首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
In the sublittoral kelp forests of New South Wales, dictyotalean turfing algae dominate the substratum in areas where kelp canopies have been removed by storms. The effects of the presence of these algae on the recruitment of kelp plants and the subsequent structure of the benthic community were determined. Areas of turfing algae in clearings were experimentally cleared of turf at a time of dense kelp settlement, and areas of the kelp canopy were also removed. These treatments were compared with unmanipulated areas of turf in clearings and areas under the kelp canopy. The number of kelp recruits in each replicate plot was recorded throughout time as were the abundances of most of the macroscopic and microscopic species living on the substratum. Kelp was found to recruit very quickly to areas of substratum which had the overlying kelp canopy removed, but few recruits appeared under the natural canopy, or in areas with turfing algae, or in clearings where turfing algae had been removed. The results showed that whilst the presence of a natural kelp canopy and/or turfing algae inhibited the recruitment of kelps, removal of turfing species from clearings did not facilitate kelp recruitment. This indicated that the presence of turf did not solely inhibit kelp recruitment, but some lingering influence of turf seems to affect the substratum in clearings such that kelp cannot recruit to such areas. Turfing species returned and dominated the substratum in clearings where turf had been removed. After an initial decline, encrusting species increased in abundances in clearings where kelp recruited as these recruits developed a canopy. Turf and encrusting species remained great in cover in the respective control treatments. The results are discussed in terms of alternate stable states within this community. Such concepts are concluded to be dependent upon the spatial and temporal scales of one's investigation.  相似文献   

2.
Variation in the recruitment of benthic marine invertebrates is often attributed to the interaction of the supply of new individuals to a habitat and the availability of space for colonisation when they arrive. Also important in determining variation in recruitment is the response of the larvae to the characteristics of the habitat. Larvae of many benthic marine invertebrates have shown great specificity of requirements in setting their limits of distribution at the time of selection of a habitat. The tubeworm Galeolaria caespitosa shows great variation in recruitment from place to place on rocky intertidal seashores and is a gregarious animal with larvae showing directed responses to conspecific adults on the substratum. I hypothesised that, if variation in recruitment of G. caespitosa were independent of conditions on the substratum, the magnitude of recruitment in patches of the same shape but different sizes cleared within continuous mats of conspecific adults would be directly related to the area available for colonisation in the patch. Alternatively, if variation in recruitment were due to the response of larvae to conspecific adults on the substratum, the magnitude of recruitment would be a function of the perimeter of the patch, which, given patches of the same shape, is a measure of the influence of conspecific adults in that patch. To distinguish between these alternatives, small (area = 25 cm2; perimeter = 20 cm) and large (area = 225 cm2; perimeter = 60 cm) square patches were cleared within continuous mats of conspecific adults at four sites and recruitment of G. caespitosa was monitored over two seasons of recruitment. The density of recruits per unit area was, on average, almost three times greater in small than in large patches, indicating that recruitment of G. caespitosa is not directly related to the area of the patch. In contrast, the density of recruits per unit perimeter was not significantly different between small and large patches, indicating that recruitment of G. caespitosa is related to the proximity of conspecific adults in the patch. Therefore, at a given site, the perimeter of patches within mats of G. caespitosa is a better predictor of the relative magnitude of recruitment among patches than that provided by their areas. These results are contrary to many models of invertebrate recruitment that assume close linkage between available space on the substratum and settlement. Moreover, they highlight the importance of behavioural responses of animals at the time of selection of habitat in accounting for variation in recruitment. For populations of organisms that display gregarious behaviour at settlement, or conspecific attraction, this direct relationship between the perimeter of patches and recruitment could be used as a tool in restoring populations to disturbed habitats. The added benefit of such facilitative interactions in restoring populations is that they provide increasing returns to the population for a given supply of potential colonists to a habitat. Received: 1 November 1996 / Accepted: 20 January 1997  相似文献   

