首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lectin-binding patterns in Auerbach's plexus in the distal portions of the rat colon from 15- to 21-day-old foetuses, newborns, and adults were examined by light and electron microscopy using 16 different lectins (ConA, RCA-1, WGA, PNA, SBA, UEA-1, DBA, LCA, PHA-L, DSA, GS-1, VVA, MPA, BPA, MAA, and PSA). The binding of ConA was shown to increase after day 19 of gestation in parallel with differentiation of Auerbach's plexus, whereas the staining intensity for DSA and RCA-1 increased after day 17 of gestation in accordance with the appearance of the plexus. At the electron microscopical level, DSA binding sites were observed to be localized mainly in the plasma membrane, Golgi apparatus, and nuclear membrane of nerve cells. Positive sites were also observed in the axolemma and in the plasma membrane of nerve cell processes, Schwann cells, and the surrounding smooth muscle cells. PSA, PHA-L, LCA, and WGA showed constant staining during the development after day 15 of gestation. Other lectins, most of which are specific for O-glycosidic mucin-type sugar residues, were essentially negative throughout the developmental stages. Moreover, N-glycanase digestion significantly diminished the positive reactions. N-linked oligosaccharides may thus play important roles in the development and maturation of the Auerbach's plexus, and may be involved in the developmental defect of the plexus, e.g. as occurs in Hirschsprung's disease.  相似文献   

2.
Summary The avidin-biotin-peroxidase complex technique was used with 13 lectins to study the glycoconjugates of normal human renal tissue. The evaluated lectins included Triticum vulgaris (WGA), Concanavalin ensiformis (ConA), Phaseolus vulgaris leukoagglutinin and erythroagglutinin (PHA-L and PHA-E), Lens culinaris (LCA), Pisum sativum (PSA), Dolichos biflorus (DBA), Glycine max (SBA), Bandeiraea simplicifolia I (BSL-I), Ulex europaeus I (UEA-I) and Ricinus communis I (RCA-I). Characteristic and reproducible staining patterns were observed. WGA and ConA stained all tubules; PHA-L, PHA-E, LCA, PSA stained predominantly proximal tubules; DBA, SBA, PNA, SJA and BSL-I stained predominantly distal portions of nephrons. In glomeruli, WGA and PHA-L stained predominantly visceral epithelial cells; ConA stained predominantly basement membranes and UEA-I stained exclusively endothelial cells. UEA-I also stained endothelial cells of other blood vessels and medullary collecting ducts. Sialidase treatment before staining caused marked changes of the binding patterns of several lectins including a focal loss of glomerular and tubular staining by WGA; an acquired staining of endothelium by PNA and SBA; and of glomeruli by PNA, SBA, PHA-E, LCA, PSA and RCA-I. The known saccharide specificities and binding patterns of the lectins employed in this study allowed some conclusions about the nature and the distribution of the sugar residues in the oligosaccharide chains of renal glycoconjugates. The technique used in this report may be applicable to other studies such as evaluation of normal renal maturation, classification of renal cysts and pathogenesis of nephrotic syndrome. The observations herein reported may serve as a reference for these studies.  相似文献   

3.
The avidin-biotin-peroxidase complex technique was used with 13 lectins to study the glycoconjugates of normal human renal tissue. The evaluated lectins included Triticum vulgaris (WGA), Concanavalin ensiformis (ConA), Phaseolus vulgaris leukoagglutinin and erythroagglutinin (PHA-L and PHA-E), Lens culinaris (LCA), Pisum sativum (PSA), Dolichos biflorus (DBA), Glycine max (SBA), Arachis hypogaea (PNA), Sophora japonica (SJA), Bandeiraea simplicifolia I (BSL-I), Ulex europaeus I (UEA-I) and Ricinus communis I (RCA-I). Characteristic and reproducible staining patterns were observed. WGA and ConA stained all tubules; PHA-L, PHA-E, LCA, PSA stained predominantly proximal tubules; DBA, SBA, PNA, SJA and BSL-I stained predominantly distal portions of nephrons. In glomeruli, WGA and PHA-L stained predominantly visceral epithelial cells; ConA stained predominantly basement membranes and UEA-I stained exclusively endothelial cells. UEA-I also stained endothelial cells of other blood vessels and medullary collecting ducts. Sialidase treatment before staining caused marked changes of the binding patterns of several lectins including a focal loss of glomerular and tubular staining by WGA; an acquired staining of endothelium by PNA and SBA; and of glomeruli by PNA, SBA, PHA-E, LCA, PSA and RCA-I. The known saccharide specificities and binding patterns of the lectins employed in this study allowed some conclusions about the nature and the distribution of the sugar residues in the oligosaccharide chains of renal glycoconjugates. The technique used in this report may be applicable to other studies such as evaluation of normal renal maturation, classification of renal cysts and pathogenesis of nephrotic syndrome. The observations herein reported may serve as a reference for these studies.  相似文献   

