首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of chick myoblasts with the glucosidase inhibitors bromoconduritol (BCD) or N-methyl-1-deoxynojirimycin (MDJN), but not the mannosidase I inhibitor 1-deoxymannojirimycin (ManDJN), decreased their rate of adhesion to fibronectin and laminin and increased their rate of adhesion to collagen types I and IV. The adhesion of chick myoblasts to fibronectin, collagen type IV, and laminin was predominantly mediated by beta 1-type integrin(s) as judged by inhibition of adhesion with the beta 1-specific monoclonal antibody JG22. Collagen binding in inhibitor-treated cells remained JG22-sensitive suggesting the inhibitors promote increased activity of a beta 1-type collagen-selective integrin. The effects of BCD, MDJN, and ManDJN on myoblast beta 1-integrin detectable at the myoblast cell surface with JG22 antibody correlated well with their effects on adhesion to fibronectin and laminin, and paralleled the previously reported effects of these agents on myogenesis. Interaction of integrin with the extracellular matrix appears to be required for myoblast terminal differentiation. We found that Mn2+ ions increased the adhesion of myoblasts to extracellular matrix proteins and antagonized the effect of BCD and MDJN on myoblast differentiation, supporting a role for cell-matrix interactions in myogenesis. Inhibition of myogenesis by BCD or MDJN was not reversed by growth under low serum conditions, suggesting these agents do not act by maintaining myoblast in a proliferative state.  相似文献   

2.
The effects of N-linked-oligosaccharide-processing inhibitors on the fusion of rat L6 myoblasts to form myotubes were examined. The glucosidase inhibitor N-methyl-1-deoxynojirimycin (MDJN) greatly inhibited fusion, whereas the mannosidase inhibitor 1-deoxymannojirimycin (ManDJN) had relatively little effect, although both compounds prevented the formation of N-linked complex oligosaccharides. These results indicate that complex oligosaccharides on glycoproteins do not play a role in myoblast fusion. With MDJN, high-mannose oligosaccharides containing three glucose residues and seven to eight mannose residues were found at the cell surface, whereas with ManDJN, non-glucosylated high-mannose oligosaccharides with seven to nine mannose residues were obtained. These results indicate that the persistence of glucose residues on high-mannose oligosaccharides may be responsible for the inhibition of fusion. It is suggested that glucose either masks the cell-surface recognition process leading to fusion or prevents the cell-surface expression of specific glycoprotein(s) essential to the fusion process.  相似文献   

3.
Inhibition of myoblast fusion by bromoconduritol   总被引:1,自引:0,他引:1  
It has recently been reported that the glucosidase I inhibitor, N-methyl-1-deoxynojirimycin (MDJN), inhibits myoblast fusion whereas the mannosidase inhibitor, 1-deoxymannojirimycin (ManDJN), has no effect on fusion. We now report that bromoconduritol, which is an active-site-directed covalent inhibitor of glucosidase II, also inhibits fusion at concentrations that have no effect on the plating efficiency or growth of rat L6 myoblasts. Significant inhibition of fusion was obtained at concentrations as low as 50 micrograms of bromoconduritol/mL, whereas inhibition of cell growth did not occur until concentrations of 250 micrograms/mL were reached. Rat L6 myoblasts were grown in the presence and absence of processing inhibitors and were surface labelled with 125I. Analysis of the iodinated proteins by two-dimensional gel electrophoresis demonstrated that a number of high-molecular-weight proteins (greater than 90,000) detected at the surface of control cells were absent from the surface of cells treated with MDJN or bromoconduritol. It is suggested that MDJN and bromoconduritol prevent the translocation of these proteins to the cell surface. The high-molecular-weight proteins detected at the surface of control cells were also detectable in ManDJN-treated cells, indicating that inhibition of N-linked complex oligosaccharide formation does not affect the translocation of these proteins to the myoblast cell surface.  相似文献   

