首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Murashige & Skoog medium was modified for enhancing artemisinin production in Artemisia annua hairy root cultures by altering the ratio of NO 3 /NH 4 + and the total amount of initial nitrogen. Increasing ammonium to 60 mM decreased both growth and artemisinin accumulation in hairy root cultures. With NO 3 /NH 4 + at 5:1 (w/w), the optimum concentration of total initial nitrogen for artemisinin production was 20 mM. After 24 days of cultivation with 16.7 mM nitrate and 3.3 mM ammonium, the maximum artemisinin production of hairy roots was about 14 mg l–1, a 57% increase over that in the standard MS medium.  相似文献   

2.
Spirulina platensis was cultivated, in comparative studies, using several sources of nitrogen. The standard source used (sodium nitrate) was the same as that used in the synthetic medium Zarrouk, whereas the alternative nitrogen sources consisted of ammonium nitrate, urea, ammonium chloride, ammonium sulphate or acid ammonium phosphate. The initial nitrogen concentrations tested were 0.01, 0.03 and 0.05 M in an aerated photobioreactor at 30 °C, with an illuminance of 1900 lux, and 12 h-light/12 h-dark photoperiod over a period of 672 h. Maximum biomass was produced in medium containing sodium nitrate (0.01–0.03–0.05 M), followed by ammonium nitrate (0.01 M) and urea (0.01 M). The final biomass concentrations were 1.992 g l–1 (0.03 M sodium nitrate), 1.628 g l–1 (0.05 M sodium nitrate), 1.559 g l–1 (0.01 M sodium nitrate), 0.993 g l–1 (0.01 M ammonium nitrate) and 0.910 g l–1 (0.01 M urea). This suggested that it is possible to utilize nitrogen sources other than sodium nitrate for growing S. platensis, in order to decrease the production costs of scaled up projects.  相似文献   

3.
Callus of Orthosiphon stamineus could be induced successfully from petiole, leaf and stem tissues but not roots when cultured on MS medium containing different concentration of NAA (0–4.0 mg l–1) and 2,4-D (0–2.0 mg l–1). Highest fresh weight callus production was obtained from leaf explants and those with best friability were obtained on MS medium plus 1.0 mg l–1 2,4-D plus 1.0 mg l–1 NAA. Cell suspension cultures were established from these cultures. The appropriate cell inoculum size for the best cell growth was 0.75 g of cells in 20 ml culture medium. Cell suspension culture using MS medium supplemented with 1.0 mg l–1 2,4-D promoted the best cell growth with maximum biomass of 8.609 g fresh weight and 0.309 g dry weight 24 days after inoculation. Cells that grew in MS medium supplemented with 1.0 mg l–1 2,4-D reached the stationary growth phase in 15 days as compared to the cells that grew in MS medium supplemented with 1.0 mg l–1 2,4-D + 1.0 mg l–1 NAA reached the stationary phase in 24 days. MS medium supplemented with 1.0 mg l–1 2,4-D was considered as the maintenance medium for maintaining the optimum cell growth of O. stamineus in the cell suspension cultures with 2-week interval subculture.  相似文献   

4.
Removal of inorganic nitrogen sources by cells of the aerial microalga Trentepohlia aurea grown on the surface of substrate, such as filter paper, has been investigated in a batch system. When the alga grew on the paper dampened with medium, it actively ingested inorganic nitrogenous compounds in the medium. Immobilized cells on the filter papers were called algal biofilm in this study. When the algal biofilms were soaked in modified Bold's Basal medium (using 1 g NH4Cl l–1 as a N source), the removal rate was 4.25 mg ammonium-N l–1 day–1 in 40 days. In modified medium with added 26 mg nitrite-N, the removal rate of the total inorganic N ion by the biofilms reached 5.11 mg N l–1 day–1. This removal rate of total N ion was higher than that in the medium by addition of 26 mg nitrate-N. In addition, we tried to examine simultaneous removal of ammonium, nitrate, and nitrite ions and growth inhibition of cyanobacteria in the medium by using the algal biofilms. Consequently, it was demonstrated that the algal biofilms of T. aurea could be utilized as a biofunctional material for the purification of wastewater.  相似文献   

