首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
  • 1 Naupliar and copepodid development times (Dn and Dc, respectively) of two African freshwater calanoids (Metadiaptomus meridianus and Tropodiaptomus spectabilis) were measured on mono-specific diets of comparably sized Chlamydomonas reinhardii, Scenedesmus acutus, Cryptomonas sp., Rhodomonas minuta, Cyclotella meneghiniana, and Selenastrum capricornutum, to test the nutritional adequacy of these algae. Comparisons were made at a standard temperature (17°C) and food supply level (1 mgCl?1).
  • 2 All diets other than Scenedesmus and Selenastrum supported complete naupliar development at broadly comparable times within and between calanoids, apart from greatly protracted Dn values for M. meridianus on Cyclotella. Dc durations were more variable between diet types, and both Chlamydomonas and Cyclotella were inferior or inadequate for copepodid development.
  • 3 Both naupliar and copepodid stages ingested radiolabelled Scenedesmus and Selenastrum readily. Comparative incorporation rate measures of Selenastrum and Cryptomonas respectively exceeded estimated metabolic maintenance needs of stage 3/4 nauplii of T. spectabilis by some 56% and 790%. Scope for growth (‘surplus’ energy) was accordingly fourteen-fold greater on Cryptomonas than on Selenastrum /Scenedesmus. The dietary inadequacy of these two green algae is thus attributed largely to low digestibility, and perhaps some biochemical deficiency.
  相似文献   

2.
Studies of development time of marine and freshwater copepods have taken separate tracks. Most studies on marine copepods report development time of each individual development stage, whereas studies on freshwater copepods report only development time, from egg to nauplius and nauplius to adult. This bias allows comparison of total development time but prevents detailed comparisons of patterns in stage-specific developmental schedules. With respect to egg to adult development time, three general relationships are known: developmental rates are dependent upon temperature and food concentration but independent of terminal body size; freshwater calanoids develop significantly slower than marine calanoids; freshwater cyclopoids develop at the same rate as marine calanoids. Two rules describe stage-specific developmental rates: the equiproportional rule and the isochronal rule. The first rule states that the duration of a given life history stage is a constant proportion of the embryonic development time; the second rule states that the time spent in each stage is the same for all stages. This review focuses on the second rule. From the 80+ published studies of copepod stage-specific developmental times, no species follows the isochronal rule strictly: Acartia spp. come closest with isochronal development from third nauplius (N3) to fourth copepodite (C4). The only pattern followed by all species is rapid development of the first and/or second naupliar stages, slow development of the second and/or third nauplius and prolonged development of the final copepodite stage. Once adulthood is reached, males are usually short-lived, but females can live for weeks to months in the laboratory. Adult longevity in the sea is, however, on the order of only a few days. The evolution of developmental patterns is discussed in the context of physiological constraints, along with consideration of possible relationships between stage-specific mortality rates and life history strategies. Physiological constraints may operate at critical bottlenecks in development (e.g. at the first feeding nauplius, N6, and the fifth copepodite stage). High mortality of eggs may explain why broadcast eggs hatch 2–3 times faster than eggs carried by females in a sac; high mortality of adults may explain why adults do not grow rather they maximize their reproductive effort by partitioning all energy for growth into egg production.  相似文献   

3.
Rippingale  R. J. 《Hydrobiologia》1994,292(1):351-366
Gladioferens imparipes, a calanoid copepod from estuaries in Western Australia, displays behaviour and associated morphology which is unusual among calanoids. Adult and copepodid stages make temporary attachment to underwater surfaces using fine hair sensillae on the surface of the prosome. A clear pattern can be seen in the number and arrangement of hair sensillae in early copepodid stages. Line drawings, photomicrographs and an S.E.M. are used to illustrate the structures. Laboratory studies with live copepods in a flow chamber show that adult animals may hold position against water currents. It is hypothesized that this behaviour influences the distribution pattern in an estuary where low velocity tidally induced water movement occurs, and may be of value in enabling the copepod to exist beyond the distribution of a major predator.  相似文献   