3.
Summary The hypothesis that sea urchin grazing and interactions with turf-forming red algae prevent large brown algae from forming an extensive canopy in the low intertidal zone of southern California was tested with field experiments at two study sites. Experimental removal of sea urchins resulted in rapid algal recruitment. Crustose coralline algae which typically dominate the substratum in areas with dense urchin populations were quickly overgrown by several species of short-lived green, brown and red algae. The removal of urchins also significantly increased the recruitment of two long-lived species of large brown algae (Egregia laevigata and Cystoseira osmundacea at one study site and E. laevigata and Halidrys dioica at the other). The experimental plots at both sites were eventually dominated by perennial red algae.A two-factorial experiment demonstrated that sea urchin grazing and preemption of space by red algae in areas where urchins are less abundant are responsible for the rarity of large brown algae in the low intertidal of southern California. The three dominant perennial red algae, Gigartina canaliculata, Laurencia pacifica and Gastroclonium coulteri, recruit seasonally from settled spores but can rapidly fill open space with vigorous vegetative growth throughout the year. These species encroach laterally into space created by the deaths of large brown algae or by other disturbances. Once extensive turfs of these red algae are established further invasion is inhibited. This interaction of algae which proliferate vegetatively with algae which recruit only from settled spores is analogous to those which occur between solitary and colonial marine invertebrates and between solitary and cloning terrestrial plants.It is suggested that a north-south gradient in the abundance of vegetatively propagating species, in grazing intensity and in the frequency of space-clearing disturbances, may account for latitudinal variation in intertidal algal community structure along the Pacific coast of North America.  相似文献   

4.
Canopy-forming algae have been shown to play a fundamental role in the maintenance of understorey assemblages on rocky shores. In the Mediterranean, low-shore habitats are often monopolised by canopy algae of the genus Cystoseira and, in particular, by the species Cystoseira amentacea var. stricta. Alternatively, low-shore habitats are dominated by turf-forming algae and/or mussels. Previous studies showed that loss of Cystoseira, by natural or anthropogenic disturbances, resulted in the increase of turfing algae. Here, we propose that turf-forming algae may act as colonisers from nearby habitats, specifically from lower portions of the shore. The following hypotheses were tested to investigate this proposition: (1) in presence of Cystoseira, the assemblage living under its canopy will be distinct, in terms of composition and structure, from that found lower on the shore, (2) if the canopy of Cystoseira was removed, the differences between the two assemblages would decrease or disappear, (3) the effects of the canopy would be more important than other causes of variability at the spatial scale investigated (hundreds to thousands of metres), and (4) that effects of removal of the canopy would be consistent through time. These hypotheses were tested by means of a canopy removal experiment, involving several spatial and temporal repetitions of the manipulation.The assemblage underneath the canopy of Cystoseira was distinct from that found immediately lower on the shore, but when the canopy was removed there were no differences between the two. The effects of the canopy were consistent at the spatial and temporal scales investigated. Several species living under the canopy disappeared and were replaced by turf-forming species, resulting in a homogenisation of the two habitats and in a drastic loss of habitat diversity. This study shows that Cystoseira can be considered a habitat-forming species, responsible for the maintenance of two distinct low-shore assemblages. In this light, its importance should be taken into account by policies aiming to preserve biodiversity on rocky shores.  相似文献   

5.
The effects of intensity and timing of disturbances on recovery of marine benthic organisms were investigated on a rocky intertidal shore in Gwangyang Bay, Korea. We hypothesized that the recovery pattern of the benthic community structure would be affected by disturbance intensity and season. Twenty-eight permanent plots were set up, with disturbance intensity (cleared plots and sterile plots) and seasonal disturbance (fall 1999 and spring 2000) incorporated into the experimental design. To monitor natural seasonal variation in benthic community abundances, we established seven permanent unmanipulated plots. Turf-forming algae were observed in the unmanipulated plots throughout the experimental period, whereas green algae and invertebrate presence varied with season. In the disturbance-intensity experiment, turf-forming and green algae were dominant in cleared plots. The highest coverage of sessile organisms was observed in sterile plots, which exhibited the highest species richness because of their relatively low macroalgal coverage. Seasonal effects of disturbance were an important factor in the recovery pattern of benthic organisms under high disturbance intensity. Coverage of green algae was higher in sterile spring plots than in sterile fall plots; this result was attributed to low spatial competition, as the disturbances occurred just before green algal blooms. On the other hand, the abundances of barnacles and bivalves were highest on sterile fall plots, as these organisms were suppressed by green algal blooms in other periods. These results indicate that the effects of disturbance intensity on benthic community recovery patterns can be influenced by season of disturbance.  相似文献   