4.
Integrins are alphabeta transmembrane receptors that function in key cellular processes, including cell adhesion, differentiation, and extracellular matrix deposition through interactions with extracellular, membrane, and cytoplasmic proteins. We previously identified and cloned a muscle beta1 integrin cytoplasmic binding protein termed MIBP and found that the expression level of MIBP is critical in the decision-making process of terminal myogenic differentiation. We report here that MIBP interacts with the alpha7beta1 integrin but not the alpha5beta1 integrin in C2C12 myoblasts, suggesting an important role of integrin alpha chains in the regulation of the beta1-MIBP interaction. Furthermore, consistent with its selective binding activity toward the alpha7beta1 laminin receptor, we have found that overexpression of MIBP in C2C12 myoblasts resulted in a significant reduction of cell adhesion to laminin and inhibition of laminin matrix deposition. By contrast, neither cell adhesion to fibronectin nor fibronectin matrix deposition was significantly altered in cells overexpressing MIBP. Finally, we show that both the protein level and tyrosine phosphorylation of paxillin, a key signaling molecule involved in the cellular control of myogenic differentiation, are increased by MIBP. These results suggest that MIBP functions in the control of myogenic differentiation by regulating alpha7beta1 integrin-mediated cell interactions with laminin matrix and intracellular signaling through paxillin.  相似文献   

5.
Transforming growth factor beta1 (TGFbeta) simultaneously induces the expression of fibronectin, fibronectin receptor, laminin, and laminin receptor (alpha6beta1 integrin) in the human colon cancer cell line Moser (Int J Cancer, 57:742, 1994). Induction of fibronectin and induction of fibronectin receptor by TGFB are tightly coupled, and disrupting fibronectin induction disrupts the induction of fibronectin receptor and cellular adhesion to fibronectin (J Cellular Physiol, 170:138, 1997). We recently demonstrated the efficacy of using antisense chain-specific laminin RNA expression vectors to disrupt the induction by TGFP of the multichain laminin molecule (J Cellular Physiol, 178:296, 1999). We now show in this report that Moser cells used alpha6 and beta1 integrins to adhere to laminin, and, as is the fibronectin and fibronectin receptor system, disrupting the induction by TGFbeta of the ligand laminin by the expression of antisense laminin A chain RNA disrupted the induction of 125I-laminin binding and cellular adhesion to laminin. Disrupting laminin induction also blocked the induction of alpha6 and beta1 integrin laminin receptor by TGFbeta. We conclude that disrupting the induction of the ligand laminin by TGFbeta disrupts TGFbeta-regulated laminin receptor function by suppressing the induction of alpha6 and beta1 integrins. Therefore, targeted disruption of the ligand laminin may be an effective means in disrupting the function of both the ligand and its receptor in cells that utilize the laminin and laminin receptor system in malignant cell behavior.  相似文献   

6.
In this study, we used clone A, a human colon carcinoma cell line, to characterize those integrins that mediate colon carcinoma adhesion to laminin. Monoclonal antibodies specific for the human beta 1 subunit inhibited clone A adhesion to laminin. They also precipitated a complex of surface proteins that exhibited an electrophoretic behavior characteristic of alpha 2 beta 1 and alpha 3 beta 1. A monoclonal antibody specific for alpha 2 (PIH5) blocked clone A adhesion to laminin, as well as to collagen I. An alpha 3-specific antibody (P1B5) had no effect on clone A adhesion to laminin, even though it can block the adhesion of other cell types to laminin. Thus, the alpha 2 beta 1 integrin can function as both a laminin and collagen I receptor on clone A cells. Although these cells express alpha 3 beta 1, an established laminin receptor, they do not appear to use it to mediate laminin adhesion. In addition, the monoclonal antibody GoH3, which recognizes the alpha 6 integrin subunit, also inhibited carcinoma adhesion to laminin but not to fibronectin or collagen I. This antibody precipitated the alpha 6 subunit in association with the beta 4 subunit. There was no evidence of alpha 6 beta 1 association on these cells. In summary, the results obtained in this study indicate that multiple integrin alpha subunits, in association with two distinct beta subunits, are involved in colon carcinoma adhesion to laminin. Based on the behavior of alpha 3 beta 1 and alpha 2 beta 1, the results also suggest that cells can regulate the ability of a specific integrin to mediate adhesion.  相似文献   