4.
Summary The pattern of lectin binding in normal human labial mucosa was examined by light and electron microscopy using eight different lectins (ConA, LCA, WGA, UEA-1, RCA-1, SBA, DBA and PNA) and compared with the patterns in normal human skin and oesophageal mucosa. As seen by light microscopy, ConA, LCA, and WGA stained cell membranes in all layers of the mucosae. RCA-1 stained the plasma membrane of cells in the basal and middle layers, whereas cells in the superficial layers showed little positive staining. UEA-1, SBA, and PNA stained the cells in the middle layers weakly in some cases. No positive staining for DBA was seen. By electron microscopy, reaction product indicating ConA-binding sites was observed in the plasma membrane, cisternae of the endoplasmic reticulum, nuclear envelope and the Golgi apparatus. Binding of LCA, WGA, and RCA-1 was observed in the plasma membrane. These results show that the binding pattern of PNA, SBA, and RCA-1 in labial mucosa is different from that in the normal skin or oesophageal mucosa, although the labial mucosal epithelium, epidermis, and oesophageal epithelium are all stratified squamous epithelia. These differences in the cell-surface sugar residues are likely to be related to the possible functional differences in these tissues.  相似文献   

5.
Canine and feline platelet cytocentrifuge preparations (CCPs), cryostat and paraffin-embedded bone marrow sections were used in this study. We evaluated whether platelets, megakaryocytes and megakaryocyte precursor cells could be labelled by monoclonal antibodies (Y2/51, CLB-thromb/1, HPL1) against human platelet membrane glycoprotein GP IIIa and the GP IIb/IIIa complex or by the following 10 biotinylated lectins: concanavalin A (Con A), Lens culinaris agglutinin (LCA), Pisum sativum agglutinin (PsA), wheat germ agglutinin (WGA), peanut agglutinin (PNA), Phaseolus vulgaris lectin (PHA-L), Ricinus communis agglutinin 120 (RCA120), Ulex europaeus agglutinin — I(UEA-1), soybean agglutinin (SBA) and Dolichos biflorus agglutinin (DBA). Monoclonal antibodies Y2/51 and HPL1 cross reacted with platelets and megakaryocytic cells from both species, whereas CLB-thromb/1 was unreactive with canine preparations. Only Y2/51 labelled megakaryocytic cells in paraffin-embedded samples. LCA, PSA, WGA and PHA-L labelled feline and canine platelets and different numbers of morphologically identifiable megakaryocytes and numerous other, mostly myeloid, cells. Immunoblots of dog and cat platelet lysates using Y2/51 visualized a single protein of 95 kDa (unreduced), a mol·wt value within the range of those reported for GP IIIa. Some of the platelet (but not necessarily megakaryocyte) glycoproteins reacting with LCA, PSA and WGA could be identified in lectin blots following one- or two (nonreduced/reduced)-dimensional sodium dodecyl sulphatepolyacrylamide gel electrophoresis (SDS-PAGE). Thus in dogs and cats, the immunohistochemical detection of GP IIIa (and eventually GP IIb/IIIa) rather than lectin binding patterns could be important for the diagnosis of megakaryoblastic leukaemias.  相似文献   

