首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Inactivation of excitation-contraction coupling was examined in extensor digitorum longus (EDL) and soleus muscle fibers from rats injected daily with tri-iodothyronine (T3, 150 micrograms/kg) for 10-14 d. Steady-state activation and inactivation curves for contraction were obtained from measurements of peak potassium contracture tension at different surface membrane potentials. The experiments tested the hypothesis that noninactivating tension is a "window" tension caused by the overlap of the activation and inactivation curves. Changes in the amplitude and voltage dependence of noninactivating tension should be predicted by the changes in the activation and inactivation curves, if noninactivating tension arises from their overlap. After T3 treatment, the area of overlap increased in EDL fibers and decreased in soleus fibers and the overlap region was shifted to more negative potentials in both muscles. Noninactivating tension also appeared at more negative membrane potentials after T3 treatment in both EDL and soleus fibers. The effects of T3 treatment were confirmed with a two microelectrode voltage-clamp technique: at the resting membrane potential (-80 mV) contraction in response to a brief test pulse required less than normal depolarization in EDL, but more than normal depolarization in soleus fibers. After T3 treatment, the increase in contraction threshold at depolarized holding potentials (attributed to inactivation) occurred at more depolarized holding potentials in EDL, or less depolarized holding potentials in soleus. The changes in contraction threshold could be accounted for by the effects of T3 on the activation and inactivation curves. In conclusion, (a) T3 appeared to affect the expression of both activation and inactivation characteristics, but the activation effects could not be cleanly distinguished from T3 effects on the sarcoplasmic reticulum and contractile proteins, and (b) the experiments provided evidence for the hypothesis that the noninactivating tension is a steady-state "window" tension.  相似文献   

5.
P V Tishler  M E Hammond 《Enzyme》1975,20(6):349-358
The electrophoretic characteristics of the hepatic mitochondrial cytochrome-linked alpha-glycerophosphate dehydrogenase (CGPD) induced by thyroid hormone have been examined. Mitochondria, derived from livers of C57BL/6J or BALB/cAnN mice after 3 days of L-3,5,3'-triiodothyronine (T3) (0.1 mumole) or saline administration, were extracted with Triton X-100 (5 ml/l), and the extracts subjected to alkaline discontinuous polyacrylamide gel electrophoresis. The enzyme was located on the gel by means of a histochemical stain. The migration of CGPD from T3-treated mice was identical with that from saline-treated mice in both strains, and differed from that of NAD-linked alpha-glycerophosphate dehydrogenase. This suggests that the induction does not involve the activation of a new gene for a CGPD isoenzyme that is not expressed in the basal state. In addition, enzyme from both strains of mice exhibited identical rates of migration, indicating that the enzymes from both strains are chemically identical. These conclusions must be considered tentative, pending other studies to disprove the presence of new molecular species with no change in net charge or size.  相似文献   

6.
7.
8.
The FAD-dependent alpha-glycerophosphate oxidase (GlpO) from Enterococcus casseliflavus and Streptococcus sp. was originally studied as a soluble flavoprotein oxidase; surprisingly, the GlpO sequence is 30-43% identical to those of the alpha-glycerophosphate dehydrogenases (GlpDs) from mitochondrial and bacterial sources. The structure of a deletion mutant of Streptococcus sp. GlpO (GlpODelta, lacking a 50-residue insert that includes a flexible surface region) has been determined using multiwavelength anomalous dispersion data and refined at 2.3 A resolution. Using the GlpODelta structure as a search model, we have also determined the intact GlpO structure, as refined at 2.4 A resolution. The first two domains of the GlpO fold are most closely related to those of the flavoprotein glycine oxidase, where they function in FAD binding and substrate binding, respectively; the GlpO C-terminal domain consists of two helix bundles and is not closely related to any known structure. The flexible surface region in intact GlpO corresponds to a segment of missing electron density that links the substrate-binding domain to a betabetaalpha element of the FAD-binding domain. In accordance with earlier biochemical studies (stabilizations of the covalent FAD-N5-sulfite adduct and p-quinonoid form of 8-mercapto-FAD), Ile430-N, Thr431-N, and Thr431-OG are hydrogen bonded to FAD-O2alpha in GlpODelta, stabilizing the negative charge in these two modified flavins and facilitating transfer of a hydride to FAD-N5 (from Glp) as well. Active-site overlays with the glycine oxidase-N-acetylglycine and d-amino acid oxidase-d-alanine complexes demonstrate that Arg346 of GlpODelta is structurally equivalent to Arg302 and Arg285, respectively; in both cases, these residues interact directly with the amino acid substrate or inhibitor carboxylate. The structural and functional divergence between GlpO and the bacterial and mitochondrial GlpDs is also discussed.  相似文献   