4.
The forage base and the food selectivity of 0+ representatives of six abundant freshwater fish species were studied in a shallow, eutrophic Dutch lake. Most species relied on the zooplankton; the size-selective predation in early summer was directed to the smaller copepods and in late summer to larger cladocerans and copepods than concurrently present in the lake. Daphnia spp. and cyclopoid copepods were the main zooplankton taxa for smelt, perch and pikeperch. Energetically, the large cladoceran, Leptodora kindtii, was especially important for pikeperch. Bream and roach preyed upon smaller zooplankton than the other fish species. The influence of the zooplankton predation by abundant 0+ fish was clear from a small mean Daphnia size in September; this size is to be used as an indicator in fishery management. Neomysis integer, the most important macrofauna species, was consumed by perch, pikeperch and ruffe; pikeperch was most size-selective in this respect. The 0+ ruffe was à typically benthivorous fish. Only the 0+ pikeperch became piscivorous, especially in years when smelt was abundant.  相似文献   

5.
The studies on marine copepods of Costa Rica started in the 1990’s and focused on the largest coastal-estuarine systems in the country, particularly along the Pacific coast. Diversity is widely variable among these systems: 40 species have been recorded in the Culebra Bay influenced by upwelling, northern Pacific coast, only 12 in the Gulf of Nicoya estuarine system, and 38 in Golfo Dulce, an anoxic basin in the southern Pacific coast of the country. Freshwater environments of Costa Rica are known to harbor a moderate diversity of continental copepods (25 species), which includes 6 calanoids, 17 cyclopoids and only two harpacticoids. Of the +100 freshwater species recorded in Central America, six are known only from Costa Rica, and one appears to be endemic to this country. The freshwater copepod fauna of Costa Rica is clearly the best known in Central America. Overall, six of the 10 orders of Copepoda are reported from Costa Rica. A previous summary by 2001 of the free-living copepod diversity in the country included 80 marine species (67 pelagic, 13 benthic). By 2009, the number of marine species increased to 209: 164 from the Pacific (49% of the copepod fauna from the Eastern Tropical Pacific) and 45 from the Caribbean coast (8% of species known from the Caribbean Basin). Both the Caribbean and Pacific species lists are growing. Additional collections of copepods at Cocos Island, an oceanic island 530 km away of the Pacific coast, have revealed many new records, including five new marine species from Costa Rica. Currently, the known diversity of marine copepods of Costa Rica is still in development and represents up to 52.6% of the total marine microcrustaceans recorded in the country. Future sampling and taxonomic efforts in the marine habitats should emphasize oceanic environments including deep waters but also littoral communities. Several Costa Rican records of freshwater copepods are likely to represent undescribed species. Also, the biogeographic relevance of the inland copepod fauna of Costa Rica requires more detailed surveys.  相似文献   

6.
Freshwater Copepods and Rotifers: Predators and their Prey   总被引:1,自引:0,他引:1  
Three main groups of planktonic animals inhabit the limnetic zone of inland waters and compete for common food resources: rotifers, cladocerans and copepods. In addition to competition, their mutual relationships are strongly influenced by the variable, herbivorous and carnivorous feeding modes of the copepods. Most copepod species, at least in their later developmental stages, are efficient predators. They exhibit various hunting and feeding techniques, which enable them to prey on a wide range of planktonic animals from protozoans to small cladocerans. The rotifers are often the most preferred prey. The scope of this paper is limited to predation of freshwater copepods on rotifer prey. Both cyclopoid and calanoid copepods (genera Cyclops, Acanthocyclops, Mesocyclops, Diacyclops, Tropocyclops, Diaptomus, Eudiaptomus, Boeckella, Epischura and others) as predators and several rotifer species (genera Synchaeta, Polyarthra, Filinia, Conochilus, Conochiloides, Brachionus, Keratella, Asplanchna and others) as prey are reported in various studies on the feeding relationships in limnetic communities. Generally, soft-bodied species are more vulnerable to predation than species possessing spines or external structures or loricate species. However, not only morphological but also behavioural characteristics, e.g., movements and escape reactions, and temporal and spatial distribution of rotifer species are important in regulating the impact of copepod predation. The reported predation rates are high enough to produce top-down control and often achieve or even exceed the reproductive rates of the rotifer populations. These findings are discussed and related to the differences between the life history strategies of limnetic rotifer species, with their ability to quickly utilize seasonally changing food resources, and adjust to the more complicated life strategies of copepods.  相似文献   