7.
应用牵张刺激培养细胞的模型,观察原原、纤维连接蛋白、层粘连素对牵张刺激心肌细胞肥大的影响,探讨细胞外间质-融洽纱受体在超负荷心肌肥大的跨膜信号传导机制中的作用。发现,胶原、纤维连接蛋白、层粘连素明显有助于培养心肌细胞的贴壁、伸展。牵张刺激后,胶原、纤维连接蛋白基质组心肌细胞的^3H-亮氨酸掺入率和心肌细胞表面积均显著大于对照组,而层粘连素组无显著变化;可溶性纤维连接蛋白、RGD肽均可显著抑制牵张刺  相似文献   

8.
应用牵张刺激培养细胞的模型 ,观察胶原、纤维连接蛋白、层粘连素对牵张刺激心肌细胞肥大的影响 ,探讨细胞外间质 -整合素受体在超负荷心肌肥大的跨膜信号传导机制中的作用。结果发现 ,胶原、纤维连接蛋白、层粘连素明显有助于培养心肌细胞的贴壁、伸展。牵张刺激后 ,胶原、纤维连接蛋白基质组心肌细胞的 3H -亮氨酸掺入率和心肌细胞表面积均显著大于对照组 ,而层粘连素组无显著变化 ;可溶性纤维连接蛋白、RGD肽均可显著抑制牵张刺激诱导的培养心肌细胞 (胶原为粘附基质 )的3H -亮氨酸掺入率升高和心肌细胞表面积增大 ,而层粘连素无明显作用。结果表明 ,特异的细胞外间质 -整合素在超负荷心肌肥大机制中发挥了跨膜信号传导作用。  相似文献   

9.
We describe a novel interaction between the disintegrin and cysteine-rich (DC) domains of ADAM12 and the integrin alpha7beta1. Integrin alpha7beta1 extracted from human embryonic kidney 293 cells transfected with alpha7 cDNA was retained on an affinity column containing immobilized DC domain of ADAM12. 293 cells stably transfected with alpha7 cDNA adhered to DC-coated wells, and this adhesion was partially inhibited by 6A11 integrin alpha7 function-blocking antibody. The X1 and the X2 extracellular splice variants of integrin alpha7 supported equally well adhesion to the DC protein. Integrin alpha7beta1-mediated cell adhesion to DC had different requirements for Mn2+ than adhesion to laminin. Furthermore, integrin alpha7beta1-mediated cell adhesion to laminin, but not to DC, resulted in efficient cell spreading and phosphorylation of focal adhesion kinase (FAK) at Tyr397. We also show that adhesion of L6 myoblasts to DC is mediated in part by the endogenous integrin alpha7beta1 expressed in these cells. Since integrin alpha7 plays an important role in muscle cell growth, stability, and survival, and since ADAM12 has been implicated in muscle development and regeneration, we postulate that the interaction between ADAM12 and integrin alpha7beta1 may be relevant to muscle development, function, and disease. We also conclude that laminin and the DC domain of ADAM12 represent two functional ligands for integrin alpha7beta1, and adhesion to each of these two ligands via integrin alpha7beta1 triggers different cellular responses.  相似文献   

10.
Two subfragments of laminin, E8, a major part of the long arm, and E1-4, the three short arms, promote cell adhesion and spreading. Three distinct types of adhesive behavior are seen in short term (1 h) assays, typified by secondary murine fibroblasts, adherent only on fibronectin; secondary murine myoblasts, adherent on fibronectin, laminin, and the E8 fragment; and Rugli human glioblastoma cells, adherent on fibronectin, laminin, E8, and E1-4. E8-specific polyclonal antibodies block myoblast adhesion to E8 and to laminin with identical concentration dependence; Rugli binding to E8 but not to laminin is also totally blocked by these antibodies. Heating of E8 and laminin to approximately 60 degrees C abolishes cell attachment-promoting activity for myoblasts. Adhesion of Rugli cells to E8 is also lost, but on laminin the attachment-promoting activity remains constant. This is due to an increase in the activity of E1-4 fragment as it is heated. Thus, major sites for initial cell adhesion to and spreading on laminin lie within the E8 and E1-4 fragments, but not all cells binding to laminin will bind to both fragments. These data may tentatively be explained by the existence of more than one type of receptor for laminin at the cell surface; one is needed for each fragment.  相似文献   

