首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Through major research advances in the study of cytoskeletal organization, an integrated view of the complexity of this system has emerged. Recent findings on the microtubule-interacting protein Mip-90, which associates with microtubules and actin filaments in different cell domains, have shed light on its roles in cytoskeletal regulation. In order to study structural features of Mip-90, we sequenced several peptide fragments. A comparative sequence analysis revealed a high degree of similarity between the primary structure of this protein and the human heat shock protein of 90 kDa (hsp-90). Taken together, the present studies indicate the identity between Mip-90 and the the beta-isoform of hsp-90 (hsp-90beta). Western blot assays with an anti-hsp-90 monoclonal antibody showed cross-reactivity of hsp-90 and Mip-90 affinity purified from HeLa cells. Furthermore, the observed structural identity of Mip-90 with the hsp-90beta was sustained by immunoblot assays using monoclonal antibodies that specifically recognize the alpha- and beta-forms of hsp-90. Comparative fingerprinting analysis, along with the evidence of a remarkably similar biochemical behavior of both hsp-90 and Mip-90 in different affinity chromatographic systems, supported these observations. These studies, along with previous investigations, provide new data to elucidate the functional significance of these interesting cellular components and its relationships with other proteins linked to the cell architecture.  相似文献   

2.
The intracellular polymerization of cytoskeletal proteins into their supramolecular assemblies raises many questions regarding the regulatory patterns that control this process. Binding experiments using the ELISA solid phase system, together with protein assembly assays and electron microscopical studies provided clues on the protein-protein associations in the polymerization of tubulin and actin networks. In vitro reconstitution experiments of these cytoskeletal filaments using purified tau, tubulin, and actin proteins were carried out. Tau protein association with tubulin immobilized in a solid phase support system was inhibited by actin monomer, and a higher inhibition was attained in the presence of preassembled actin filaments. Conversely, tubulin and assembled microtubules strongly inhibited tau interaction with actin in the solid phase system. Actin filaments decreased the extent of in vitro tau-induced tubulin assembly. Studies on the morphological aspects of microtubules and actin filaments coexisting in vitro, revealed the association between both cytoskeletal filaments, and in some cases, the presence of fine filamentous structures bridging these polymers. Immunogold studies showed the association of tau along polymerized microtubules and actin filaments, even though a preferential localization of labeled tau with microtubules was revealed. The studies provide further evidence for the involvement of tau protein in modulating the interactions of microtubules and actin polymers in the organization of the cytsokeletal network.  相似文献   

3.
Pribyl P  Cepák V  Zachleder V 《Protoplasma》2005,226(3-4):231-240
Summary. The aim of the study was to elucidate the effect of cadmium ions on the arrangement of the actin and tubulin cytoskeleton, as well as the relationships between cytoskeletal changes and growth processes in the green filamentous alga Spirogyra decimina. Batch cultures of algae were carried out under defined conditions in the presence of various cadmium concentrations. In control cells, the cytoskeleton appeared to be a transversely oriented pattern of both microtubules and actin filaments of various thickness in the cell cortex; colocalization of cortical microtubules and actin filaments was apparent. Microtubules were very sensitive to the presence of cadmium ions. Depending on the cadmium concentration and the time of exposure, microtubules disintegrated into short rod-shaped fragments or they completely disappeared. A steep increase in cell width and a decrease in growth rate accompanied (and probably ensued) a very rapid disintegration of microtubules. Actin filaments were more stable because they were disturbed several hours later than microtubules at any cadmium concentration used. When cadmium ions were washed out, the actin cytoskeleton was rebuilt even in cells in which actin filaments were completely disintegrated at higher cadmium concentrations (40 or 100 μM). The much more sensitive microtubules were regenerated after treatment with lower cadmium concentrations (10 or 15 μM) only. Correspondence and reprints: Centre of Phycology, Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 379 82 Třeboň, Czech Republic.  相似文献   

4.
5.
Cultured cells in vitro from estrogen-induced rat prolactin-secreting adenomas (prolactinomas) were examined by indirect immunofluorescence microscopy for the distribution of cytoskeletal proteins and alterations of cytoskeleton after treatment with bromocriptine, colchicine and cytochalasin B (CB). After 8 days in culture, prolactinoma cells were well expanded and developed cytoplasmic processes were seen. The cytoplasmic microtubules were observed as fine reticular networks radiating from perinuclear portions toward the cell periphery when decorated with an antibody against tubulin. On the other hand, the actin filaments showed diffuse and spotty distribution when detected with an anti-actin antibody. Contaminated fibroblasts showed a reticular distribution of microtubules and a parallel array of actin cables which corresponds to "stress fibers" throughout the cytoplasm. After treatment with bromocriptine, the reticular distribution of microtubules in prolactinoma cells changed into a coarse and sparse pattern, which was identical with the changes in the distribution of tubulin after treatment with colchicine. On the other hand, distribution of actin was not affected by bromocriptine. Bromocriptine treatment did not alter the distribution of microtubules and actin filaments in fibroblasts, whereas colchicine changed the distribution of microtubules in both prolactinoma cells and fibroblasts. CB treatment changed the localization of actin filaments in both kinds of cells. These in vitro studies indicated bromocriptine would selectively affect the cytoplasmic microtubular system of prolactinoma cells.  相似文献   