6.
In northwest Europe, sheltered rocky shores are dominated by fucoid canopy algae and barnacles are rare, although the latter are extremely abundant on exposed shores. The supply of the intertidal barnacle Semibalanus balanoides (L.) to sheltered, fucoid dominated rocky shores was investigated to determine the importance of larval supply in limiting the abundance of adults in shelter. Larval supply was measured at two spatial scales, at the scale of shore (100s of metres), by comparing larval concentrations at exposed and sheltered sites, and at a smaller spatial scale (m), by examining the role of fucoid canopies in limiting supply to the substratum. Replicate plankton trawls were carried out above the intertidal zone at high water at two sheltered sites and nearby exposed headlands. The concentration of S. balanoides cyprid larvae was significantly higher at the sheltered sites on two out of three sampling occasions with up to 14 times greater larvae on one occasion than the nearby exposed site. The effect of the macroalgal canopy on supply to the substratum was assessed in two ways: directly, by pumping water from the substratum in areas with and without Ascophyllum nodosum (L.) Le Jolis, and indirectly by measuring cyprid settlement in a canopy-manipulation experiment. Pumped plankton samples from mid tide level showed that the A. nodosum canopy did not form a barrier to larval supply and may have had a positive effect on larval concentrations at the substratum. Cyprid settlement was assessed in the mid shore A. nodosum and low shore Fucus serratus L. zones to areas with canopy algae (but protected from the sweeping effects of macroalgal fronds) and without canopy. Settlement over three consecutive 24-h periods showed a consistent pattern; settlement was consistently lower beneath the F. serratus canopy than in cleared areas, suggesting that this algal species forms a barrier, limiting supply of cyprid larvae to the substratum.  相似文献   

7.
The development of periphyton community structure by exchange of organisms between substratum and water column (noninteractive mechanism) and by interspecific competition for surface (interactive mechanism) was studied during seasonal succession in Akulovsky water supply channel (the Upper Volga basin). The influence of exchange was assumed by similarity between the species composition of plankton and periphyton. At early stages of succession when the diatoms dominated in periphyton the community was formed mainly by phytoplankton sedimentation, while the competition for substratum didn't result in decrease of species diversity because the poor competitors were partly displaced by new colonists from the water column. Later when the green filamentous algae abundantly developed in periphyton, their numbers were probably controlled by factors not related to exchange of propagules. At the same time, the species structure of secondary periphyton cover developing on the thallus of filamentous algae depended mainly on the plankton sedimentation. At the last stages of seasonal succession when periphyton was represented by colonies of cyanobacteria and diatoms closely covering the substratum, the exchange of organisms between substratum and water column was not so important as interspecific competition for surface. As one could suppose, increase in biomass in this period resulted in the decrease of specificity as it was predicted by hypothesis of interactive community. In such a way, both mechanisms (interactive and noninteractive ones) took part in development of periphyton structure. Their relative influence changed in the course of seasonal succession.  相似文献   

8.
This study examined the interactive effects of grazing by limpets and inclination of the substratum in maintaining differences between mid-shore and low-shore assemblages of algae in the northwest Mediterranean, at different scales of space and through time. Alternative models leading to different predictions about these effects were proposed and tested. Limpets were excluded by fences from areas of the substratum at mid levels on the shore. The response of algal assemblages to this manipulation was compared with control and enclosure plots at the same level, and with unmanipulated plots in the low shore where limpets are less abundant. The effects of limpets were examined at several replicated sites (0.1–4 km apart) for each slope of the substratum (nearly horizontal vs vertical), at different locations (hundreds of kilometres apart) and at different times. Individual taxa responded differently to limpet exclusion. The percentage cover of the coarsely branched and filamentous algae increased significantly in exclosure plots, in some loser reaching values found on the low shore. These patterns, however, varied greatly from shore to shore and significant effects were found both on horizontal and vertical substrata. Multivariate analyses indicated that grazing by limpets accounted for about 20% of the differences between mid-shore and low-shore assemblages. This effect was independent of substratum inclination and was consistent in space and time, suggesting that physical conditions were not as stressful for macroalgae on vertical substrata as initially supposed. Variable recruitment of algae is proposed as a possible explanation for the lack of consistency in the effects of limpets at the scale of the shore. The results of this study emphasize the need for multiple-scale analyses of the interactive effects of physical and biological factors to understand the organization of natural assemblages. Received: 22 June 1999 / Accepted: 15 November 1999  相似文献   

