首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphotericin B (AmB) is a very effective anti-fungal polyene macrolide antibiotic whose usage is limited by its toxicity. Lack of a complete understanding of AmB's molecular mechanism has impeded attempts to design less toxic AmB derivatives. The antibiotic is known to interact with sterols present in the cell membrane to form ion channels that disrupt membrane function. The slightly higher affinity of AmB toward ergosterol (dominant sterol in fungal cells) than cholesterol (mammalian sterol) is regarded as the most essential factor on which antifungal chemotherapy is based. To study these differences at the molecular level, two realistic model membrane channels containing molecules of AmB, sterol (cholesterol or ergosterol), phospholipid, and water were studied by molecular dynamics (MD) simulations. Comparative analysis of the simulation data revealed that the sterol type has noticeable effect on the properties of AmB membrane channels. In addition to having a larger size, the AmB channel in the ergosterol-containing membrane has a more pronounced pattern of intermolecular hydrogen bonds. The interaction between the antibiotic and ergosterol is more specific than between the antibiotic and cholesterol. These observed differences suggest that the channel in the ergosterol-containing membrane is more stable and, due to its larger size, would have a higher ion conductance. These observations are in agreement with experiments.  相似文献   

2.
Abstract

Amphotericin B (AmB) is the drug of choice for the treatment of systemic fungal infections, but its use is hampered by its severe side-effects. A better understanding of its mechanisms of action is needed to develop new AmB formulations with an optimal selectivity between fungal and mammalian cells. Interactions between AmB and cells depend on the concentration of the drug. Stimulatory effects, modulation of the activity of immunocompetent cells and inhibition of yeast adherence are early events that precede the actual cellular toxicity. If membrane permeability alterations are considered to be the first toxic step, cell death results not only from osmotic imbalances, but also from additional mechanisms, such as lipid peroxidation, inhibition of membrane enzymes and blockade of endocytosis. The selectivity between fungal and mammalian cells takes its origin from the difference in the nature of the membrane sterol: ergosterol in fungi, cholesterol in mammalian cells. Transmembrane pores result from different mechanisms according to the sterol: ergosterol-AmB complexes are formed from monomelic AmB in solution, which is the only form present in aqueous medium at low AmB concentrations, whereas pores in the cholesterol containing membrane result from the adsorption onto the membrane surface of aqueous self-associated AmB, that appears in medium when AmB concentration increases. The liposomes seem to sequester AmB in a manner which makes it unavailable for mammalian cells, but maintains its access to fungal cells. The transfer of AmB by progressive diffusion of free AmB through the aqueous phase could explain the enhancement of the therapeutic index of the drug by liposomes, since the induction of pore formation needs a higher threshold of drug for host cell than for fungal cell membranes. The closed structure of the vehicle is not required to enhance the selectivity of the drug: esters of sucrose or high concentration of sodium deoxycholate afford a protective effect as well. Macrophages, after phagocytosis of liposomal AmB, may be considered as a reservoir of AmB, from which the drug is progressively released. Finally, the strong binding of AmB to the delivery system reduces the amount of drug bound to serum components and thus the endocytosis of AmB through the LDL receptor, resulting in lower toxicity.  相似文献   

3.
Amphotericin B (AmB) is a widely used polyene antibiotic to treat systemic fungal infections. This drug is known to be lethal to fungal cells but it has also side effect toxicity on mammalian cells. The mechanism of action of AmB is thought to be related to the difference of the main sterol present in the mammalian and the fungal cells, namely cholesterol and ergosterol, respectively. The effect of AmB has been investigated on pure dipalmitoylphosphatidylcholine (DPPC) and on cholesterol- and ergosterol-containing DPPC bilayers by 2H NMR spectroscopy. The 2H NMR results first confirm that AmB forms a complex with sterol-free DPPC bilayers, the interaction causing the structurization of the lipids and the increase of the gel-to-lamellar fluid DPPC phase transition temperature with increasing concentration of the antibiotic. The results also show that the effects of AmB on cholesterol- and ergosterol-containing DPPC bilayers are remarkably different. On one hand, the drug causes an increase of the orientational order of the lipid acyl chains in cholesterol-containing membranes, mostly in high cholesterol content membranes. On the other hand, the addition of AmB disorders the DPPC acyl chains when ergosterol is present. This is thought to be due to the direct complexation of the ergosterol by AmB, causing the sterol ordering effect to be weaker on the lipids.  相似文献   