6.
Myosin-Va was identified as a microtubule binding protein by cosedimentation analysis in the presence of microtubules. Native myosin-Va purified from chick brain, as well as the expressed globular tail domain of this myosin, but not head domain bound to microtubule-associated protein-free microtubules. Binding of myosin-Va to microtubules was saturable and of moderately high affinity (approximately 1:24 Myosin-Va:tubulin; Kd = 70 nM). Myosin-Va may bind to microtubules via its tail domain because microtubule-bound myosin-Va retained the ability to bind actin filaments resulting in the formation of cross-linked gels of microtubules and actin, as assessed by fluorescence and electron microscopy. In low Ca2+, ATP addition induced dissolution of these gels, but not release of myosin-Va from MTs. However, in 10 microM Ca2+, ATP addition resulted in the contraction of the gels into aster-like arrays. These results demonstrate that myosin-Va is a microtubule binding protein that cross-links and mechanochemically couples microtubules to actin filaments.  相似文献   

7.
We characterize a novel, pollen-specific, microtubule-associated protein, SB401, found in Solanum berthaultii. This protein binds to and bundles taxol-stabilized microtubules and enhances tubulin polymerization in a concentration-dependent manner, particularly at lower temperatures. Electron microscopy revealed that the protein decorates the entire length of microtubules. Cross-linking and electrophoresis studies showed that SB401 protein forms dimers, and suggest that dimerization could account for bundling. Double immunofluorescent staining of pollen tubes of S. berthaultii showed that SB401 protein co-localized with cortical microtubule bundles. SB401 protein also binds to and bundles actin filaments, and could connect actin filaments to microtubules. SB401 protein had a much higher affinity for microtubules than for actin filaments. In the presence of both cytoskeletal elements, the protein preferentially bound microtubules to form bundles. These results demonstrate that SB401 protein may have important roles in organizing the cytoskeleton in pollen tubes.  相似文献   

8.
Mine I  Anota Y  Menzel D  Okuda K 《Protoplasma》2005,226(3-4):199-206
Summary. The configuration and distribution of polyadenylated RNA (poly(A)+ RNA) during cyst formation in the cap rays of Acetabularia peniculus were demonstrated by fluorescence in situ hybridization using oligo(dT) as a probe, and the spatial and functional relationships between poly(A)+ RNA and microtubules or actin filaments were examined by immunofluorescence microscopy and cytoskeletal inhibitor treatment. Poly(A)+ RNA striations were present in the cytoplasm of early cap rays and associated with longitudinal actin bundles. Cytochalasin D destroyed the actin filaments and caused a dispersal of the striations. Poly(A)+ RNA striations occurred in the cytoplasm of the cap rays up to the stage when secondary nuclei migrated into the cap rays, but they disappeared after the secondary nuclei were settled in their positions. At that time, a mass of poly(A)+ RNA was present around each of the secondary nuclei and accumulated rRNA. This mass colocalized with microtubules radiating from the surface of each secondary nucleus and disappeared when the microtubules were depolymerized by butamifos, which did not affect the configuration of actin filaments. These masses of poly(A)+ RNA continued to exist even after the cap ray cytoplasm divided into cyst domains. Thus two distinct forms of poly(A)+ RNA population, striations and masses, appear in turn at consecutive stages of cyst formation and are associated with distinct cytoskeletal elements, actin filaments and microtubules, respectively. Correspondence and reprints: Graduate School of Kuroshio Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan.  相似文献   