7.
Studies on cannibalism in harpacticoid copepods are restricted to predation on naupliar larvae in rock-pool harpacticoids of the genus Tigriopus. An earlier experimental study on the Mediterranean copepod Tigriopus fulvus indicated that females recognized their own larvae and preferentially preyed on nauplii other than their own. In a series of laboratory experiments, we tested if there were differences in naupliar predation as a function of crowding, food level and sex in Tigriopus brevicornis and T. fulvus. Results show that cannibalism was restricted to the first larval stages (N1 and N2). Both food availability and adult density significantly affected the predation rate. Contrary to earlier suggestions, adult males also preyed on the nauplii. We found no evidence that adults spare their own offspring, for neither T. fulvus nor T. brevicornis.This is in accordance with what one would expect for species having the life history characteristics of Tigriopus, i.e.: multiple broods and large number of offspring. Earlier results indicating parental care in Tigriopus must be taken with caution.  相似文献   

8.
The female reproductive cycles of the calanoid copepod Copidodiaptomus numidicus and the cyclopoid Acanthocyclops robustus were characterized by periodic changes in the oviducts. Females oscillated between a gravid and a non-gravid condition, and the whole cycle was strongly dependent on temperature. In both species, the maturation of new oocytes took place when the old egg sacs were still being carried, thus ensuring a rapid clutch succession. The embryonic and post-embryonic development duration of C.numidicus and A.robustus was investigated at five and four different temperatures, respectively. Embryonic development time was related to oviductal cycle duration at each temperature to estimate the minimum amount of non-ovigerous females expected under non-limiting mate and food conditions. Copidodiaptomus numidicus females spent 35-19% of the cycle without carrying eggs at 7-20C. Acanthocyclops robustus females spent 31-33% of the cycle without carrying eggs at the same temperature interval. Both naupliar and copepodid durations were inverse functions of temperature with nauplii developing at a faster rate than copepodids. In general, A.robustus showed reproductive advantage over C.numidicus due to a faster oviductal cycle and shorter embryonic and post-embryonic development times. However, the influence of food quality may be crucial. Acanthocyclops robustus copepodid development may lengthen well beyond the corresponding development stages of C.numidicus when growing only on algae. This retardation of development affects especially the later development stages of the cyclopoid.   相似文献   

9.
Buskey  Edward J. 《Hydrobiologia》1994,(1):447-453
Visual predation by fish on copepods involves prey encounter, attack and capture; during any of these processes prey selection can occur. Developmental changes in copepods, including increases in swimming speed, size and image contrast increase the encounter rate and distance at which they can be detected by predators. Copepods compensate for this increase vulnerability with age through diel vertical migration and improved escape capabilities. This study quantifies the changes in swimming speed and movement pattern with developmental stage of the copepod Acartia tonsa, using a video-computer system for motion analysis. Changes in visible size and image contrast with developmental stage were quantified under simulated natural illumination conditions using a video based image analysis system. The escape responses of the naupliar stages of the copepod Acartia tonsa were quantified in response to a stationary pipette sucking in water at a constant speed. Accurate quantification of the parameters that affect feeding selectivity of planktivorous fish will provide the basis for evaluation of their relative importance in future studies.  相似文献   

10.
A recent meta‐analysis indicates that trophic cascades (indirect effects of predators on plants via herbivores) are weak in marine plankton in striking contrast to freshwater plankton ( Shurin et al. 2002 , Ecol. Lett., 5, 785–791). Here we show that in a marine plankton community consisting of jellyfish, calanoid copepods and algae, jellyfish predation consistently reduced copepods but produced two distinct, opposite responses of algal biomass. Calanoid copepods act as a switch between alternative trophic cascades along food chains of different length and with counteracting effects on algal biomass. Copepods reduced large algae but simultaneously promoted small algae by feeding on ciliates. The net effect of jellyfish on total algal biomass was positive when large algae were initially abundant in the phytoplankton, negative when small algae were dominant, but zero when experiments were analysed in combination. In contrast to marine systems, major pathways of energy flow in Daphnia‐dominated freshwater systems are of similar chain length. Thus, differences in the length of alternative, parallel food chains may explain the apparent discrepancy in trophic cascade strength between freshwater and marine planktonic systems.  相似文献   