5.
Nitrate and nitrite was reduced by Escherichia coli E4 in a l-lactate (5 mM) limited culture in a chemostat operated at dissolved oxygen concentrations corresponding to 90–100% air saturation. Nitrate reductase and nitrite reductase activity was regulated by the growth rate, and oxygen and nitrate concentrations. At a low growth rate (0.11 h–1) nitrate and nitrite reductase activities of 200 nmol · mg–1 protein · min–1 and 250 nmol · mg–1 protein · min–1 were measured, respectively. At a high growth rate (0.55 h–1) both enzyme activities were considerably lower (25 and 12 nmol mg–1 · protein · min–1). The steady state nitrite concentration in the chemostat was controlled by the combined action of the nitrate and nitrite reductase. Both nitrate and nitrite reductase activity were inversely proportional to the growth rate. The nitrite reductase activity decreased faster with growth rate than the nitrate reductase. The chemostat biomass concentration of E. coli E4, with ammonium either solely or combined with nitrate as a source of nitrogen, remained constant throughout all growth rates and was not affected by nitrite concentrations. Contrary to batch, E. coli E4 was able to grow in continuous cultures on nitrate as the sole source of nitrogen. When cultivated with nitrate as the sole source of nitrogen the chemostat biomass concentration is related to the activity of nitrate and nitrite reductase and hence, inversely proportional to growth rate.  相似文献   

6.
Pseudomonas oleovorans was cultivated to produce medium chain length polyhydroxyalkanoates (MCL-PHAs) from octanoic acid and ammonium nitrate as carbon and nitrogen source, respectively, by a pH-stat fed-batch culture technique. The octanoate in the culture broth was maintained below 4 g l–1 by feeding the mixture of octanoic acid and ammonium nitrate when the culture pH rose above 7.1. The final cell concentrations of 63, 55 and 9.5 g l–1, PHA contents of 62, 75 and 67% of dry cell wt, and productivities of 1, 0.63 and 0.16 g l–1 h–1 were obtained when the C/N ratios in the feed were 10, 20 and 100 g octanoic acid g–1 ammonium nitrate, respectively.  相似文献   

7.
The growth and survival of juvenile Haliotis rubra, when fed with the diatom Navicula sp. cultured in f/2 medium containing combined nitrogen at 24.71 mg NO3-N L–1 (high), 12.35 mg NO3-N L–1 (standard) or 2.47 mg NO3-N L–1 (low), were compared in a 33-day trial. The alga in the low nitrogen medium contained 37% less total amino acid than that in the high and standard nitrogen media. There was a slightly greater reduction in essential amino acids (40%) compared to non-essential amino acids (35%). Juvenile abalone feeding on Navicula grown in medium with low nitrate and lower total amino acid content grew more slowly than when fed on the same species grown in standard or higher nitrogen medium with a higher amino acid content. The growth rate of juveniles was highest (43 m d–1) in the high nitrate treatment followed (40 m d–1) by the standard nitrate treatment and lowest (31 m d–1) in the low nitrate treatment. The survival of the juveniles was also effected by the diet. Survival was better in the high and standard nitrogen media (88%) than the low nitrogen medium (75%). The results suggest that in order to achieve uniformity in nutritional quality of diatoms and good growth of abalone juveniles in commercial abalone nurseries, the nitrogen concentration in tanks should be monitored and additional nitrate added to provide an optimum concentration of between 2 and 12 mg NO3-N L–1.  相似文献   

8.
Single-nodal cuttings of Solanum tuberosum (four cultivars) and Solanum chacoense were induced to produce in vitro microtubers on Murashige & Skoog (MS) medium supplemented with 8 g l–1 sucrose and various concentrations of kinetin and paclobutrazol. The cultures were kept 10 days in darkness and then transferred to a 14 h daylength with 100 µE m–2 sec–1 light intensity at 21 °C. Kinetin (2.5 mg l–1) had no significant influence on tuber formation. However, its addition together with paclobutrazol (0.001 mg l–1) significantly enhanced tuberization. Paclobutrazol alone stimulated early tuber initiation and inhibited stem growth. Despite some genotype × treatment interactions, all genotypes (from very early to late and wild type) formed the maximum proportion of explants bearing microtubers on the media containing both plant growth regulators.  相似文献   