9.
Melatonin induces pigment granule aggregation in amphibian melanophores. In the studies reported here, we have used fluorescence microscopic techniques to test the hypothesis that such melatonin-induced pigment movement is correlated with alterations in either the actin or tubulin cytoskeletal patterns of cultured Xenopus melanophores. In general, the cytoplasmic domains of the cultured melanophores were flat and thin except in the perinuclear region (especially when the pigment was aggregated). The microtubules and microfilaments were usually found in the same focal plane; however, on occasion, microfilaments were closer to the substratum. Microtubules were arranged in arrays radiating from what are presumed to be cytocenters. A small percentage of the melanophores were very large, had actin-rich circular perimeters and did not respond as rapidly to melatonin treatment as did the other melanophores. Melanophores with either aggregated or dispersed melanosomes had low intensity rhodamine-phalloidin staining of actin filaments compared to nonpigmented cells, whereas the FITC anti-tubulin intensities were comparable in magnitude to that seen in nonpigmented cells. When cells were fixed prior to complete melatonin-induced pigment granule aggregation there was no abrupt diminution in either the tubulin or actin staining at the boundary between pigment granule-rich and pigment granule-poor cytoplasmic domains. Nor could the actin and tubulin patterns in cells with partially aggregated melanosomes be reliably distinguished from those in melanophores in which the melanosomes were either completely dispersed or completely aggregated. These data argue against the hypothesis that melatonin causes consistent large-scale rearrangements of tubulin and actin polymers as it induces pigment aggregation in Xenopus melanophores.  相似文献   

10.
There is increasing evidence that the different polymers that constitute the cytoskeleton are interconnected to form a three-dimensional network. The macromolecular interaction patterns that stabilize this network and its intrinsic dynamics are the basis for numerous cellular processes. Within this context,in vitrostudies have pointed to the existence of specific associations between microtubules, microfilaments, and intermediate filaments. It has also been postulated that microtubule-associated proteins (MAPs) are directly involved in mediating these interactions. The interactions of tau with vimentin filaments, and its relationships with other filaments of the cytoskeletal network, were analyzed in SW-13 adenocarcinoma cells, through an integrated approach that included biochemical and immunological studies. This cell line has the advantage of presenting a wild-type clone (vim+) and a mutant clone (vim−) which is deficient in vimentin expression. We analyzed the cellular roles of tau, focusing on its interactions with vimentin filaments, within the context of its functional aspects in the organization of the cytoskeletal network. Cosedimentation experiments of microtubular protein with vimentin in cell extracts enriched in intermediate filaments, combined with studies on the direct interaction of tau with nitrocellulose-bound vimentin and analysis of tau binding to vimentin immobilized in single-strand DNA affinity columns, indicate that tau interacts with the vimentin network. These studies were confirmed by a quantitative analysis of the immunofluorescence patterns of cytoskeleton-associated tubulin, tau, and vimentin using flow cytometry. In this regard, a decrease in the levels of tau associated to the cytoskeletal network in the vim− cell mutant compared with the wild-type clones was observed. However, immunofluorescence data on SW-13 cells suggest that the absence of a structured network of vimentin in the mutant vim− cells does not affect the cytoplasmic organization formed by microtubules and actin filaments, when compared with the wild-type vim+ cells. These studies suggest that tau associates with vimentin filaments and that these interactions may play a structural role in cells containing these filaments.  相似文献   

11.
In order to investigate the contributions of microtubules and of F-actin to the in vitro migration mechanisms of Hydra nematocytes we have studied the effects of agents directed against cytoskeletal structures. Disassembly of microtubules by treatment with the drug nocodazole in moving nematocytes resulted in the loss of all locomotory activity within 20 min after the onset of treatment and in the detachment from the substratum after about 30 min. Depolymerization of microtubules by exposure to low temperatures had the same effect but was reversible in this case. Locomoting cells treated with cytochalasin D, which disrupts the actin filaments, stopped movement 2 min after drug administration and detached from the substratum after 15 min. The pattern of F-actin, alpha-tubulin, and tyrosinated tubulin in drug- or cold-treated cells was determined by immunocytochemical techniques and confocal laser scanning microscopy. These patterns and the reactions of the cells to the various drug treatments suggest that both actin filaments and microtubules play a crucial role in nematocyte locomotion. Analysis of the cytoskeletal pattern in drug-treated cells shows that the microtubules which are involved in locomotion are mostly tyrosinated. Furthermore it is suggested that microtubules and actin filaments interact with each other during the locomotion of nematocytes.  相似文献   