9.
A series of observations and an experiment were carried out to test hypotheses about the effects of shade on the densities of spirorbid polychaetes (Neodexiospira spp.) on intertidal pneumatophores (mangrove roots) of Avicennia marina. Densities of spirorbids were greater on pneumatophores surrounded by seagrass (Zostera mucronata) than patches without seagrass. Within patches of seagrass, the density and survivorship of spirorbids on pneumatophores was greater near the substratum (covered by seagrass) than high above the substratum (not covered by seagrass). The model that these patterns of abundance are explained by greater recruitment of spirorbids to shaded surfaces was assessed. This was done by experimentally testing the hypothesis that recruitment to patches without seagrass would not differ between the upper (unshaded) and lower surfaces (unshaded) of clear plastic sheets, but would be greater on the lower surfaces (shaded) than upper surfaces (unshaded) of black plastic sheets. Recruitment was consistent with these predictions and therefore provided evidence that differences in densities of spirorbids between substrata with and without seagrass may be due largely to differences in shading.  相似文献   

10.
The effects of herbivory and the season of disturbance on species composition and algal succession were experimentally tested at a tropical intertidal shore, Phuket Island, Thailand. Dead coral patches were cleared of all organisms during both the dry and rainy seasons in order to study the effects of season on algal succession and cages were set up to exclude fish herbivory. Algal succession in this intertidal habitat showed a simple pattern and took a year from the early Ulva paradoxa C. Agardh stage to the late Polysiphonia sphaerocarpa Børgesen stage. The abundance of algae during succession was under the influence of seasonal change. U. paradoxa reproduced and recruited throughout the year. Caging effects did not apparently influence algal abundance, perhaps because resident herbivorous damselfishes excluded other herbivores from their territories and maintained their algal “farms”. Unexpectedly, the percent cover of Ulva in the caged plots was lower than in uncaged plots. This pattern may indicate that caging excluded damselfishes only, but allowed small herbivores that consumed substantial amounts of soft filamentous algae in the cages.  相似文献   

11.
Clonal understory trees develop into patches of interconnected and genetically identical ramets that have the potential to persist for decades or centuries. These patches develop beneath forest canopies that are structurally heterogeneous in space and time. Canopy heterogeneity, in turn, is responsible for the highly variable understory light environment that is typically associated with deciduous forests. We investigated what aspects of patch structure (density, size structure, and reproductive frequency of ramets) of the clonal understory tree, Asimina triloba, were correlated with forest canopy conditions. Specifically, we compared A. triloba patches located beneath closed canopies and canopy gaps. We also conducted a three-year demographic study of individual ramets within patches distributed across a light gradient. The closed canopy-gap comparison demonstrated that the patches of A. triloba had a higher frequency of large and flowering ramets in gaps compared to closed-canopy stands, but total ramet density was lower in gaps than in closed canopy stands. In the demographic study, individual ramet growth was positively correlated with light availability, although the pattern was not consistent for all years. Neither ramet recruitment nor mortality was correlated with light conditions. Our results indicate that the structure of A. triloba patches was influenced by canopy condition, but does not necessarily depend on the responses of ramets to current light conditions. The lack of differences in ramet recruitment and mortality under varying canopy conditions is likely to be a primary reason for the long-term expansion and persistence of the patches. The primary benefit of a positive growth response to increasing light is the transition of relatively small ramets into flowering ramets within a short period of time.  相似文献   