9.
Field and laboratory experiments were designed to determine the differential growth and toxin response to inorganic and organic nitrogen additions in Pseudo-nitzschia spp. Nitrogen enrichments of 50 μM nitrate (KNO3), 10 μM ammonium (NH4Cl), 20 μM urea and a control (no addition) were carried out in separate carboys with seawater collected from the mouth of the San Francisco Bay (Bolinas Bay), an area characterized by high concentrations of macronutrients and iron. All treatments showed significant increases in biomass, with chlorophyll a peaking on days 4–5 for all treatments except urea, which maintained exponential growth through the termination of the experiment. Pseudo-nitzschia australis Frenguelli abundance was 103 cells l−1 at the start of the experiment and increased by an order of magnitude by day 2. Particulate domoic acid (pDA) was initially low but detectable (0.15 μg l−1), and increased throughout exponential and stationary phases across all treatments. At the termination of the experiment, the urea treatment produced more than double the amount of pDA (9.39 μg l−1) than that produced by the nitrate treatment (4.26 μg l−1) and triple that of the control and ammonium treatments (1.36 μg l−1 and 2.64 μg l−1, respectively). The mean specific growth rates, calculated from increases in chlorophyll a and from cellular abundance of P. australis, were statistically similar across all treatments.These field results confirmed laboratory experiments conducted with a P. australis strain isolated from Monterey Bay, CA (isolate AU221-a) grown in artificial seawater enriched with 50 μM nitrate, 50 μM ammonium or 25 μM of urea as the sole nitrogen source. The exponential growth rate of P. australis was significantly slower for cells grown on urea (ca. 0.5 day−1) compared to the cells grown on either nitrate or ammonium (ca. 0.9 day−1). However the urea-grown cells produced more particulate and dissolved domoic acid (DA) than the ammonium- or nitrate-grown cells. The field and laboratory experiments demonstrate that P. australis is able to grow effectively on urea as the primary source of nitrogen and produced more pDA when grown on urea in both natural assemblages and unialgal cultures. These results suggest that the influence of urea from coastal runoff may prove to be more important in the development or maintenance of toxic blooms than previously thought, and that the source of nitrogen may be a determining factor in the relative toxicity of west coast blooms of P. australis.  相似文献   

10.
The production of extracellular enzymes by the thermophilic fungus Thermomyces lanuginosus was studied in chemostat cultures at a dilution rate of 0.08 h–1 in relation to variation in the ammonium concentration in the feed medium. Under steady state conditions, three growth regimes were recognised and the production of several extracellular enzymes from T. lanuginosus was recorded under different nutrient limitations ranging from nitrogen limitation to carbon/energy limitation. The range and the production of carbohydrate hydrolysing enzymes and lipase increased from Regime I (NH4Cl 600 mg l–1) to Regime III (NH4CI 1200 mg l–1), whereas production of protease was highest in Regime II (600 mg l–1 < NH4Cl <1200 mg l–1).  相似文献   

11.
The degradation of Navitan Fast Blue S5R, a very important commercial diazo dye in the tannery and textile industries was investigated. Pseudomonas aeruginosa decolourized this dye at concentrations upto 1200 mg l–1 and the organism was also able to decolourize various other tannery dyes at different levels. The organism required ammonium salts and glucose to co-metabolize the dye. Organic nitrogen sources did not support appreciable decolourization whereas, combined with inorganic nitrogen (NH4NO3) there was an increased effect on both growth and decolourization. Decolourization of this dye started when the organism reached late exponential growth phase and after 24 h of incubation nearly 90% of 100 mg l–1 of the dye was decolourized. An oxygen insensitive azoreductase was involved in the decolourization mechanism. HPLC analysis confirmed the formation of metanilic acid from the dye, which on further incubation was completely metabolized under shaken culture condition.  相似文献   

12.
Two Caribbean strains (1651 and 1655) of the ciguatera-causing dinoflagellate Gambierdiscus toxicus were grown in xenic, batch culture under defined, measured nutrient conditions with nitrate, ammonium, urea, a mix of free amino acids (FAA), or putrescine as the nitrogen source. Cultures were maintained at 27 °C, salinity 35, 110 μmol m−2 s−1 (12 h:12 h light:dark cycle) on L2 medium at an initial nitrogen concentration of 50 μM N. Toxicity was determined using a ouabain/veratridine-dependent cytotoxicity assay (N2A assay) standardized to a ciguatoxin standard. Nitrate, ammonium, FAA, and putrescine supported growth, but urea did not. The appearance of ammonium in the organic nitrogen cultures indicated that G. toxicus and/or associated bacteria remineralized the available organic nitrogen. Both strains were exposed to nitrogen-limiting conditions as evidenced by chlorophyll a content per cell, nitrogen content, and nitrogen (N) to phosphorus (P) (N:P) ratio significantly declining once nitrogen was no longer available in the medium and cells entered stationary phase. Strain 1651 grew significantly faster than strain 1655 when nitrate, FAA, and putrescine was the nitrogen source, but not ammonium. Nitrogen source had no effect on growth rate (0.14 d−1) in strain 1651. The growth rate of strain 1655 (0.10–0.13 d−1) was significantly faster on ammonium than the other nitrogen sources. Strain 1655 was significantly more toxic (10-fold) than strain 1651 except when growing on ammonium at exponential phase. Toxicity ranged from 1.3 to 8.7 fg C-CTX1-Eq cell−1 in strain 1651 and from 30.7 to 54.3 fg C-CTX1-Eq cell−1 in strain 1655. Nitrogen source had no significant affect on toxicity. Toxicity was greater in stationary versus exponential phase cells for strain 1651 when grown on nitrate and strain 1655 regardless of nitrogen source. The difference in toxicity between growth phases may result from an increase in ciguatoxin and/or maitotoxin. Our results suggest that some strains of G. toxicus when associated with bacteria are able to take advantage of organic as well as inorganic nitrogen sources on short time scales to support future growth. The uncoupling of total nitrogen and phosphorus pools from conditions in the water column suggest that instantaneous growth rates can be supported by nutrients acquired hours to days earlier.  相似文献   