12.
The ATP.Mg-dependent type-1 protein phosphatase activating factor (factor FA) was identified as a brain protein kinase that could phosphorylate microtubule-associated protein-2 (MAP-2) and thereby inhibit cross-linking interactions of MAP-2 with actin filaments and microtubules isolated from porcine brain. The phosphorylation sites were found to be equally located on both projection and microtubule-binding domains of MAP-2. Phosphoamino acid analysis revealed that the phosphorylation sites were on both serine and threonine residues, indicating that factor FA is a serine/threonine-specific MAP-2 kinase. Conversely, factor FA was further identified as a MAP-2 phosphatase activator that could promote the dephosphorylation of32P-MAP-2 phosphorylated by factor FA itself and thereby potentiate cross-linking interactions of MAP-2 with actin and microtubules. Furthermore, the two opposing functions of factor FA can be selectively modulated in a reciprocal manner bypH change. For instance, alkalinepH could stimulate factor FA to work as a MAP-2 kinase but simultaneously block it to work as a MAP-2 phosphatase activator to potentiate the inhibition on the cross-linking interactions of MAP-2 with actin and microtubules. Taken together, the results provide initial evidence that a cyclic modulation of cross-linking interactions of MAP-2 with actin filaments and microtubules can be controlled by factor FA, representing an efficient cyclic cascade control mechanism for rapid structural and functional regulation of neuronal cytoskeletal system.  相似文献   

13.
14.
Formin family proteins coordinate actin filaments and microtubules. The mechanisms by which formins bind and regulate the actin cytoskeleton have recently been well defined. However, the molecular mechanism by which formins coordinate actin filaments and microtubules remains poorly understood. We demonstrate here that Isoform-Ib of the Formin-1 protein (Fmn1-Ib) binds to microtubules via a protein domain that is physically separated from the known actin-binding domains. When expressed at low levels in NIH3T3 fibroblasts, Fmn1-Ib protein localizes to cytoplasmic filaments that nocodazole disruption confirmed as interphase microtubules. A series of progressive mutants of Fmn1-Ib demonstrated that deletion of exon-2 caused dissociation from microtubules and a stronger association with actin membrane ruffles. The exon-2-encoded peptide binds purified tubulin in vitro and is also sufficient to localize GFP to microtubules. Exon-2 does not contain any known formin homology domains. Deletion of exon 5, 7, 8, the FH1 domain or FH2 domain did not affect microtubule binding. Thus, our results indicate that exon-2 of Fmn1-Ib encodes a novel microtubule-binding peptide. Since formin proteins associate with actin filaments through the FH1 and FH2 domains, binding to interphase microtubules through this exon-2-encoded domain provides a novel mechanism by which Fmn1-Ib could coordinate actin filaments and microtubules.  相似文献   

15.
Proteins of contractile and cytoskeletal elements have been studied in bovine lens-forming cells growing in culture as well as in bovine and murine lenses grown in situ by immunofluorescence microscopy using antibodies to the following proteins: actin, myosin, tropomyosin, α-actinin, tubulin, prekeratin, vimentin, and desmin. Lens-forming cells contain actin, myosin, tropomyosin, and α-actinin which in cells grown in culture are enriched in typical cable-like structures, i.e. microfilament bundles. Antibodies to tubulin stain normal, predominantly radial arrays of microtubules. In the epithelioid lens-forming cells of both monolayer cultures grown in vitro and lens tissue grown in situ intermediate-sized filaments of the vimentin type are abundant, whereas filaments containing prekeratin-like proteins (‘cytokeratins’) and desmin filaments have not been found. The absence of cytokeratin proteins observed by immunological methods is supported by gel electrophoretic analyses of cytoskeletal proteins, which show the prominence of vimentin and the absence of detectable amounts of cytokeratins and desmin. This also correlates with electron microscopic observations that typical desmosomes and tonofilament bundles are absent in lens-forming cells, as opposed to a high density of vimentin filaments. Our observations show that the epithelioid lens-forming cells have normal arrays of (i) microfilament bundles containing proteins of contractile structures; (ii) microtubules; and (iii) vimentin filaments, but differ from most true epithelial cells by the absence of cytokeratins, tonofilaments and typical desmosomes. The question of their relationship to other epithelial tissues is discussed in relation to lens differentiation during embryogenesis. We conclude that the lens-forming cells either represent an example of cell differentiation of non-epithelial cells to epithelioid morphology, or represent a special pathway of epithelial differentiation characterized by the absence of cytokeratin filaments and desmosomes. Thus two classes of tissue with epithelia-like morphology can be distinguished: those epithelia which contain desmosomes and cytokeratin filaments and those epithelioid tissues which do not contain these structures but are rich in vimentin filaments (lens cells, germ epithelium of testis, endothelium).  相似文献   