11.
Blumenshine  S.C.  Hambright  K.D. 《Hydrobiologia》2003,491(1-3):347-356
Limnologists have long recognized the importance of predation in freshwater communities. The majority of study of predator effects has involved vertebrate predators, with emphasis on planktivorous fish. Documented effects of planktivorous fish have been so dramatic that manipulations of their populations are seen by many as potential tools in lake management. However, the success of such manipulations is often less than desired due to the ubiquitous complexity of food webs and the pervasiveness of compensatory responses to food web manipulation. Recently, enormous effort has been applied to the Lake Kinneret pelagic food web in effort to reduced the abundance of the planktivorous Kinneret bleak Acanthobrama terraesanctae and thereby increase the biomass of herbivorous zooplankton in the hopes of increasing water clarity. We compared potential predation pressure on Lake Kinneret herbivorous zooplankton by bleak and the other major zooplankton predators in the lake, the cyclopoid copepods Mesocyclops ogunnus and Thermocyclops dybowskii. We found that, despite having much lower biomass, cyclopoid copepods accounted for a greater portion of the predation mortality on herbivorous zooplankton than bleak. Our results suggest that reductions in predation pressure by bleak will not yield subsequent increases in herbivorous zooplankton biomass. Rather, reductions in bleak predation pressure may allow for increases in cyclopoid copepod abundance and thereby a net increase in predation pressure on herbivorous zooplankton.  相似文献   

12.
Eodiaptomus japonicus was collected in the north basin of Lake Biwa, Japan, on six dates from 11 to 25 June 1987. Temporal changes in its vertical distribution and reproduction indices were small, but those in its abundance were large. Mortality was high in the naupliar stage I and from copepodid stage III to adult stage. The latter fact and low proportion of females in adulthood suggest heavy predation by fishes which prefer larger prey.Eodiaptomus japonicus showed ontogenetic vertical migration within the epilimnion. The direction of the migration was upward in the early naupliar stages and downward in the late naupliar and early copepodid stages. Both migrations resulted in raising mortality in the corresponding or succeeding stages, probably expressing the behavioral constraints ofE. japonicus.  相似文献   

13.
Predation by cyclopoid copepods is an important factor affecting zooplankton communities in freshwater habitats. Experiments provide strong evidence of the role of selective predation by cyclopoid copepods in structuring zooplankton communities. To assess the predation impact of a cyclopoid copepod, Mesocyclops pehpeiensis, we conducted a mesocosm experiment using 20-l polyethylene tanks in which the density of the predator and the food available to herbivorous zooplankton varied. M. pehpeiensis had a notable but selective effect on the zooplankton community. The population of a small cladoceran, Bosmina fatalis was affected negatively, but M. pehpeiensis did not have any apparent impact on the population dynamics of another Bosmina species, B. longirostris. On the other hand, the population of small rotifers responded positively to the presence of M. pehpeiensis, and their densities increased in mesocosms with a high density of M. pehpeiensis. It seems that suppression of B. fatalis by M. pehpeiensis predation indirectly affected rotifers by releasing them from competition with B. fatalis. The results suggest that copepod predation is a powerful factor regulating zooplankton communities directly and indirectly.  相似文献   

14.
Diatoms that produce toxic oxylipins can be detrimental to the reproductive success of aquatic invertebrates. Despite the potential importance of these toxins in shaping aquatic ecosystems, marine studies to date have focused almost exclusively on planktonic calanoid copepods. The current work examines the response of the benthic harpacticoid copepod, Tisbe holothuriae, to direct exposure to diatom-derived oxylipins and the short-term impact of oxylipin-producing diatom diets on reproductive success. The most toxic oxylipin was the polyunsaturated aldehyde (PUA) 2E,4E-decadienal with an LD50 of 9.3 μM for T. holothuriae nauplii. The least tolerant life-stage was the nauplius followed by adult males then adult females. Short-term exposure to PUA-producing diatoms (Skeletonema marinoi and Melosira nummuloides) in maternal diets had no significant impact on reproductive success compared with non-PUA-producing diets (Skeletonema costatum, Navicula hanseni, Phaeodactylum tricornutum and Tetraselmis suecica). The PUA producers had no negative impact on the survival and development of naupliar stages to adulthood. T. holothuriae expresses a higher degree of tolerance to PUA-producing diatoms than many planktonic calanoids, possibly reflecting a degree of adaptation to higher stress levels associated with the benthos. This is the first study to investigate the reproductive responses of harpacticoid copepods feeding on known PUA-producing diatoms.  相似文献   