9.
10.
11.
The effect of tri-iodothyronine injection on the nuclear tri-iodothyronine receptor (putative thyroid-hormone receptor) was examined in rat liver. Nuclear receptors were extracted from isolated nuclei with 0.4 M-KCl, and their association constants (Ka) and maximal binding capacities (Cmax.) were determined by Scatchard analyses with and without correction for the endogenous hormone. The amount of endogenous tri-iodothyronine bound to non-histone protein was estimated on the basis of the specific radio-activity of [125I]tri-iodothyronine injected 2 h before the rats were killed. It was demonstrated that Cmax. of the nuclear receptors was 2.5-fold higher in severely hyperthyroid than in hypothyroid rats. However, irrespective of the thyroid status, the Ka of the receptors remained unchanged when corrected for endogenous tri-iodothyronine bound to non-histone protein. The validity of the correction was supported by experiments in vitro in which nuclear receptors were preincubated with unlabelled tri-iodothyronine. The increase in Cmax. of nuclear receptors was directly related to mitochondrial alpha-glycerophosphate dehydrogenase activity. These results suggest a hormonal modulation of the nuclear receptors which is associated with hormonal action.  相似文献   

12.
The effect of triiodo-L-thyronine (T3) treatment (15 mug/100 g body weight daily for 10 days) on the activity of mitochondrial alpha-glycerophosphate dehydrogenase (GPOX) in different nephron segments of the male rat was investigated by a histochemical staining method. The study showed marked segmental differences regarding the response to T3-treatment: 1. The first two proximal segments were unstained in the control rats and intensely stained following treatment. 2. The third proximal segments, the thick ascending limbs of Henle's loop and the distal convolted tubules showed a strong or moderate reaction in controls and a moderate increase after T3-treatment. 3. The high activity of collecting ducts in the cortex and outer zone of the medulla in controls was slightly increased by treatment. 4. Faintly reacting glomeruli and negative thin limbs of Henle's loop and collecting ducts in the inner medulla (papilla) were unaffected by T3-treatment. The results are discussed in relation to biochemical and physiological data.  相似文献   

13.
Inactivation of apo-glyceraldehyde-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase(phosphorylating) (EC 1.2.1.12) from rat skeletal muscle at 4 degrees C in 0.15 M NaC1, 5 mM EDTA, 4 mM 2-mercaptoethanol pH 7.2 is a first-order reaction. The rate constant of inactivation depends on protein concentration. With one molecule of NAD bound per tetrameric enzyme, a 50 per cent loss in activity is observed and the rate constant of inactivation becomes independent of the protein concentration over a 30-fold range. Two moles of NAD bound per mole of enzyme fully protect it against inactivation. NADH affords a cooperative effect on enzyme structure similar to that of NAD. Inactivation of 7.8 S apoenzyme is reflected in its dissociation into 4.8-S dimers. In the case of enzyme-NAD1 complex, no direct relationship between the extent of inactivation and dissociation is observed, suggesting that these two processes do not occur simultaneously; we may say that dissociation is slower than inactivation. A mechanism in which the rate-limiting step for inactivation is a conformational change in the tetramer occurring prior to dissociation and affecting only the structure of the non-liganded dimer, is consistent with the experimental observations. Inorganic phosphate protects apoenzyme against inactivation. Its effect is shown to be due to the anion binding at specific sites on the protein with a dissociation constant of 2.6 plus or minus 0.4 mM. The NaC1-induced cold inactivation of glyceraldehyde-phosphate dehydrogenase is fully reversible at 25 degrees C in the presence of 20 mM dithiothreitol and 50 mM inorganic phosphate. The rate of reactivation is independent of protein concentration. Inactivated enzyme retains the ability to bind specific antibodies produced in rabbits, but diminishes its precipitating capability.  相似文献   

14.
15.
Synopsis In serial cross-sections of human skeletal muscles stained for either NADH-tetrazolium reductase (NADH-TR) or -glycerophosphate dehydrogenase (-GPD), a linear relation was found between the total content of enzyme in a cell (expressed as the thickness of the section) and the absorbance of the formazan reaction product formed. Little variation (<4.8%) was found in the concentration of formazan (absorbance per unit thickness) when the same cell was measured in serial cross-sections of various thicknesses (2–10 m) along a longitudinal distance of at least 200 m along the cell. The reduction in enzyme activity was found to be negligible after aqueous preincubation. A maximum of 10–12% of the formazan produced in the NADH-TR reaction might be the result of nothing dehydrogenase activity, whereas this unspecific reaction might account for up to 20% of the formazan deposited in the -GPD reactions after 30 min incubation. The diffusion of Nitro BT into the tissue during the incubation period was found to be unhindered. The rates of formazan production decreased with increasing incubation time, especially in the -GPD reaction in both fibre types. The ratio of the mean absorbance of the formazan in type I fibres to that in type II fibres (in the same section) was 1.41 (coefficient of variation, 2.5%) in the NADH-TR reaction and 0.68 (coefficient of variation, 3.8%) in the -GPD reaction. These values were not affected either by variations in the incubation time (5–40 min) or by the thickness of the section (2–8 m). The concentrations of NADH-TR and -GPD seem to be constant along the length of the muscle fibre. The histochemical reactions reported, together with measurements of the thickness of the sections, seem suitable for the microphotometric quantification of the two enzymes in single fibres of human skeletal muscles.  相似文献   