13.
Fungal biotransformation of p-coumaric acid into caffeic acid, potentially a strong antioxidant, was evidenced in Pycnoporus cinnabarinus cultures grown with high feeding of p-coumaric acid. Preliminary experiments showed no toxicity of both p-coumaric and caffeic acids at concentrations ranging from 0 to 500 mg l–1. Feeding 450 mg p-coumaric acid l–1 into P. cinnabarinus cultures grown on 20 g l–1 glucose medium resulted in the production of 257 mg caffeic acid l–1with a molar yield of 21%.  相似文献   

14.
Abatract The effect of carbon and nitrogen sources on two well-established hairy root clones, LBA1S and C58A, of Hyoscyamus muticus strain Cairo, were investigated. Both clones exhibited completely different patterns with regards to their growth rate, hyoscyamine accumulation, and fatty acid contents. Clone C58A grew faster and yielded more biomass (17.4 g l-1, in 21 days), but produced less hyoscyamine. The maximum hyoscyamine content (120 mg l-1) in clone LBA1S was reached in 28 days. Neither of the clones could use lactose or fructose as the sole carbon source, nor ammonium as the sole nitrogen source. The growth in the medium containing glucose was significantly reduced compared to that containing sucrose. Clone LBA1S was sensitive to the changes in sucrose concentration and an increase in ammonium in the culture medium, whereas C58A tolerated these changes better but was more sensitive to the increase in total nitrogen. Lipid synthesis was active in the exponential growth phase, and the total fatty acid content varied from 5 to 34 mg g-1 of dry root material. The major fatty acids were linoleic, palmitic and linolenic. There were considerable differences in the total amount of lipids and in their relative ratios when different nutrients were applied.Abbreviations DW dry weight - FA fatty acids - FFA free fatty acids - FW fresh weight  相似文献   

15.
Tissue culture propagation system was developed for zedoary (Curcuma zedoaria Roscoe), a valuable medicinal plant, using rhizome sprout cultures. Shoots were induced from rhizomes on basal MS medium containing 20 g l–1 sucrose and 5 g l–1 agar, supplemented with 20 (v/v) coconut water (CW) and benzylaminopurine (BA) concentrations from 0.5 to 5.0 m g l–1. The excised shoots were subcultured on Murashige-Skoog (MS) medium with 20 (v/v) CW and different concentrations of BA and kinetin (Kin), either alone or in combination with indolebutyric acid (IBA) or naphthaleneacetic acid (NAA). MS medium with 20 (v/v) CW, 3 mg l–1 BA, and 0.5 mg l–1 IBA resulted in a multiplication rate per shoot; 5.6 shoots per explant were obtained on average after 30 days of culture. Well-developed shoots (30–40 mm in length) were rooted on MS medium containing 20 g l–1 sucrose and 8 g l–1 agar, supplemented with 20 (v/v) CW and 2 mg l–1 NAA. More than 95 of the rooted plants were established in pots after hardening.  相似文献   

16.
An efficient system for the in vitro plant and shootregeneration of Lilium longiflorum was developed andaccomplished using transverse thin cell layers (tTCL) of young stems.tTCLs were cut transversely along young stems from which the shoot-tipshad been removed. Sections were measured accurately using a graded gridand were cut in 4 mm × 4 mm × 1 mm cubes, eliminatingepidermal tissue, and were cultured on one-half MS medium containing 8 gl–1 agar, different sucrose concentrations (10, 20, 30 or 40g l–1), and with or without 1 mg l–1 activatedcharcoal (AC). Plants formed on the surface of tTCLs within 60 days onone-half MS medium containing 8 g l–1 agar and 20 gl–1 sucrose. Sections of 1 mm taken just below the apicalarea developed buds within 15 days, whereas the sections closer to thebase required about 45 days. Shoot regeneration was enhanced whensucrose concentration was used at 30 or 40 g l–1 after 60days of culture. No root formation occurred. Both shooting and rootingoccurred when sucrose was used at 20 g l–1. The plantletswere transferred to soil and grew well under greenhouseconditions.  相似文献   