6.
Lectin histochemistry of human placenta   总被引:1,自引:0,他引:1  
Abstract. The human placenta was studied histochemically using 23 fluorescein-isothiocyanate-labeled lectins Distinct patterns of staining, as well as some differences between first-trimester and term placenta, were discerned. Eleven lectins (HPA, VVA, BPA, HAA, SBA, PNA, GSA-I, MPA, RCA-I, RCA-II, and UEA-I) did not react with the trophoblast. Two lectins (LCA and PEA) reacted with the trophoblast of first-trimester placenta but not with the trophoblast of third-trimester placenta. The remaining ten lectins (ConA, Suc.ConA, WGA, GSA-II, LAA, STA, DBA, LBA, PHA-E, and PHA-L) reacted with the trophoblast of both first- and third-trimester placenta, and two of these lectins (ConA and Suc.ConA) reacted preferentially with the syncytiotrophoblast. Five lectins (LAA, STA, DBA, GSA-II, and LBA) reacted with nuclei of the cytotrophoblast. The nuclei of some stromal and syncytiotrophoblastic cells were also reactive. Eighteen lectins reacted with the trophoblastic basement membrane, and all reacted with Hofbauer cells and the stroma of the villi. Latin binding was influenced by the mode of fixation and tissue processing. These data show that some lectins can be used to identify components of the placental villi (e.g., basement, membrane) to characterize differences between the first- and third-trimester trophoblast, and to distinguish the cytotrophoblast from the syncytiotrophoblast.  相似文献   

7.
8.
The isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes were characterized by lectin cytochemistry using concanavalin A (ConA), Ricinus communis agglutinin 120 (RCA-120), and wheat germ agglutinin (WGA). We found that RCA-120, ConA, and WGA bind to these membranes. The distribution of the lectins on the isolation membranes was heterogeneous, mainly found on the rims, which we referred to as the peripheral dilated portion. When the rims fused and thus formed autophagosomes the apparent sites of fusion were strongly labeled by the lectins. After autophagosomes were transformed to autolysosomes by fusion with lysosomes, the limiting membranes became more densely and homogeneously labeled with the lectins. We previously reported that cytochrome P-450 does not exist on the limiting membranes of the autophagosomes. Taken together, these results suggest that the isolation membranes may originate not from endoplasmic reticulum membranes but from some post-Golgi membranes that contain complex type N and/or O-linked oligosaccharide chains.  相似文献   

9.
Summary Lectin-binding studies were performed at the ultrastructural level to characterize glycoconjugate patterns on membrane systems in pancreatic acinar cells of the rat. Five lectins reacting with different sugar moieties were applied to ultrathin frozen sections: concanavalin A (ConA): glucose, mannose; wheat-germ agglutinin (WGA): N-acetylglucosamine, sialic acid; Ricinus communis agglutinin I (RCA I): galactose; Ulex europaeus agglutinin I (UEA I): l-fucose; soybean agglutinin (SBA): N-acetylgalactosamine). Binding sites of lectins were visualized either by direct conjugation to colloidal gold or by the use of a three-step procedure involving additional immune reactions. The rough endoplasmic reticulum and the nuclear envelope of acinar cells was selectively labelled for ConA. The membranes of the Golgi apparatus bound all lectins applied with an increasing intensity proceeding from the cis-to the trans-Golgi area for SBA, UEA I and WGA. In contrast RCA I selectively labelled the trans-Golgi cisternae. The membranes of condensing vacuoles and zymogen granules were labelled for all lectins used although the density of the label differed between the lectins. In contrast the content of zymogen granules failed to bind SBA and WGA. Lysosomal bodies (membranes and content) revealed binding sites for all lectins used. The plasma membranes were heavily labelled by all lectins except for SBA which showed only a weak binding to the lateral and the apical plasma membrane. These results are in accordance to current biochemical knowledge of the successive steps in the glycosylation of membrane proteins. It could be demonstrated, that the cryo-section technique is suitable for the fine structural localisation of surface glycoconjugates of plasma membranes and internal membranes in pancreatic acinar cells using plant lectins.  相似文献   