4.
To investigate the susceptibilities of fungal and mammalian cells to amphotericin B (AmB), AmB-loaded lysophosphatidylcholine (LPC)micelles as drug delivery vehicles were incubated at 37 degrees C with phosphatidylcholine vesicles containing different sterols as model systems for fungal and mammalian cells. The binding and kinetics of AmB to sterols in the membranes were judged by UV-visible spectroscopy. In the 91% monomeric form, AmB interacted rapidly with ergosterol and slowly with 7-dehydrocholesterol (7-DHC), while it did not interact with cholesterol. In the 50% monomeric form, AmB formed complexes more rapidly with ergosterol or 7-DHC than in the monomeric form, whereas it did not still interact with cholesterol. The interaction was also characterized by resonance energy transfer between the fluorescent probe trimethylammonium diphenylhexatriene (TMA-DPH) and AmB. In the 91% monomeric form, AmB caused initial fluorescence quenching in bilayer membranes containing any sterol as well as sterol-free bilayer membranes due to the release of AmB and its incorporation within the membranes. However, a second phase of increasing fluorescence was found in the case of ergosterol alone. On the other hand, in the 47% monomeric form, AmB gave a biphasic intensity profile in membranes containing any sterol as well as sterol-free membranes. However, the extent of the second phase of increasing fluorescence intensity was markedly dependent upon sterol composition. Studies using sterol-containing vesicles provide important insights into the role of the aggregation state of AmB in its effects on cells.  相似文献   

5.
Amphotericin B (AmB) is a well-known polyene macrolide antibiotic used to treat systemic fungal infections. AmB targets more efficiently fungal than animal membranes. However, there are only minor differences in the mode of action of AmB against both types of membranes, which is a source of AmB toxicity. In this work, we analyzed interactions of two low toxic derivatives of AmB (SAmE and PAmE), synthesized in our laboratory, with lipid membranes. Molecular dynamics simulations of the lipid bilayers containing ergosterol (fungal cells) or cholesterol (animal cells) and the studied antibiotic molecules were performed to compare the structural and dynamic properties of AmB derivatives and the parent drug inside the membrane. A number of differences was found for AmB and its derivatives' behavior in cholesterol- and ergosterol-containing membranes. We found that PAmE and SAmE can penetrate deeper into the hydrophobic region of the membrane compared to AmB. Modification of the amino and carboxyl group of AmB also resulted in the conformational transition within the antibiotic's polar head. Wobbling dynamics differentiation, depending on the sterol present, was discovered for the AmB derivatives. These differences may be interpreted as molecular factors responsible for the improved selectivity observed macroscopically for the studied AmB derivatives.  相似文献   

6.
Amphotericin B (AmB) is a well-known polyene macrolide antibiotic used to treat systemic fungal infections. AmB targets more efficiently fungal than animal membranes. However, there are only minor differences in the mode of action of AmB against both types of membranes, which is a source of AmB toxicity. In this work, we analyzed interactions of two low toxic derivatives of AmB (SAmE and PAmE), synthesized in our laboratory, with lipid membranes. Molecular dynamics simulations of the lipid bilayers containing ergosterol (fungal cells) or cholesterol (animal cells) and the studied antibiotic molecules were performed to compare the structural and dynamic properties of AmB derivatives and the parent drug inside the membrane. A number of differences was found for AmB and its derivatives' behavior in cholesterol- and ergosterol-containing membranes. We found that PAmE and SAmE can penetrate deeper into the hydrophobic region of the membrane compared to AmB. Modification of the amino and carboxyl group of AmB also resulted in the conformational transition within the antibiotic's polar head. Wobbling dynamics differentiation, depending on the sterol present, was discovered for the AmB derivatives. These differences may be interpreted as molecular factors responsible for the improved selectivity observed macroscopically for the studied AmB derivatives.  相似文献   