12.
The effects of small-scale disturbances (80×30-cm plots) of canopy and grazers on intertidal assemblages were investigated in this 4-year experiment on sheltered rocky shores on the Swedish west coast. Canopy disturbances due to ice scouring were mimicked by removal of adult plants of the seaweed Ascophyllum nodosum (L.) Le Joli. Density of the main epilithic grazing gastropods, Littorina spp., was lowered by exclosure and handpicking. Based on earlier experiments in other areas, the general hypothesis was that canopy removal and grazer exclosure, alone or in combination, should increase the recruitment of A. nodosum or other fucoid juveniles, and change the structure of the understorey assemblage.There was an effect of canopy removal on the development of this assemblage, lasting for more than 31 months. Both increased and decreased abundances of species were found as short-term effects, but there was also a longer-term effect with increased abundance. Grazer exclosure was only effective in combination with canopy removal, causing a short-term increase in ephemeral green algae. Short-term effects of canopy removal were also the increase in recruitment of Semibalanus balanoides (Linnaeus) and the decrease of the red alga Hildenbrandia rubra (Sommerfelt) Meneghini. Fast recruitment and growth of fucoid species (Fucus serratus L. and F. vesiculosus L.) restored the canopy and conditions of the understorey within 18 months. Thus, the canopy removal changed the physical conditions for the understorey, making it possible for other species to coexist in this community. Surprisingly, no effect of canopy removal or grazer exclusion was found on the recruitment of juvenile A. nodosum, neither by canopy removal nor grazer exclosure. The lack of such effects might be due to the early mortality caused by other grazers (small, mobile crustaceans), or to the low density of periwinkles on these shores. However, despite the patchy and generally low recruitment of A. nodosum juveniles, observations suggested that the cover of A. nodosum in manipulated patches would return to initial levels, either by recruitment or regrowth of small holdfasts and from growth of edge plants.  相似文献   

13.
Herbivory and nutrient enrichment are major drivers of the dynamics of algal communities. However, their effects on algal abundance are under the influence of seasons. This study investigated the effects of herbivory and nutrient enrichment on early algal succession patterns using cages (uncaged and fully caged treatments) and two nutrient levels (ambient and enriched concentrations). To determine seasonal influences, experiment plots on dead coral patches were cleared during both dry and rainy season. Of the 17 algal species recruited in the experiment plots, three were dominant: Ulva paradoxa C. Agardh, Padina in the Vaughaniella stage, and Polysiphonia sphaerocarpa Børgesen. In this succession process, U. paradoxa was the earliest colonizer and occupied the cleared plots within the first month after clearing with the highest percentage of 83.33 ± 1.67% to 88.33 ± 9.28%. Then, it was replaced by the late successional algae, Padina in the Vaughaniella stage, and P. sphaerocarpa. The effects of herbivory and nutrient enrichment on algal abundance varied across algal functional groups and seasons. During the dry season, neither herbivory nor nutrient enrichment affected Ulva cover but during the rainy season, Ulva cover was influenced by nutrient enrichment. However, the abundance of algae in this early stage was not apparently affected by either herbivory or nutrient enrichment. Our results indicated that the timing of disturbance strongly influenced the algal abundance and successional patterns in this tropical intertidal community.  相似文献   

14.
We test the hypothesis that secondary succession in Tropical Montane Cloud Forest (TMCF) in Mexico is accompanied by an increase in the spatial structuring of litter resources, soil nutrient concentrations and the soil macroinvertebrate community at a within-plot scale (5–25 m). This increased spatial structuring is expected because secondary succession in these forests is associated with an increase in the diversity of trees that dominate the canopy. If each tree species generates a particular soil environment under its canopy, then under a diverse tree community, soil properties will be spatially very heterogeneous. Tree censuses and grid sampling were performed in four successional stages of a secondary chronosequence of TMCF. Variography was used to analyse spatial patterns in continuous variables such as nutrient concentrations, while Spatial Analysis by Distance Indices (SADIE) was applied to determine patchiness in the distribution of soil macroinvertebrate taxa. Secondary succession was found to be accompanied by the predicted increase in the spatial structuring of litter resources and the macroinvertebrate community at the within-plot scale. Spatial patterns in the macroinvertebrate community only became evident for all taxa in the oldest forest (100 years old). Patches with low Ca and Mg concentrations in early successional soils were associated with patches where pine litter was most abundant while those with low P concentrations in late successional stages were associated with patches where oak litter was most abundant. Results suggest that anthropogenic disturbance aboveground promotes a more homogeneous resource environment in the surface soil, which compared to older forests, sustains a less diverse and less spatially structured macroinvertebrate community.  相似文献   