10.
Sack  H. -J.  Stöhr  M.  Schachner  M. 《Cell and tissue research》1983,228(1):183-204
Summary The binding of several plant lectins, Concanavalin A (ConA), Lens culinarisA (LCA), wheat germ agglutinin (WGA), and Ricinus communis agglutinin 120 (RCA120) to cell surfaces of developing mouse cerebellar cells was assayed by the use of fluorescein isothiocyanate (FITC)-conjugated compounds. Freshly dissociated, live single-cell suspensions from 6-day-old mouse cerebellum contain 93% ConA, 99% LCA, 98% WGA, and 59% RCA 120-positive cells with ring fluorescence. Of the RCA 120-positive cells, 4% express a high and 55% a lower or very low number of lectin receptors. Flow cytometric analysis of fluorescent lectin binding yields results qualitatively similar to those obtained by scoring positive and negative cells in the fluorescence microscope.In monolayer cultures of 6-day-old mouse cerebellum practically all cells express receptors for ConA, LCA, and WGA, whereas RCA 120 binding sites are absent from neurons with small cell bodies (granule, basket and stellate cells) and present in large number on neurons with large cell bodies (Purkinje and possibly Golgi Type-II cells) and fibroblasts. RCA 120 receptors are weakly expressed on astro-and oligodendroglia. Cell type-specific expression of RCA 120 receptors is constant throughout all ages studied (embryonic day 13 to postnatal day 9). At early embryonic ages the proportion of highly fluorescent neurons with large cell bodies is significantly increased.  相似文献   

11.
Summary Changes in the lectin binding of mouse Leydig cells during fetal and postnatal development were examined by light- and electron-microscopy using eight different biotinylated lectins (ConA, WGA, RCA-I, UEA-I, GS-I, PNA, SBA and GS-II). At the light-microscopic level, ConA, WGA, RCA-I, UEA-I and GS-I showed the same binding pattern in which all five lectins bound to the plasma membrane and cytoplasm of Leydig cells from the 13th day post coitum (p.c.) to the 8th postnatal week. PNA, SBA and GS-II reactions were positive in the plasma membrane and cytoplasm of Leydig cells from the 13th day p.c. to 15th day post partum (p.p.) but disappeared completely by day 20. At the electron-microscopic level, gold particles representing the GS-I or GS-II binding sites were distributed primarily along the cell surface membrane, including that of microvilli, as well as in the cytoplasm. These results indicate that certain glycoconjugates bearingD-galactose,N-acetyl-D-galactosamine, andN-acetyl-D-glucosamine residues are expressed on the cell surface and in the cytoplasm of Leydig cells during the period from the 13th day p.c. to around the 20th day p.p. The results suggest that these glycoconjugates might play some role in modulating hormone-receptor interaction in the Leydig cells before the 20th day. Furthermore, these results may indicate that sugar residues expressed on the cell surface and in the cytoplasm of Leydig cells are different from those in the fetal-neonatal and adult phases.  相似文献   

12.
We performed an investigation at the light microscopical level of the differential distribution of lectin-binding sites among cells of the epidermis and glandular domains of the African clawed frog Xenopus laevis. Using a panel of biotinylated lectins (Con-A. PSA, LCA, UEA-I, DBA, SBA, SJA, RCA-I, BSL-I, WGA, s-WGA, PHA-E and PHA-L) and an avidin–biotin–peroxidase complex (ABC), we have identified specific binding patterns. The results show that expression of saccharide moieties in Xenopus epidermal keratinocytes is related to the stage of cellular differentiation, different cell layers expressing different sugar residues. Moreover, oliogosaccharides with “identical” biochemically defined sugar compositions can be distinguished. The method allowed further characterization of complex glycoconjugates of dermal glands. In view of these results, the ABC technique and the biotinylated lectins employed in the present study are believed to be a reliable method for the precise localization of saccharide residues of glycoconjugates present in ectothermic vertebrates.  相似文献   

13.
Testis and epididymis of sexually mature mice were studied histochemically using 25 fluorescein-isothiocyanate-labeled lectins. Several lectin-specific binding patterns were recognized. Thus, HAA, HPA, GSA-I, and UEA-II reacted only with spermatozoa. PNA, GSA-II, SBA, VVA, BPA, RCA-I, and RCA-II reacted with spermatozoa and spermatocytes. WGA, PEA, LCA, and MPA reacted with spermatogonia, spermatocytes, and spermatozoa in increasing order of intensity. ConA, Suc. ConA, LAA, STA, LTA, LPA, PHA-E, PHA-L, UEA-I, and LBA reacted with all spermatogenic cells with equal intensity. In the epididymis, 12 lectins reacted uniformly with the epithelial cells lining all segments of this organ. One lectin (VVA) did not react with epididymal lining cells. The remaining 12 lectins reacted in a specific manner with portions of the head, body, or tail, thus selectively outlining different portions of the epididymis. RCA-I and RCA-II selectively accentuated the so-called halo cells of the epididymis. These findings provide a detailed map of lectin-binding sites in the mouse testis and epididymis and show that certain lectins can be used as specific markers for spermatogenic cells and segments of the epididymis.  相似文献   