16.
It has been demonstrated that microtubule-associated proteins (MAPs) interact with tubulin in vitro and in vivo. However, there is no clear evidence on the possible roles of the interactions of MAPs in vivo with other cytoskeletal components in maintaining the integrity of the cell architecture. To address this question we extracted the neuronal cytoskeleton from brain cells and studied the selective dissociation of specific molecular isospecies of tau protein under various experimental conditions. Tau, and in some cases MPA-2, were analysed by the use of anti-idiotypic antibodies that recognize epitopes on their tubulin binding sites. Fractions of microtubule-bound tau isoforms were extracted with 0.35 M NaCl or after the addition of nocodazole to allow microtubule depolymerization. Protein eluted with this inhibitor contained most of the assembled tubulin dimer pool and part of the remaining tau and MAP-2. When the remaining cytoskeletal pellet was treated with cytochalasin D to allow depolymerization of actin filaments, only tau isoforms were extracted. Immunoprecipitation studies along with immunolocalization experiments in cell lines containing tau-like components supported the findings on the roles of tau isospecies as linkers between tubulin in the microtubular structure with actin filaments. Interestingly, in certain types of cells, antibody-reactive tau isospecies were detected by immunofluorescence with a discrete distribution pattern along actin filaments, which was affected by cytochalasin disruption of the actin filament network. These results suggest the possible in vivo roles of subsets of tau protein in modulating the interactions between microtubules and actin filaments.  相似文献   

17.
The involvement of the cytoskeleton in symbiotic interactions such as arbuscular mycorrhizas has received little attention. In this paper, we examine the organization of actin in tobacco mycorrhizal roots and compare actin and tubulin patterns within arbuscule-containing cells.
Our results show drastic reorganization of microfilaments and microtubules upon fungal infection and how those new cytoskeletal patterns relate to the host cytoplasm rearrangement and the intracellular fungal structures. Whereas in uninfected cells a network of cortical and perinuclear actin filaments was observed, in infected cells actin filaments closely follow the fungal branches and envelop the whole arbuscule in a dense coating network. Microtubules are less closely connected with the fungus surface. They run across the whole arbuscule mass, linking branches to each other and to the host cell cortex and nucleus.
These major differences between the two cytoskeletal components are used to advance some suggestions concerning their contribution to structural functions in the plant–fungus interactions during the mycorrhizal symbiosis.  相似文献   

18.
Summary Over the last 25 yr, success in characterizing the individual protein components of animal cytoskeletons was possible, in part, due to technical advances in the isolation and purification of anucleate cytoskeletons from animal cells. As a step towards characterizing protein components of the plant cytoskeleton, we have isolated cytoskeletons from cytoplasts (anucleate protoplasts) prepared from cotton fiber cells grown in ovule culture. Cytoplasts isolated into a hypertonic, Ca2+-free medium at pH 6.8 retained internal structures after extraction with the detergent, Triton X-100. These structures were shown to include microtubule and microfilament arrays by immunofluorescence and electron microscopy. Actin and tubulin were the only abundant proteins in these preparations, suggesting that microfilaments and microtubules were the major cytoskeleta elements in the isolated cytoskeletons. The absence of additional, relatively abundant proteins suggests that (a) other cytoskeletal arrays potentially present in fiber cells (e.g., intermediate filaments) were either lost during detergent extraction or were minor components of the fiber cell cytoskeleton; and (b) high ratios of individual cytoskeletal-associated proteins relative to actin and tubulin were not required to maintain microtubules and microfilaments in organized structures.  相似文献   

19.
Summary Using a xanthophore cytoskeletal preparation as immunogen, we have produced a monoclonal antibody, A2, which recognized a 160 kDa protein in 3T3 fibroblasts. This protein makes up a cytoplasmic filamentous system, which colocalizes with vimentin filaments. When microtubules and actin filaments are dissolved by high salt extraction, staining with antibody A2 is unaffected. Immunoblot analysis confirms that the 160 kDa protein is co-isolated with vimentin duringin vivo high salt extraction. Following vinblastine treatment, both the 160 kDa protein and vimentin become localized to perinuclear caps, as do other intermediate filaments and their associated proteins; after vinblastine removal, the immunostaining produced by A2 becomes filamentous. Immunoelectron microscopy demonstrates that antibody A2 stains a filament system with a diameter of about 10 nm. Our observations suggest that the 160 kDa protein may be a new vimentin-associated protein which differs from the intermediate filament-associated proteins previously reported, and is widely distributed in several cell types.  相似文献   

20.
Summary The distribution of tropomyosin, actin and tubulin in the supporting cells of the organ of Corti was studied by immunofluorescent localization of antibodies to these proteins. Tropomyosin colocalizes with actin and tubulin in the regions of the tunnel pillar and Deiters cells where actin microfilaments and microtubules had previously been observed ultrastructurally. Despite the implications of the presence of antiparallel actin filaments in the supporting cells, the presence of tropomyosin and the absence of myosin suggest that the role of tropomyosin may be to confer rigidity to the actin filaments. Thus the primary function of the cytoskeletal proteins in the supporting cells may be structural.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号