7.
AmB is an antifungal drug of polyene. Although it is prone to nephrotoxicity, it is still the gold standard in the clinical treatment of fungal infection. Sterol plays a decisive role in the drug activity of AmB. The antifungal activity of AmB depends on ergosterol in fungal membranes, and its toxicity is related to cholesterol in mammalian membranes. At the same time, AmB interacts with biofilms, leading to a significant loss of potassium ions and affecting the transport of potassium ions across membranes. Meanwhile, metal cation may also affect AmB molecules’ aggregation on the membrane. This paper mainly studied the effects of different concentrations of potassium ions on the interactions between AmB and lipid monolayers containing cholesterol or ergosterol and explored the differences in the impact of varying potassium ions on the drug activity of AmB on monolayers rich in these two kinds of sterols. The results show that potassium ions caused the collapse of lipid monolayer and lipid-AmB monolayer to disappear. The limiting molecular area of these monolayers also increased due to potassium ions. The limiting molecular area of the monolayer in the presence of ergosterol has a great difference in the different concentration of potassium ions, which is different from that in the presence of cholesterol. The presence of potassium ions, regardless of the intensity of K+ ions, increased the maximum elastic modulus of the lipid/sterol monolayer with and without AmB. The presence of potassium ions reduced the influence of AmB on the stability of the lipid monolayer containing cholesterol. The impact of AmB on the stability of the lipid monolayer containing ergosterol was related to the concentration of potassium ions. The potassium ions increased the area of the ordered “island” region on the lipid-AmB monolayer containing cholesterol, and the boundary of the microregion produced different degrees of curvature. However, on the lipid/ergosterol monolayer, 5 mM and 10 mM potassium ions made the holes caused by AmB more denser, and the diameter of holes become larger. These results can help to improve the effect of potassium ions on the transmembrane transport of substances affected by AmB. The results will provide a basis for further exploration of the effect mechanism of metal ions on the antifungal activity of polyene drugs.  相似文献   

8.
Amphotericin B (AmB)--a polyene macrolide antibiotic--exhibits strong antifungal activity, however, is known to be very toxic to mammalian cells. In order to decrease AmB toxicity, a number of its derivatives have been synthesized. Basing on in vitro and in vivo research, it was evidenced that one of AmB derivatives, namely N-methyl-N-D-fructopyranosylamphotericin B methyl ester (in short MF-AME) retained most of the antifungal activity of the parent antibiotic, however, exhibited dramatically lower animal toxicity. Therefore, MF-AME seems to be a very promising modification product of AmB. However, further development of this derivative as potential new antifungal drug requires the elucidation of its molecular mechanism of reduced toxicity, which was the aim of the present investigations. Our studies were based on examining the binding energies by determining the strength of interaction between MF-AME and membrane sterols (ergosterol-fungi sterol, and cholesterol-mammalian sterol) and DPPC (model membrane phospholipid) using the Langmuir monolayer technique, which serves as a model of cellular membrane. Our results revealed that at low concentration the affinity of MF-AME to ergosterol is considerably stronger as compared to cholesterol, which correlates with the improved selective toxicity of this drug. It is of importance that the presence of phospholipids is essential since--due to very strong interactions between MF-AME and DPPC--the antibiotic used in higher concentration is "immobilized" by DPPC molecules, which reduces the concentration of free antibiotic, thus enabling it to selectively interact with both sterols.  相似文献   

9.
Amphotericin B (AmB) is still the most common anti-fungal agent used to treat systemic fungal infections. It is known that this antibiotic acts by forming pores with the ergosterol contained in the membranes of fungi, but it also interacts with the cholesterol contained in the membranes of eukaryotic cells, hence its toxicity. AmB may also interact with the most common oxidation products of cholesterol found in vivo, together with interacting with biosynthetic precursors of cholesterol, namely, lanosterol and 7-dehydrocholesterol (7-DHC). The purpose of the present work was to study the interactions in solution between AmB and these various sterols, the techniques used being UV-Vis spectroscopy and differential scanning calorimetry. The results are globally interpreted in terms of the structural differences between the sterols. We show that AmB selectively interacts with 7-DHC which, according to a recent hypothesis proposed in the literature, has been identified in connexion with a therapeutic strategy against hepatocellular carcinomas. We find that the affinity of AmB towards 7-DHC is even greater than the affinity of the antibiotic towards ergosterol. We also find that AmB selectively interacts with the principal oxidation product of cholesterol, 7-ketocholesterol, a situation that has to be taken into account when AmB is administered.  相似文献   

10.
Amphotericin B (AmB) is a crucial agent in the management of serious systemic fungal infections. In spite of its proven track record, its well-known side effects and toxicity will sometimes require discontinuation of therapy despite a life-threatening systemic fungal infection. The mechanism of action of AmB is based on the binding of the AmB molecule to the fungal cell membrane ergosterol, producing an aggregate that creates a transmembrane channel, allowing the cytoplasmic contents to leak out, leading to cell death. Most of the efforts at improving AmB have been focused on the preparation of AmB with a lipid conjugate.AmB administration is limited by infusion-related toxicity, an effect postulated to result from proinflammatory cytokine production. The principal acute toxicity of AmB deoxycholate includes nausea, vomiting, rigors, fever, hypertension or hypotension, and hypoxia.Its principal chronic adverse effect is nephrotoxicity. AmB probably produces renal injury by a variety of mechanisms. Risk factors for AmB nephrotoxicity include male gender, higher average daily dose of AmB (≥35 mg/day), diuretic use, body weight ≥90 kg, concomitant use of nephrotoxic drugs, and abnormal baseline renal function. Clinical manifestations of AmB nephrotoxicity include renal insufficiency, hypokalemia, hypomagnesemia, metabolic academia, and polyuria due to nephrogenic diabetes insipidus. Human studies show convincingly that sodium loading in excess of the usual dietary intake notably reduces the incidence and severity of AmB-induced nephrotoxicity.  相似文献   