14.
The plasma membrane is considered to play a major role in the development of resistance to anthracycline and vinca alkaloid drugs (pleiotropic resistance). Previous studies have reported an increase in plasma membrane carbohydrates in pleiotropic resistant cells compared with wild-type cells. The present study has utilized a panel of 11 lectins and the streptavidin-biotin histochemical technique in order to compare plasma membrane carbohydrates from wild-type Ehrlich ascites tumour cells with cells from daunorubicin and vincristine resistant sublines. While the lectins ConA, LCA, PSA, PNA after neuraminidase and WGA stained plasma membranes of daunorubicin-resistant cells to a significantly greater degree than those of wild-type cells, no difference was apparent between vincristine-resistant and wild-type cells. PWM and WGA after neuraminidase pretreatment showed similar staining of the wild-type and both resistant sublines, while SBA with and without neuraminidase pretreatment, HPA, DBA, LTA and UEA I demonstrated either very weak or negative reactions with all sublines. We conclude that the observed increase in plasma membrane carbohydrate found in anthracycline-resistant cells is possibly due to drug action during acquisition and maintainance of resistance, and, though conceivably of importance in the development of resistance towards anthracyclines, is without significance for the pleiotropic resistance phenotype itself.  相似文献   

15.
Summary A panel of 10 FITC-labelled lectins (MPA, PNA, ConA, DBA, SBA, RCA-120, WGA, UEA, GS-I, GS-II) was applied to cryosections of seven specimens of normal urothelium. Seven of the lectins (MPA, ConA, RCA, WGA, UEA, GS-I and GS-II) showed a pattern of increasing fluorescence intensity from basal to superficial cells of the urothelium whereas PNA, DBA and SBA showed more uniform binding throughout the urothelium. Urothelial cell suspensions labelled with FITC-lectins were studied by flow cytometry to quantify the variation in binding to different cells types. Three cellular subpopulations were identified in normal urothelium on the basis of their optical properties. Fluorescence intensity due to specific lectin binding was then measured separately for each subpopulation. Although there was some variation among individual cases, a general pattern emerged in this small series. WGA, RCA, and GS-II bind in large quantities to all urothelial cells while PNA, SBA, ConA and DBA show little binding. MPA, RCA, UEA and GS-I showed the most marked increase in fluorescence intensity from basal to superficial cells as observed microscopically and quantified by flow cytometry.  相似文献   

16.
Three strains of Sphingomonas were grown as biofilms and tested for binding of five fluorescently labeled lectins (Con A-type IV-TRITC or -Cy5, Pha-E-TRITC, PNA-TRITC, UEA 1-TRITC, and WGA-Texas red). Only ConA and WGA were significantly bound by the biofilms. Binding of the five lectins to artificial biofilms made of the commercially available Sphingomonas extracellular polysaccharides was similar to binding to living biofilms. Staining of the living and artificial biofilms by ConA might be explained as binding of the lectin to the terminal mannosyl and terminal glucosyl residues in the polysaccharides secreted by Sphingomonas as well as to the terminal mannosyl residue in glycosphingolipids. Staining of the biofilms by WGA could only be explained as binding to the Sphingomonas glycosphingolipid membrane, binding to the cell wall, or nonspecific binding. Glycoconjugation of ConA and WGA with the target sugars glucose and N-acetylglucosamine, respectively, was used as a method for evaluation of the specificity of the lectins towards Sphingomonas biofilms and Sphingomonas polysaccharides. Our results show that the binding of lectins to biofilms does not necessarily prove the presence of specific target sugars in the extracellular polymeric substances (EPS) in biofilms. The lectins may bind to non-EPS targets or adhere nonspecifically to components of the biofilm matrix.  相似文献   