11.
Proliferating skeletal myoblasts show multiple specific responses to laminin, one of the major glycoprotein components of basement membranes. Using MM14Dy myoblasts, a myogenic cell strain derived from a normal adult mouse skeletal muscle, we show in this study that substrate-bound laminin but not other matrix proteins such as collagens or fibronectin specifically and rapidly induces the outgrowth of cell processes, resulting in bipolar, spindle-shaped cells. This effect is independent from the presence of collagens or serum, and was also observed in primary cultures of fetal mouse skeletal myoblasts. The outgrowth of cell processes on laminin is associated with a dramatic stimulation of cell motility: MM14 myoblasts migrate about five times faster on laminin than on fibronectin. In another series of experiments the effect of laminin and fibronectin on thymidine uptake and proliferation of myoblasts was tested. On top of a type I collagen substrate which was provided to ensure complete adhesion even at low doses of laminin or fibronectin, laminin stimulated myoblast proliferation and incorporation of [3H]thymidine in a dose-dependent manner. The stimulation is two- to threefold higher than on dishes coated with equivalent amounts of fibronectin and is observed both in the presence and in the absence of serum. These results suggest that laminin, a major component of the muscle basal lamina, may be actively involved in the development and regeneration of skeletal muscle.  相似文献   

12.
Adhesive and migratory behavior can be cell type, integrin, and substrate dependent. We have compared integrin and substrate differences using three integrin receptors: α5β1, α6β1, and αLβ2 expressed in a common cell type, CHO.B2 cells, which lack integrin α subunits, as well as in different cell types that express one or more of these integrins. We find that CHO.B2 cells expressing either α6β1 or αLβ2 integrins migrate and protrude faster and are more directionally persistent on laminin or ICAM-1, respectively, than CHO.B2 cells expressing α5β1 on fibronectin. Despite rapid adhesion maturation and the presence of large adhesions in both the α6β1- and αLβ2-expressing cells, they display robust tyrosine phosphorylation. In addition, whereas myosin II regulates adhesion maturation and turnover, protrusion rates, and polarity in cells migrating on fibronectin, surprisingly, it does not have comparable effects in cells expressing α6β1 or αLβ2. This apparent difference in the integration of myosin II activity, adhesion, and migration arises from alterations in the ligand-integrin-actin linkage (molecular clutch). The elongated adhesions in the protrusions of the α6β1-expressing cells on laminin or the αLβ2-expressing cells on ICAM-1 display a novel, rapid retrograde flux of integrin; this was largely absent in the large adhesions in protrusions of α5β1-expressing cells on fibronectin. Furthermore, the force these adhesions exert on the substrate in protrusive regions is reduced compared to similar regions in α5-expressing cells, and the adhesion strength is reduced. This suggests that intracellular forces are not efficiently transferred from actomyosin to the substratum due to altered adhesion strength, that is, avidity, affinity, or the ligand-integrin-actin interaction. Finally, we show that the migration of fast migrating leukocytes on fibronectin or ICAM-1 is also largely independent of myosin II; however, their adhesions are small and do not show retrograde fluxing suggesting other intrinsic factors determine their migration differences.  相似文献   