16.
17.
It is well established that a rise in circulating thyroid hormone during the second half of chick embryo development significantly influences muscle weight gain and bone growth. We studied thyroid influence on differentiation in slow anterior latissimus dorsi (ALD) and fast posterior latissimus dorsi (PLD) muscles of embryos rendered hypothyroid by hypophysectomy or administration of an anti-thyroid drug. The expression of native myosins and myosin light chains (MLCs) was studied by electrophoretic analysis, and the myosin heavy chain (MHC) was characterized by immunohistochemistry. The first effects of hypothyroid status were observed at day 21 of embryonic development (stage 46 according to Hamburger and Hamilton). Analysis of myosin isoform expression in PLD muscles of hypothyroid embryos showed persistence of slow migrating native myosins and slow MLCs as well as inhibition of neonatal fast MHC expression, indicating retarded differentiation of this muscle. In ALD muscle, hypothyroidism maintained fast embryonic MHC and induced noticeable amounts of fast MLCs, thus delaying slow muscle differentiation. Our results suggest that thyroid hormones play a role in modulating the appearance of neonatal fast MHC and the disappearance of isomyosins transiently present during embryogenesis. However, T3 supplemental treatment would seem to compensate in part for the effects of hypothyroidism induced by hypophysectomy, suggesting that thyroid hormone might interfere with other factors also accounting for the observed effects.  相似文献   

18.
Hypoxia affects mammalian mitochondrial function, as well as mitochondria-based energy metabolism. The detail mechanism has not been fully understood. In this study, we detected protein expression levels in mitochondrial fractions of Wistar rats exposed to hypobaric hypoxia by use of proteomic methods. Adult male Wistar rats were randomized into an hypoxic (4,500?m, 30 days) group and a normoxic control group (sea level). Gastrocnemius muscles mitochondria were extracted and purified. Mitochondrial oxygen consumption was measured with a Clark oxygen electrode; mitochondrial transmembrane potential was detected with Rhodamine 123 as a fluoresce probe. Using 2-DE and MALDI-TOF MS analysis, we identified eight mitochondrial protein spots that were differentially expressed in the hypoxic group compared with the normoxic control. These proteins included Chain A of F1-ATPase, voltage dependent anion channel 1 (VDAC), hydroxyacyl Coenzyme A dehydrogenase α-subunit, mitochondrial F1 complex γ-subunit, androgen-regulated protein and tripartite motif protein 50. Two of the spots, VDAC and ATP synthase α-subunit, were confirmed by Western blotting analysis. Oxygen consumption during State 3 respiration, as well as the respiratory control ratio (RCR) was significantly higher in the control than that in the hypoxic group; mitochondrial transmembrane potential was significantly higher in hypoxic group than that in the control. With successful use of multiple proteomic analysis techniques, we demonstrates that 30 days hypoxia exposure has effects on the expression of mitochondrial proteins involved in ATP production and lipid metabolism, decrease the stability of mitochondrial membrane, and affect the mitochondrial electron transport chain.  相似文献   

19.
L-3-Glycerophosphate dehydrogenase was purified from porcine brain mitochondria by a shorter and simpler procedure than previously reported. Immunoblotting with antiserum to the porcine enzyme established that rat liver L-3-glycerophosphate dehydrogenase has the same Mr (76 000) by SDS-polyacrylamide gel electrophoresis. In liver mitochondria from normal and hyperthyroid rats, changes in L-3-glycerophosphate dehydrogenase activity were parallelled by changes in enzyme content assayed by immunoblotting. Similar changes were found in the amount of enzyme synthesised in vitro by reticulocyte lysate programmed with rat liver mRNA, suggesting that thyroid hormone causes specific induction of L-3-glycerophosphate dehydrogenase mRNA.  相似文献   

20.
Hepatocytes isolated from normal adult rats were cultured under serum-free conditions. Induction of mitochondrial alpha-glycerophosphate dehydrogenase (glycerol 3-phosphate dehydrogenase) (EC 1.1.99.5; sn-glycerol-3-phosphate: (acceptor) oxidoreductase) and cytosolic malic enzyme (EC 1.1.1.40; L-malate-NADP+ oxidoreductase (decarboxylating)) by 3,3'-5-triiodo-L-thyronine (triiodothyronine) in the culture medium follows the same time course as the in vivo response to thyroid hormones. The addition of 1 microM cycloheximide blocks the triiodothyronine response. Thyroxine is also capable of stimulating the activities of both enzymes. Although increases in alpha-glycerophosphate dehydrogenase and malic enzyme activities are observed when triiodothyronine is added to the culture medium for 3 days (62% and 36%, respectively), in the presence of insulin and cortisol the response is significantly greater. Dexamethasone is more potent than cortisol in increasing triiodothyronine action. In the presence of bovine serum albumin, to prevent metabolism of triiodothyronine, hepatocytes show increased enzyme activity at concentrations as low as 10(-10) M triiodothyronine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号