17.
Summary Receptors of 12 lectins in 25 cases of human hepatocellular carcinomas (HCC) were histochemically investigated by avidin-biotin-peroxidase complex (ABC) methol. Liver tissues of five cirrhotic patients and five normal subjects were used as controls. SJA receptor was absent both in HCC and controls, while LCA and PSA receptors were present in all tissues studied here. Receptors of DBA, PHA, PNA, UEAI and SBA which did not bind to normal, cirrhotic and pericarcinomatous liver tissues had the positive rates of 4%, 44%, 16%, 4% and 12% in HCC, respectively. Four lectins which strongly bound to the non-cancer liver tissues had their receptors in 96% (ConA, WGA, RCAI) and 36% (BSAI) of HCC. The pretreatment of tissue sections with neuraminidase abolished most of WGA receptors and exposed some PNA binding sites. There were many differences in lectin distribution between HCC and noncancer liver tissues. The changes of glycoconjugates in HCC were discussed.  相似文献   

18.
Bouin-fixed and paraffin-embedded sections from the dorsal skin of Bufo bufo and Xenopus Laevis were subjected to lectin histochemistry. A panel of biotinylated lectins (Con-A, PSA, LCA, UEA-I, DBA, SBA, SJA, RCA-I, BSL-I, WGA, s-WGA, PHA-E and PHA-L) and an avidin-biotin-peroxidase complex (ABC) showed a species-specific compartmentalization of saccharides to certain parts of the epidermis and glandular domains. Some marked histochemical differences between the two examined species adapted to fully aquatic (X. laevis) or semiterrestrial (B. bufo) environments may be relevant of a relationship existing between habitat selection and the glycosaminoglycans content of the skin. In addition the technique used in this paper may be applicable for further studies of the carbohydrate composition in various tissues of lower vertebrates.  相似文献   

19.
S M Zhang  M Wu  H Chen  X Zhang 《Histochemistry》1989,92(2):171-175
Receptors of 12 lectins in 25 cases of human hepatocellular carcinomas (HCC) were histochemically investigated by avidin-biotin-peroxidase complex (ABC) method. Liver tissues of five cirrhotic patients and five normal subjects were used as controls. SJA receptor was absent both in HCC and controls, while LCA and PSA receptors were present in all tissues studied here. Receptors of DBA, PHA, PNA, UEAI and SBA which did not bind to normal, cirrhotic and pericarcinomatous liver tissues had the positive rates of 4%, 44%, 16%, 4% and 12% in HCC, respectively. Four lectins which strongly bound to the non-cancer liver tissues had their receptors in 96% (ConA, WGA, RCAI) and 36% (BSAI) of HCC. The pretreatment of tissue sections with neuraminidase abolished most of WGA receptors and exposed some PNA binding sites. There were many differences in lectin distribution between HCC and noncancer liver tissues. The changes of glycoconjugates in HCC were discussed.  相似文献   

20.
It has been reported that various structural and functional changes occur on the surface of the plasma membrane of the ovum and embryo during fertilisation and cleavage in preparation for implantation. Glycoproteins are thought to be one of the factors in cell attachment. Thus, we investigated the changes in glycoprotein expression on the cell surface membrane of the mouse embryo by using lectins. Among seven types of lectin (ConA, WGA, UEA-I, MPA, LCA, DBA and PNA), the fluorescent intensities of ConA and WGA markedly increased from unfertilised ova to blastocysts. By quantitative analysis using immuno-scanning electron microscopy, the numbers of ConA-gold particles were small until 4-cell cleavage, but increased significantly at the blastocyst stage. In contrast, an increased number of WGA-gold particles was detected even at the 4-cell stage, and this increase continued to the blastocyst stage. From the above observations, we conclude that the numbers of sugar chains bound to both ConA andWGA increases with blastocyst formation and earlier expression is observed with WGA. The present study dearly shows that glycoproteins on the cell membrane surface of the mouse embryo quantitatively increase at the time of implantation, and the possibility has been indicated that glycoproteins are involved in intercellular recognition and adhesion between the embryo and endometrial epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号