11.
The selectivity of the antibiotic nystatin towards ergosterol compared to cholesterol is believed to be a crucial factor in its specificity for fungi. In order to define the structural features of sterols that control this effect, nystatin interaction with ergosterol-, cholesterol-, brassicasterol- and 7-dehydrocholesterol-containing palmitoyloleoylphosphocholine vesicles was studied by fluorescence spectroscopy. Variations in sterol structure were correlated with their effect on nystatin photophysical and activity properties. Substitution of cholesterol by either 7-dehydrocholesterol or brassicasterol enhance nystatin ability to dissipate a transmembrane K+ gradient, showing that the presence of additional double bonds in these sterols-carbon C7 and C22, plus an additional methyl group on C-24, respectively-as compared to cholesterol, is fundamental for nystatin-sterol interaction. However, both modifications of the cholesterol molecule, like in the fungal sterol ergosterol, are critical for the formation of very compact nystatin oligomers in the lipid bilayer that present a long mean fluorescence lifetime and induce a very fast transmembrane dissipation. These observations are relevant to the molecular mechanism underlying the high selectivity presented by nystatin towards fungal cells (with ergosterol) as compared to mammalian cells (with cholesterol).  相似文献   

12.
The selectivity of the antibiotic nystatin towards ergosterol compared to cholesterol is believed to be a crucial factor in its specificity for fungi. In order to define the structural features of sterols that control this effect, nystatin interaction with ergosterol-, cholesterol-, brassicasterol- and 7-dehydrocholesterol-containing palmitoyloleoylphosphocholine vesicles was studied by fluorescence spectroscopy. Variations in sterol structure were correlated with their effect on nystatin photophysical and activity properties. Substitution of cholesterol by either 7-dehydrocholesterol or brassicasterol enhance nystatin ability to dissipate a transmembrane K+ gradient, showing that the presence of additional double bonds in these sterols-carbon C7 and C22, plus an additional methyl group on C-24, respectively-as compared to cholesterol, is fundamental for nystatin-sterol interaction. However, both modifications of the cholesterol molecule, like in the fungal sterol ergosterol, are critical for the formation of very compact nystatin oligomers in the lipid bilayer that present a long mean fluorescence lifetime and induce a very fast transmembrane dissipation. These observations are relevant to the molecular mechanism underlying the high selectivity presented by nystatin towards fungal cells (with ergosterol) as compared to mammalian cells (with cholesterol).  相似文献   

13.
The effect of amphotericin b derivatives on Leishmania and immune functions   总被引:1,自引:0,他引:1  
The effects of a water-soluble amphotericin B (AmB)-arabinogalactan (AG) conjugate on several immune functions were investigated. The experiments measured the effects of AmB-AG on (1) release of tumor necrosis factor-alpha (TNF-alpha), nitric oxide (NO), and interferon-gamma (IFN-gamma) from phagocytic cells and (2) cell-mediated immune responses. AmB-AG increased TNF-alpha release from mouse peritoneal macrophages and human monocytes but had no effect on IFN-gamma and NO release. A commercial preparation of nonconjugated AmB (Fungizone) also increased TNF-alpha production, but to a lesser extent than AmB-AG. AG alone had no effect on TNF-alpha production, proving that AmB caused the increased TNF-alpha production. AmB-AG and Fungizone were also tested for their effect on B- and T-cell proliferation. Neither compound altered T-lymphocyte responses to concanavalin A, but both inhibited the stimulation of B lymphocytes by lipopolysaccharides. However, Fungizone showed a stronger inhibitory effect on B cells. Allocytotoxicity was also inhibited by AmB-AG and more strongly by Fungizone. The increased production of TNF-alpha by cells treated with AmB-AG and the lower inhibitory effect of AmB-AG on lymphocyte stimulation and allocytotoxicity, as compared with Fungizone, explain the better therapeutic efficacy of the AmB-polysaccharide conjugate. AmB is active because of its preferential binding to ergosterol rather than cholesterol, the former sterol preferentially present in parasite surface membranes. This is also valid for the axenic amastigotes, which were sensitive to the AmB-AG. Overall, our results suggest that the antileishmanial activity of AmB-AG is mediated both directly and via modulation of immune functions.  相似文献   