15.
Recolonisation and succession in a multi-species tropical seagrass meadow was examined by creating gaps (50×50 cm) in the meadow and manipulating the supply of sexual and asexual propagules. Measurements of leaf shoot density and estimates of above-ground biomass were conducted monthly to measure recovery of gaps between September 1995 and November 1997. Measurements of the seeds stored in the sediment (seed bank) and horizontal rhizome growth of colonising species were also conducted to determine their role in the recovery process.Asexual colonisation through horizontal rhizome growth from the surrounding meadow was the main mechanism for colonisation of gaps created in the meadow. The seed bank played no role in recolonisation of cleared plots. Total shoot density and above-ground biomass (all species pooled) of cleared plots recovered asexually to the level of the undisturbed controls in 10 and 7 months, respectively. There was some sexual recruitment into cleared plots where asexual colonisation was prevented but seagrass abundance (shoot density and biomass) did not reach the level of unmanipulated controls. Seagrass species did not appear to form seed banks despite some species being capable of producing long-lived seeds.The species composition of cleared plots remained different to the undisturbed controls throughout the 26-month experiment. Syringodium isoetifolium was a rapid asexual coloniser of disturbed plots and remained at higher abundances than in the control treatments for the duration of the study. S. isoetifolium had the fastest horizontal rhizome growth of species asexually colonising cleared plots (6.9 mm day−1). Halophila ovalis was the most successful sexual coloniser but was displaced by asexually colonising species. H. ovalis was the only species observed to produce fruits during the study.Small disturbances in the meadow led to long-term (>2 years) changes in community composition. This study demonstrated that succession in tropical seagrass communities was not a deterministic process. Variations in recovery observed for different tropical seagrass communities highlighted the importance of understanding life history characteristics of species within individual communities to effectively predict their response to disturbance. A reproductive strategy involving clonal growth and production of long-lived, locally dispersed seeds is suggested which may provide an evolutionary advantage to plants growing in tropical environments subject to temporally unpredictable major disturbances such as cyclones.  相似文献   

16.
Changes in assemblages of plants, macroinvertebrates and fishes on three eastern Tasmanian reefs were monitored over 12 months in replicated control blocks and adjacent 10×12-m blocks cleared of fucoid, laminarian and dictyotalean algae. Removal of canopy-forming plants produced less change to biotic assemblages than reported in studies elsewhere, with the magnitude of change for fish and invertebrate taxa lower than variation between sites and comparable to variation between months.The introduced annual kelp Undaria pinnatifida exhibited the only pronounced response to canopy removal amongst algal taxa, with a fivefold increase in cleared blocks compared to control blocks. Marine reserves are suggested to assist reef communities resist invasion by U. pinnatifida, through an indirect mechanism involving increased predation pressure on sea urchins and reduced formation of urchin barrens that are amenable to U. pinnatifida propagation.Large invertebrates were more associated with turfing algae or the reef substratum than the macroalgal canopy. The herbivorous sea urchin Heliocidaris erythrogramma and abalone Haliotis ruber showed the strongest response to clearing amongst common macroinvertebrate species, with a halving of population numbers. Observed densities of the common monacanthid fish Acanthaluteres vittiger also declined by about 50%. The relatively high level of resistance shown by eastern Tasmanian reef biota to patch disturbance was attributed largely to high diversity and biomass of turfing macroalgae damping effects of canopy clearance.  相似文献   

17.
A. J. Underwood 《Oecologia》1980,46(2):201-213
Summary The cover of foliose algae is sparse to non-existent above a low-level algal zone on many shores in N.S.W., except in rock-pools. Above this algal zone, encrusting algae, mostly Hildenbrandia prototypus, occupy most of the primary substratum on sheltered shores. Experimental manipulations at midtidal levels were used to test hypotheses about the effects of grazing by molluses and of physical factors during low tide on this pattern of algal community structure.Fences and cages were used to exclude grazers: molluscs grazed under roofs and in open areas. Cages and roofs provided shade, and decreased the harshness of the environment during low tide: fences and open areas had the normal environmental regime.In the absence of grazers, rapid colonization of Ulva and slower colonization by other foliose algae occurred in all experimental areas. The rate of colonization by Ulva sporelings was initially retarded on existing encrusting algae, but after a few months, cover of Ulva equalled that on cleared rock.Most species of algae only grew to maturity inside cages, and remained as a turf of sporelings inside fences. No foliose algae grew to a visible size in open, grazed areas. Grazing thus prevents the establishment of foliose algae above their normal upper limit on the shore, but the effects of physical factors during low tide prevent the growth of algae which become established when grazers are removed. Physical factors thus limit the abundance of foliose algae at mid-tidal levels.The recolonization of cleared areas by Hildenbrandia was not affected by the presence of a turf of sporelings, nor by the shade cast by roofs, but was retarded in cages where mature algae formed a canopy. Even under such a canopy, Hildenbrandia eventually covered as much primary substratum as in open, grazed areas. This encrusting alga is able to escape from the effects of grazing by having a tough thallus, and by its vegetative growth which allows individual plants to cover a lot of substratum, and by the tendency for new individuals to start growing from small cracks and pits in the rock, which are apparently inaccessible to the grazers.Mature foliose algae are removed from the substratum by waves, and many individual plants died during periods of hot weather. Sporelings in a turf were eliminated, after experimental fences were removed, by the combined effects of macroalgal grazers, which invaded the areas, and microalgal grarers which ate the turt from the edges inwards.The results obtained here are discussed with respect to other studies on limits to distribution of intertidal macroalgae, and the role of grazing in the diversity and structure of intertidal algal communities. Some problems of these experimental treatments are also discussed.  相似文献   