13.
The alpha-subunit of an abundant chick gizzard integrin was isolated (T. Kelly, L. Molony, and K. Burridge, 1987, J. Biol. Chem. 262, 17,189-17,199) and fragmented by proteolytic digestion. The N-terminal sequences of the intact polypeptide and of several internal peptides were determined and were found to be highly homologous to the mammalian integrin alpha 1-subunit. Monoclonal antibodies to the chick integrin beta 1-chain react on immunoblots with the gizzard integrin beta-subunit (U. Hofer, J. Syfrig, and R. Chiquet-Ehrismann, 1990, J. Biol. Chem. 265, 14,561-14,565). The chain composition of the abundant chick gizzard integrin is therefore alpha 1 beta 1. Polyclonal antibodies to the avian integrin alpha 1-subunit block attachment of embryonic gizzard cells to human and chick collagen IV completely and inhibit attachment to mouse Engelbreth-Holm-Swarm (EHS) tumor laminin partially. In ELISA-style receptor assays, the isolated alpha 1 beta 1 integrin bound to human and chick collagen IV and to mouse EHS tumor and chick heart laminin. While the binding to collagen IV was abolished by removal of divalent cations, the binding to laminin was not sensitive to EDTA under the conditions used. Collagen I bound the isolated avian alpha 1 beta 1 integrin only weakly. As collagen IV was the only extracellular matrix protein for which a consistent, divalent cation-dependent, binding to the avian alpha 1 beta 1 integrin could be demonstrated in both cellular and molecular assays we suggest that it is a preferred ligand for this integrin.  相似文献   

14.
The relative strength of PC12 cell adhesion to monolayers of myoblasts and fibroblasts as well as to purified components of the extracellular matrix has been determined. PC12 cell adhesion to myoblasts and fibroblasts was dependent on temperature, and the relative strength of adhesion to both increased over a 4-h period. The strength of adhesion to myoblasts was consistently found to be greater than that to fibroblasts. Whereas coating tissue culture plastic with purified collagen and laminin increased its ability to support PC12 cell adhesion, coating with plasma fibronectin or gelatin reduced cell adhesion. Trypsin treatment of PC12 cells was without effect on their adhesion to collagen and laminin and only partially reduced the strength of adhesion to myoblasts. In contrast trypsinized cells showed a greatly reduced ability to adhere to fibroblast monolayers. Pretreatment of PC12 cells with NGF had no obvious effect on the ability of the cells to adhere to any of the above substrata.  相似文献   

15.
Cultured embryionic day 6 (E6) retinal neurons respond to laminin by making use of integrin receptors. We have recently shown that the laminin binding integrin receptor α6β1 is expressed in the chick retina on both retinal ganglion cells and other retinal neurons. Antibodies raised against a fusion protein containing a large fragment of the extracellular portion of the chick α6 integrin subunit dramatically inhibit the interactions between E6 retinal neurons and laminin. These data show that α6β1 functions as a laminin receptor in these cells. In previous work we have also shown that the levels of the mRNA for α6 decreases dramatically in retinal ganglion cells between E6 and E12. Data presented in this paper show that the decrease in α6 mRNA is not prevented by ablation of the optic tectum, indicating that contact with the target is not a major cause for this decrease.  相似文献   

16.
Laminin glycosyl groups are necessary for the spreading of murine melanoma cells which become attached to this glycoprotein. Laminin has been implicated in myogenesis but the potential role of its glycosyl groups in this process has not been examined. In this study we report the effects of the carbohydrate moieties of laminin on myoblast adhesion, spreading, and differentiation. Unglycosylated laminin from tunicamycin-treated cultures of a mouse cell line, M1536 B3, was used in the experiments. Glycosylated laminin from a murine tumor and from cultures of M1563 B3 cells served as controls. Cell binding experiments with C2C12 mouse myoblasts showed that the cells preferred a laminin-coated surface, compared to the uncoated plastic surface (nontissue culture wells). Myoblasts did not distinguish between glycosylated and unglycosylated laminin substrates. Both glycosylated and unglycosylated forms of laminin promoted myoblast growth and differentiation. In contrast, cells on uncoated plastic surfaces grew very slowly and did not further differentiate. The L6 rat myoblast response to glycosylated and unglycosylated laminin was the same. These results indicate that although rodent myoblasts in culture require a laminin substratum for spreading, growth, and differentiation on a proprietary plastic surface, laminin carbohydrates are not implicated in those cellular responses. In contrast, parallel studies using the lectin, Con A, indicate that cell surface glycoconjugates of myoblasts are implicated in the response of these cells to a laminin substratum.  相似文献   