15.
R. C. Hart 《Hydrobiologia》1994,272(1-3):163-183
The temperature-dependence of development was studied in two ecologically divergent freshwater calanoids, Metadiaptomus meridianus (Douwe) and Tropodiaptomus spectabilis (Kiefer). Egg durations were determined between 10 and 35 °C, and food satiated post-embryonic development times between 12 and 32 °C. All responses were basically inverse monotonic functions of temperature, adequately described by Blehrádek's equation. M. meridianus generally developed faster than T. spectabilis. Its egg development was faster at all temperatures, and while its naupliar durations were shorter only up to ± 15 °C, its overall post-embryonic development was more rapid up to ± 24 °C in females and ± 28 °C in males. Relatively speaking, however, T. spectabilis is clearly more warm-adapted than M. meridianus. The respective distributions (warm subtropical lowlands vs cooler uplands) of these copepods in the southern African subcontinent, as well as reversible switches between these species observed in two Natal impoundments are consistent with their contrasting thermal responses, although additional considerations apply in respect of the species alternations. T. spectabilis was replaced by M. meridianus in L. Midmar in spring 1981 and 1989, and in L. Albert Falls in spring 1990. Reciprocal replacements occurred in Midmar in autumn 1984, and in Albert Falls in late summer 1991. Both spring switches in Midmar coincided with cool spring temperatures, although the consequent shifts in growth rate advantage predicted from the measured temperature-duration responses only partly explain the switches in this warm-temperate reservoir. Parasitism of T. spectabilis by an ellobiopsid was observed during both switching events in Midmar, and perhaps augmented the change, although its effects on the host are indeterminate. Both species showed exactly parallel temporal changes in fecundity during the recent switches in both reservoirs, indicating closely similar trophic niches in the adults at least, and mitigating the possibility of trophic influences as determinants of the replacement. A dramatic but inexplicable increase (around 50% at 20 °C) in the development time of T. spectabilis was noted between 1988 and 1990, and perhaps contributed too.The protracted historical dominance of T. spectabilis in thermally suboptimal conditions in Midmar is ascribed to a general competitive superiority presumed from its K-selected attributes, in contrast to the r-selection evident in M. meridianus. This alternation between species with contrasting life styles is of fundamental ecological interest. Studies on Albert Falls, commenced in 1989, suggest an even greater competitive superiority of T. spectabilis, in keeping with the warmer conditions in this larger sister reservoir below Midmar.  相似文献   

16.
1. Protozoans are important consumers within microbial food webs and, in turn, they represent potential prey for small metazoans. However, feeding interactions within these food webs are rarely characterised and this is especially true for freshwater sediments. 2. We aimed to quantify the feeding links between a freshwater meiofaunal copepod and ciliates in two laboratory experiments. The first experiment addressed the response of Eucyclops serrulatus towards ciliate density and type (two ciliate species of the same genus differing in terms of body size). A second experiment assessed the effect of habitat structure on feeding rates by introducing different structural complexity into the feeding arena. In contrast to the first experiment, which was run only for one time period, this experiment also tested three different total feeding times (4, 7 and 9 h). 3. Eucyclops serrulatus exhibited high ingestion rates, with 3–69 ciliates copepod?1 h?1 consumed depending on food concentration, food type and habitat complexity. Copepods exhibited a preference for the smaller ciliate when total ciliate concentration was low, but selected both ciliates equally when food concentrations were medium or high. However, at very high food concentration, Eucyclops preferred the larger ciliate (which was 1/3 of its own body size), suggesting that the longer handling times of the larger prey are rewarding when the large prey is present in high numbers. In terms of total numbers consumed, copepods fed on more small ciliates, but in terms of carbon units both ciliates were selected equally when total prey concentration was low or medium. However, copepods derived more carbon from the larger prey at high and very high prey concentrations (up to 0.7 μgC out of a maximum of 1.1 μgC copepod?1 h?1). Habitat complexity influenced the feeding of copepods when it was observed over time. 4. The copepod–ciliate link is well known from the pelagic zone of both marine and freshwater habitats. We have shown its potential importance within the benthos, where it can be influenced by food identity, food quantity and possibly by habitat complexity.  相似文献   

