tumor cyst fluids and IL-6 also in the cerebrospinal fluids of the patients. Unlike GM-CSF, transforming growth factor-beta 2 mRNA is expressed in ex vivo tested glioblastoma tissues. Absence of GM-CSF in vivo may be explained by the presence of tumor-derived inhibitory factors, such as transforming growth factor-beta 2 and PGE which suppress GM-CSF production by glioblastoma cells in vitro. The accumulation of macrophages at the tumor site may be due to local elaboration of chemoattractants and/or not yet defined growth factors rather than due to GM-CSF production.  相似文献   

12.
Incubation of the human U937 histiocytic lymphoma cell line with granulocyte-macrophage colony stimulating factor (GM-CSF) rendered the cells responsive to induction of TNF by LPS. Treatment with IL-6 reduced TNF production in GM-CSF-primed U937 cells. The inhibitory effect was most pronounced (approximately equal to 80%) when IL-6 was added either along with GM-CSF or within the first 3 h of GM-CSF treatment. Both GM-CSF or IL-6 inhibited [3H]TdR uptake in U937 cells, and simultaneous treatment with GM-CSF and IL-6 resulted in an additive inhibitory effect on cell proliferation. However, the inhibition of TNF production could not be explained by the inhibitory effect of IL-6 on cell growth, nor was it due to a reduction in cell viability. An inhibition of TNF production by IL-6 was also demonstrated in cultured human peripheral blood monocytes. Treatment with IL-6 also resulted in a dose-dependent reduction of the 17-kDa TNF band revealed by SDS-PAGE after labeling monocytes with [35S]cysteine and immunoprecipitation with anti-TNF mAb. In addition, treatment with IL-6 resulted in a reduction of monocyte in vitro cytotoxicity for tumor target cells. Finally, in mice sensitized by the administration of Bacillus Calmette-Guérin, the injection of IL-6 significantly reduced the levels of TNF found in the serum upon challenge with LPS. Inasmuch as TNF is known to be an inducer of IL-6, the inhibitory action of IL-6 on TNF production may represent the negative arm of a regulatory circuit. The inhibitory action of IL-6 on TNF production is consistent with a predominantly antiinflammatory role of IL-6 in the intact organism.  相似文献   

13.
The influence upon differnt cellular and humoral parameters of hemopoiesis of three structurally unrelated, highly purified bacterial cell-wall components (BCWC) was investigated. The spleens of C57BL/6 mice assayed 6 days after the injection of either lipid A or outer-membrane lipoportein, but not murein, showed a marked increase in granulocyte-macrophage, eosinophil, and megakaryocyte progenitor cell levels. The number of pluripotent hemopoietic stem cells (CFU-S) also increased in the spleens of mice treated with either lipid A or lipoprotein. Similar results were obtained following the injection of lipoprotein or lipid A into CBA or C57BL/6.nu mice. Genetically anemic Wf/Wf mice were found to have spontaneously elevated numbers of splenic progenitor cells, which increased further after the injection of lipid A. The proportions of the different splenic progenitor cell types were similar in both untreated and lipid A treated Wf/Wf mice, and in normal littermate controls. When tested in vitro, unfractionated or partially purified post-lipid A serum was found to stimulate the growth of granulocyte-macrophage progenitor cells (GM-CFC), but no detectable stimulation of eosinohphil, megakryocyte, or erythroid progenitor cells was observed. The data suggest that the rise in splenic levels of the different progenitor cells is not mediated by the corresponding types of CSF, but more likely by proliferation and differentiation of CFU-S.  相似文献   

14.
15.
We have previously reported that interleukin 1 (IL-1) administration 20 hr before irradiation protects mice from lethal effects of radiation. The recovery of total nucleated bone marrow cells and of hematopoietic progenitor cells was enhanced in IL-1 treated, as compared to untreated, irradiated mice. This suggested that IL-1 administration may affect the cells in the bone marrow of normal mice. Intraperitoneal administration of recombinant IL-1 resulted in bone marrow cell enlargement and increased cycling of these enlarged cells. In addition, the capacity of bone marrow cells from IL-1 treated mice to proliferate in response to granulocyte macrophage-colony-stimulating factor (GM-CSF) in cell suspension cultures was enhanced. The above effects were not genetically restricted as C57BL/6, B6D2F1, C3H/HeN, and C3H/HeJ mice showed similar responses. A comparative study showed that 100 ng of IL-1 was much more effective in stimulating bone marrow cells by the above criteria than 5 micrograms GM-CSF. Since IL-1, unlike CSF, can not be demonstrated to have a direct in vitro stimulatory effect on bone marrow cells, the aforementioned in vivo effects of IL-1 are presumably mediated by other hematopoietic growth factors. We have previously shown that IL-1 induces the appearance of high titers of CSF in the serum. Consequently hematopoietic growth factors that are generated at local sites following IL-1 administration may mediate the observed cell cycling effect.  相似文献   