17.
Petioles from in vitro grown plants of interspecific grapevine hybrids cvs `Bianca', `Podarok Magaracha' and `Intervitis Magaracha' were cultured on solid NN medium supplemented with 2,4-D and BA at various concentrations. The callus developed was cultured in liquid NN medium supplemented with 0.5 mg l–1 BA to induce formation of somatic embryos. Somatic embryos of globular and heart-stage developed in suspensions of `Podarok Magaracha' and `Intervitis Magaracha'. In contrast, `Bianca' did not undergo embryogenesis beyond globular stage. This made it necessary to perform subculture of the suspensions to HTE liquid medium supplemented with 0.2 mg l–1 BA for the development of globular embryos into heart stage. Heart-stage embryos developed into torpedo-stage after subculturing suspensions of all three cultivars to liquid HTE medium supplemented with 0.1 mg l–1 IAA and 30 mg l–1 sodium hummate. Torpedo-stage embryo suspensions were subcultured in liquid HTE medium supplemented with 0.5 mg l–1 BA, 0.5 mg l–1 GA3 and 0.5 mg l–1 GA3 + 0.2 mg l–1 BA. After 12 days of incubation, plantlets were cultured on solid M2MS medium: without growth regulators and with 0.5 mg l–1 BA. Plantlets that developed in liquid HTE media with 0.5 mg l–1 GA3 or 0.5 mg l–1 GA3 + 0.2 mg l–1 BA produced 82–90% shoots on solid M2MS medium with 0.5 mg l–1 BA after 50 days of culture.  相似文献   

18.
Systems for establishing suspension cultures and for inducing plant regeneration from these cultures for the Liliaceous ornamental plant, Hosta sieboldiana (Lodd.) Engl. have been developed. Pale-yellow and nodular calluses were induced from more than 20% of scape segments on MS medium containing 1 mg l–1 picloram (PIC), 30 g l–1 sucrose, and 2 g l–1 gellan gum. Upon transfer of calluses to the same medium lacking gellan gum, stably-growing suspension cultures were established after 1 month. Suspension cell clusters regenerated a large number of adventitious shoots following transfer to MS media containing 0.1 mg l–1 NAA in combination with either BA or TDZ. Over 20 shoots per 0.3 g FW of cell clusters were obtained on media containing 0.1 mg l–1 NAA and either 1 or 5 mg l–1 TDZ. Shoots rooted easily on plant growth regulator (PGR)-free MS medium, and plantlets were successfully transferred to soil. Plants showed no visible morphological alterations and maintained the diploid level as indicated by flow cytometric analysis.  相似文献   

19.
Fourteen chemicals were used to treat Catharanthus roseussuspension cell cultures to improve ajmalicine, catharanthine or serpentine biosynthesis. Ajmalicine production was increased by betaine (to 55 mg l–1), n-propyl gallate (to 27 mg l–1), succinic acid (to 31 mg l–1), malic acid (to 60 mg l–1) and tetramethyl ammonium bromide (to 64 mg l–1). Ajmalicine and catharanthine yields were about 5–6 fold higher than the control. A large portion (up to 50–85%) of total indole alkaloids was released into the medium. For maximal catharanthine production, the optimal doses of malic acid and tetramethyl ammonium bromide were 50 mg l–1and 120 mg l–1, respectively. The mechanisms which may be responsible for these treatment effects are discussed.  相似文献   

20.
Embryogenic callus from Citrus sinensis (L.) Osbeck cv. Hamlin was cultured for 28 days on 20 media arranged in a 5×2×2 factorial varying in the ratio of nitrate to ammonium nitrogen, total inorganic nitrogen, and benzyladenine. Fresh weight increase of callus and final medium pH were significantly affected by total inorganic nitrogen and the ratio of nitrate to ammonium. The nitrate to ammonium ratio accounted for 55% of the variation in the fresh weight increase of the callus and 93% of the variation in the final medium pH. Varying the NO3 -:NH4 - ratio provided adequate pH control.Abbreviation BA benzyladenine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号