14.
The effect of aggregation of amphotericin B (AmB), as well as the complex formation of AmB with cholesterol or ergosterol, was investigated in micelles and vesicles. AmB in lysophosphatidylcholine (LPC) micelles adopted a more favorable monomeric form than that in other drug formulations. At an LPC/AmB ratio of 200, AmB existed only in monomeric form. Such monomeric behavior is likely dependent upon the fluidity and size of the micelles. In LPC micelles composed of 90% monomeric AmB, AmB-ergosterol complex formation occurred with an increase in the sterol concentration, but the complex formation of AmB-cholesterol was slight. On the other hand, in LPC micelles composed of 40% monomeric AmB, the complex formation of AmB-cholesterol as well as AmB-ergosterol was extensive. These results suggest that the complex formation of AmB with both sterols is highly dependent upon the aggregated state of AmB. In addition, using monolayers, mixtures of AmB/LPC/ergosterol were became more stable with rising temperature, while the stability of mixtures of AmB/LPC/cholesterol remained unchanged, implying that complex formation of AmB with cholesterol is different from that of AmB with ergosterol.  相似文献   

15.
The action of antifungal drug, amphotericin B (AmB), on solvent-containing planar lipid bilayers made of sterols (cholesterol, ergosterol) and synthetic C14–C18 tail phospholipids (PCs) or egg PC has been investigated in a voltage-clamp mode. Within the range of PCs tested, a similar increase was achieved in the lifetime of one-sided AmB channels in cholesterol- and ergosterol-containing membranes with the C16 tail PC, DPhPC at sterol/DPhPC molar ratio ≤1. The AmB channel lifetimes decreased only at sterol/DPhPC molar ratio >1 that occurred with sterol/PC molar ratio of target cell membranes at a pathological state. These data obtained on bilayer membranes two times thicker than one-sided AmB channel length are consistent with the accepted AmB pore-forming mechanism, which is associated with membrane thinning around AmB–sterol complex in the lipid rafts. Our results show that AmB can create cytotoxic (long open) channels in cholesterol membrane with C14–C16 tail PCs and nontoxic (short open) channels with C17–C18 tail PCs as the lifetime of one-sided AmB channel depends on ~2–5 Å difference in the thickness of sterol-containing C16 and C18 tail PC membranes. The reduction in toxic AmB channels efficacy can be required at the drug administration because C16 tails in native membrane PCs occur almost as often as C18 tails. The comparative analysis of AmB channel blocking by tetraethylammonium chloride, tetramethylammonium chloride and thiazole derivative of vitamin B1, 3-decyloxycarbonylmethyl-4-methyl-5-(2-hydroxyethyl) thiazole chloride (DMHT), has proved that DMHT is a comparable substitute for both tetraalkylammonia that exhibits a much higher affinity.  相似文献   

16.
The aim of this study was to determine amphotericin B (AmB) permeation across lipid bilayer membranes mounted on Transwell® and to observe the phagocytosis of the AmB and the AmB-lipid formulations by alveolar macrophage (AM) cell lines using a fluorescence microscope. The lipid bilayer membranes were prepared from phospholipid and ergosterol as well as phospholipid and cholesterol in a ratio (67:33 mol%). AmB-lipid formulations were prepared from AmB incorporated with four lipid derivatives during a lyophilization process. In vitro cytotoxicity studies were carried out on kidney cells by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The levels of nitric oxide production by AMs exposed to these AmB-lipid formulations were determined by the Griess reaction. Phagocytosis of the AmB-lipid formulations was carried out using AM cells. The lipid bilayer membranes and AmB-lipid formulations were successfully prepared. In vitro cytotoxicity results showed less toxicity to kidney cells than pure AmB, and a 1,000-fold less production of nitric oxide by NR8383 cell lines was obtained when compared to lipopolysaccharide. Permeation results were two- to fivefold higher than for pure AmB in the ergosterol containing lipid bilayer and two- to fourfold higher than AmB in the cholesterol containing compositions, both of which were enough to kill the fungi according to their MICs and MFCs. AM phagocytosed the AmB-lipid formulations. We suggest that these products especially the AmB-sodium deoxycholate sulfate are potential candidates for targeting AM cells for the treatment of invasive pulmonary aspergillosis.  相似文献   