18.
1 We used isozyme variation to examine the genet structure of Uvularia perfoliata patches in gap and closed canopy habitats in a temperate deciduous forest in Maryland, USA.
2 A large patch in a gap habitat was composed of a small number of widely spread genets with many ramets, and a large number of genets with more restricted distribution and few ramets. Genets with many ramets were patchily distributed at a metre scale. Analysis of genet structure on a scale of square centimetres, however, revealed that the genets were highly intermingled with no clear boundaries between them. The presence at both scales of sampling of many genets with unique multilocus genotypes indicated continuing genet recruitment within the population.
3 In the closed canopy habitat, the patches examined were each composed of a single unique multilocus genotype, suggesting that each had developed by asexual propagation following the establishment of a single genet.
4 The clonal structure of U. perfoliata patches in both gap and closed canopy habitats therefore appears to depend on recruitment patterns of genets. Populations in closed canopy habitats are characterized by a 'waiting' strategy, in which asexual ramet production maintains populations until genet recruitment by seed production can occur under the more optimal conditions associated with canopy gaps. Extended sampling suggests that the genetic diversity of U. perfoliata populations is primarily controlled by the disturbance regime of the forest canopy.  相似文献   

19.
Large areas of tropical forest have been cleared and planted with exotic grass species for use as cattle pasture. These often remain persistent grasslands after grazer removal, which is problematic for restoring native forest communities. It is often hoped that remnant and/or planted trees can jump‐start forest succession; however, there is little mechanistic information on how different canopy species affect community trajectories. To investigate this, I surveyed understory communities, exotic grass biomass, standing litter pools, and soil properties under two dominant canopy trees—Metrosideros polymorpha (‘ōhi‘a) and Acacia koa (koa)—in recovering Hawaiian forests. I then used structural equation models (SEMs) to elucidate direct and indirect effects of trees on native understory. Native understory communities developed under ‘ōhi‘a, which had larger standing litter pools, lower soil nitrogen, and lower exotic grass biomass than koa. This pattern was variable, potentially due to historical site differences and/or distance to intact forest. Koa, in contrast, showed little understory development. Instead, data suggest that increased soil nitrogen under koa leads to high grass biomass that stalls native recruitment. SEMs suggested that indirect effects of trees via litter and soils were as or more important than direct effects for determining native cover. It is suggested that diverse plantings which incorporate species that have high carbon to nitrogen ratios may help ameliorate the negative indirect effects of koa on natural understory regeneration.  相似文献   

20.
Abstract Turbo torquatus (hereafter Turbo) were abundant and patchily distributed, especially in algal dominated habitats in shallow water (less then 10 metres) on rocky reefs in central New South Wales, Australia. Although the assemblage of algae was similar in barrens with and without crevices, Turbo were most abundant in crevices, suggesting that shelter was important. Experimental removal of the kelp canopy resulted in a great decrease in the number of Turbo. This was despite cleared patches containing more filamentous food algae, further highlighting the importance of shelter. The density of Turbo in kelp forests ranged from six to seven per square metre in times of abundance and less then one per square metre at other times over a 12‐year period. Variation in the resource base (i.e. food algae and kelp cover) was strongly linked to the abundance of Turbo. Abundance of Turbo was lowest when the density of adult kelp was low (less than 14 plants per square metre). The condition of kelp was severely affected during the 1997–1998 and 2002 El Niño events and was compromised 2–4 years after each event. These pulse events and related loss of shelter probably contributed to a decline in abundance of Turbo. This model was further supported when Turbo abundance increased with a subsequent increase in the density of kelp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号