17.
Mechanical forces regulate lung maturation in the fetus by promoting type II epithelial differentiation. However, the cell surface receptors that transduce these mechanical cues into cellular responses remain largely unknown. When distal lung type II epithelial cells isolated from embryonic day 19 rat fetuses were cultured on flexible plates coated with laminin, fibronectin, vitronectin, collagen, or elastin and exposed to a level of mechanical strain (5%) similar to that observed in utero, transmembrane signaling responses were induced under all conditions, as measured by ERK activation. However, mechanical stress maximally increased expression of the type II cell differentiation marker surfactant protein C when cells were cultured on laminin substrates. Strain-induced alveolar epithelial differentiation was inhibited by interfering with cell binding to laminin using soluble laminin peptides (IKVIV or YIGSR) or blocking antibodies against integrin beta1, alpha3, or alpha6. Additional studies were carried out with substrates coated directly with different nonactivating anti-integrin antibodies. Blocking integrin beta1 and alpha6 binding sites inhibited both cell adhesion and differentiation, whereas inhibition of alpha3 prevented differentiation without altering cell attachment. These data demonstrate that various integrins contribute to mechanical control of type II lung epithelial cell differentiation on laminin substrates. However, they may act via distinct mechanisms, including some that are independent of their cell anchoring role.  相似文献   

18.
Proteoglycans were isolated from extracellular matrix of L6J1 rat myoblasts and their influence on myoblast adhesion was studied. Proteoglycan digestion with chondroitinase AC and heparinase III degrading the polysaccharide moieties revealed that chondroitin sulfate proteoglycans are the main class of myoblast extracellular matrix proteoglycans. Electrophoresis of enzymatically processed proteoglycans was used to examine their core proteins. Myoblast adhesion was suppressed by proteoglycans or the mixture of proteoglycans and fibronectin/extracellular matrix. When being processed with chondroitinase AC the combined substrate of fibronectin and proteoglycans lost the capability of myoblast adhesion suppression. Thus, as a result of presented work the proteoglycans of L6J1 rat myoblast extracellular matrix were isolated and purified. The main class of proteoglycans was chondroitin sulphate proteoglycans. Isolated proteoglycans suppressed myoblast adhesion and this effect was mediated by polysaccharide moieties of proteoglycans.  相似文献   

19.
The presence of many laminin receptors of the beta1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin alpha6beta4 and dystroglycan. We therefore tested the binding of a beta1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin alpha6Abeta4A variant. GD25 beta1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin alpha6 antibody, but not by a dystroglycan antibody. Hence, integrin alpha6Abeta4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin alpha6Abeta4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin alpha6Abeta4A.  相似文献   

20.
Hic-5 is a LIM-Only member of the paxillin superfamily of focal adhesion proteins. It has been shown to regulate a range of biological processes including: senescence, tumorigenesis, steroid hormone action, integrin signaling, differentiation, and apoptosis. To better understand the roles of Hic-5 during development, we initiated a detailed analysis of Hic-5 expression and function in C(2)C(12) myoblasts, a well-established model for myogenesis. We have found that: (1) myoblasts express at least 6 distinct Hic-5 isoforms; (2) the two predominant isoforms, Hic-5alpha and Hic-5beta, are differentially expressed during myogenesis; (3) any experimentally induced change in Hic-5 expression results in a substantial increase in apoptosis during differentiation; (4) ectopic expression of Hic-5alpha is permissive to differentiation while expression of either Hic-5beta or antisense Hic-5 blocks myoblast fusion but not chemodifferentiation; (5) Hic-5 localizes to focal adhesions in C(2)C(12) myoblasts and perturbation of Hic-5 leads to defects in cell spreading; (6) alterations in Hic-5 expression interfere with the normal dynamics of laminin expression; and (7) ectopic laminin, but not fibronectin, can rescue the Hic-5-induced blockade of myoblast survival and differentiation. Our data demonstrate differential roles for individual Hic-5 isoforms during myogenesis and support the hypothesis that Hic-5 mediates these effects via integrin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号