16.
Interleukin 3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) exert their biological functions through acting on a specific receptor which consists of a ligand-specific alpha subunit and the shared common beta subunit. Inhibition by genistein of a subset of IL-3/GM-CSF-mediated signals, including c-myc induction, resulted in the abrogation of DNA synthesis, however, IL-3 still protected cells from apoptotic cell death. Conversely, a C-terminal truncated form of the GM-CSF receptor, which is missing a critical cytoplasmic region required for activation of the Ras/Raf-1/MAP kinase pathway, induced DNA synthesis, but failed to prevent cell death in response to GM-CSF. Consequently, cells died by apoptosis in the presence of GM-CSF, despite displaying a transient mitogenic response. However, expression of activated Ras protein complemented defective signalling through the mutant receptor and supported long-term proliferation in concert with GM-CSF. These results indicate that IL-3 and GM-CSF prevent apoptosis of hematopoietic cells by activating a signalling pathway distinct from the induction of DNA synthesis and that long-term cell proliferation requires the activation of both pathways.  相似文献   

17.
Carboxymethytl pachymaram (CMP) was administered to HBV transgenic mice through abdominal injection. Lymphocytes were extracted from the spleens. MTT method was used to detect cytotoxicity of CMP. Dendritic cells (DCs) were separated from lymphocytes and incubated with granulocyte-macrophage colony-stimu-lating factor (GM-CSF) and interleukin-4 (IL-4). Phenotypes of DC's were assayed by flow cytometry (FCM). IL-12 released by DCs and IL-10 and IFN-γ pro-duced by T cells in mixed lymphocyte reaction (MLR) were measured using ELISA. Results showed that CMP within the concentration of 0-500μg/mL did not produce cyto-toxicity to lymphocytes and could even increase DC phe-notypes, and IL-12 level in HBV transgenic mice. It could also increase the secretion of IFN-γ, and inhibit the secre-tion of IL-10 in MLR. Thus it can up-regulate DC function.  相似文献   

18.
Injection of the red cell substitute liposome-encapsulated haemoglobin (LEH) induces increased serum interleukin (IL)-6 in the absence of other inflammatory cytokines. In vitro studies found that IL-6 mRNA was increased in Mphi and endothelial cell lines by co-culture with LEH. In the present study, cytokine mRNA expression in extracts of livers, spleens, lungs and kidneys after LEH injection was determined by semi-quantitative RT-PCR. The distribution of cells expressing IL-6 mRNA in livers and spleens was visualized by in situ hydridization; extracts of kidney and lung did not show increased IL-6 mRNA and were not studied further. IL-6 mRNA accumulation in livers and spleens was increased at 4 h following LEH injection and had declined by 24 h. In the liver, cells expressing IL-6 mRNA were located in endothelia of hepatic and portal veins, and hepatic sinuses, Kupffer cells and epithelial cells of bile ducts. Endothelium of hepatic arteries did not express IL-6 mRNA. Lymphocytes, haematopoietic cells and macrophages expressed IL-6 mRNA in spleens. The data suggest that cells of the reticuloendothelial system (RES) might be a significant source of increased plasma IL-6 in vivo after LEH administration.  相似文献   

19.
Induction of differentiation in one type of clone of mouse myeloid leukemic cells by mouse or human interleukin 6 (IL-6) and in another type of clone by mouse granulocyte-macrophage colony-stimulating factor (GM-CSF) was found to be associated with induction of IL-6 and GM-CSF mRNA and protein. The results indicated that IL-6 and GM-CSF could positively autoregulate their own gene expression during myeloid cell differentiation. It is suggested that this autoregulation may serve to enhance and prolong the signal induced by these proteins in cells transiently exposed to IL-6 or GM-CSF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号