17.
Sterol molecules are essential for maintaining the proper structure and function of eukaryotic cell membranes. The influence of cholesterol (the principal sterol of higher animals) on the lipid bilayer properties was extensively studied by both experimental and simulation methods. In contrast, the effect of ergosterol (the principal fungal sterol) on the membrane structure and dynamics is much less recognized. This work presents the results of comparative molecular dynamics simulation of the hydrated dimyristoylphosphatidylcholine bilayer containing approximately 25 mol % of cholesterol or ergosterol. A detailed analysis of the molecular properties (e.g., bilayer thickness, lipid order, diffusion, intermolecular interactions, etc.) of both sterol-induced liquid-ordered membrane phases is presented. Presence of sterols in the membrane significantly changes its property, especially fluidity and molecular packing. Moreover, in accordance with the experiments, our calculations show that, compared to cholesterol, ergosterol has higher ordering effect on the phospholipid acyl chains. This different influence on the properties of the lipid bilayer stems from differences in conformational freedom of sterol side chains. Additionally, obtained models of lipid membranes containing human and fungal sterols, constituting the result of our work, can be also utilized in other chemotherapeutic studies on interaction of selected ligands (e.g., antifungal compounds) with membranes.  相似文献   

18.
Ergosterol and cholesterol supplementation resulted in a significant increase (1·5-fold) in the sterol content while phospholipid remained unaffected inMicrosporum gypseum. The levels of phosphatidylethanolamine and phosphatidylcholine increased in ergosterol supplemented cells. However, a decrease in phosphatidylcholine and an increase in phosphatidylethanolamine was observed in cholesterol grown cells. The ratio of unsaturated to saturated fatty acids decreased on ergosterol/cholesterol supplementation. The uptake of amino acids (lysine, glycine and aspartic acid) decreased in sterol supplemented cells. Studies with fluorescent probe l-anilinonaphthalene-8-sulfonate showed structural changes in membrane organisation as evident by increased number of binding sites in such cells.  相似文献   

19.
Amphotericin B (AmB) is the most widely used antibiotic to treat systemic fungal infections. However, the molecular mechanism of its activity is still not completely understood. In the present work we have used FTIR spectroscopy to investigate the conformational state of the aliphatic chains of DPPC liposomes using the 2850 cm(-1) band, associated with the methylene symmetric stretching mode. The liposomes were either binary mixtures of the lipid with AmB, cholesterol or ergosterol, or ternary systems of these constituents. The two sterols contribute to an ordering of the aliphatic chains of the lipid, this ordering being slightly more important with ergosterol. In the gel state, AmB does not change the conformational order of DPPC even at high concentration. In the fluid phase, however, the drug clearly structures its lipid environment. Our results show that AmB can initiate a redistribution of the ergosterol in the plane of the membrane, but not of the cholesterol molecules, which might constitute an additional mechanism to explain the activity of the antibiotic.  相似文献   

20.
Mouri R  Konoki K  Matsumori N  Oishi T  Murata M 《Biochemistry》2008,47(30):7807-7815
Amphotericin B (AmB) is a membrane-active antibiotic that increases the permeability of fungal membranes. Thus, the dynamic process of its interaction with membranes poses intriguing questions, which prompted us to elaborate a quick and reliable method for real-time observation of the drug's binding to phospholipid liposomes. We focused on surface plasmon resonance (SPR) and devised a new modification method of sensor chips, which led to a significant reduction in the level of nonspecific binding of the drug in a control lane. With this method in hand, we examined the affinity of AmB for various membrane preparations. As expected, AmB exhibited much higher affinity for sterol-containing palmitoyloleoylphosphatidylcholine membranes than those without sterol. The sensorgrams recorded under various conditions partly fitted theoretical curves, which were based on three interaction models. Among those, a two-state reaction model reproduced well the sensorgram of AmB binding to an ergosterol-containing membrane; in this model, two states of membrane-bound complexes, AB and AB*, are assumed, which correspond to a simple binding to the surface of the membrane (AB) and formation of another assembly in the membrane (AB*) such as an ion channel complex. Kinetic analysis demonstrated that the association constant in ergosterol-containing POPC liposomes is larger by 1 order of magnitude than that in the cholesterol-containing counterpart. These findings support the previous notion that ergosterol stabilizes the membrane-bound assembly of AmB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号