17.
Cyclopoid copepods are common in lakes and ponds, and they have a significant predation impact on the communities of the small zooplankton species. To reduce the predation risk, some cladoceran zooplankters develop protuberant (defensive) morphologies in the presence of the copepods. In the case of the small cladoceran Bosmina, they elongate their appendages (antennule and mucrone) and change the antennule morphotype. However, information about the effectiveness of these defensive devices against copepod predation is still insufficient. In our study, to find the compositive effects of these appendages on the vulnerability of Bosmina, we exposed two bosminid species (B. longirostris and B. fatalis) of different body sizes and with appendages of different lengths and shapes to copepod (Mesocyclops) predation. The experiment revealed that the shape of the antennule is a main factor determining the bosminid’s vulnerability to copepod predation and indicated that the protection of the opened ventral carapace must be a key strategy by which Bosmina avoids copepod predation.  相似文献   

18.
Although attempts have been made to use mass cultures of marine copepods as live foods in marine aquaculture, some limitations such as low density culture still exist. The brackish water cyclopoid copepod, Paracyclopina nana has the potential for mass culturing as live food. In this study, we not only investigated the effect of culture density on the naupliar production and specific gene expressions of P. nana, but also the effect of several antioxidants under the conditions of a high density culture. The naupliar production of the copepod decreased with increasing culture density. The expression of glutathione reductase (GR), selenium-dependent glutathione peroxidase (SeGPx), glutathione S-transferase kappa (GST kappa), heat shock protein 40 (Hsp40), and Hsp70 genes of P. nana increased in the high density treatment but vitellogenin genes (Vg1 and Vg2) showed downregulation. In the condition with 20 inds./mL, vitamin C had a significant decrease but sodium selenite induced the naupliar production of P. nana greatly. The expressions of GR, SeGPx, Hsp70, and Vg genes increased with the vitamin C treatment. Sodium selenite caused a decrease of SeGPx and Hsp40 but GST kappa increased in the treatment with 20 inds./mL. These results suggest that sodium selenite is a positive antioxidant which can increase the culture efficiency of the copepod.  相似文献   

19.
Inspection of two female colonies of the monopodial black coral Cirrhipathes cfr. anguina from the coral reef of the Marine Park of Bunaken (Indonesia) revealed the occurrence of crustacean developing eggs within the mesenterial filaments of the polyps. Egg diameter, which in the smallest gametes was about 50–60 μm, increased in tandem with embryo development, reaching the value of 170 μm, at the nauplius stage. The attribution to the crustacean taxon was derived from morphological investigations carried out in light and electron microscopy (TEM, SEM) on the eggs and on the embryos removed from them. The final stage of nauplius was characterised by three pairs of appendages: uniramouse antennulae, biramouse antennae and manidibulae. In addition, naupliar eye and caudal setae were also evident. These nauplii were ascribed to the larval stage of an unidentified species. Coral/copepod association could represent a reproductive strategy, put into action by some marine copepods. Incubation within an appropriate host prevents predation by planktotrophic organisms, thus reducing population depletion.  相似文献   

20.
Summary All 6 naupliar and 5 copepodite stages of Drescheriella glacialis, a tisbid from Antarctic fast ice, are described. A key for the identification of the naupliar stages is given. Sexual dimorphism makes its first appearance in the copepodid IV. The setae configuration of the exopod of the second antenna in copepodid I is considered to be an ancestral state, and subsequent ontogenetic reductions are proposed to be apomorphic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号