首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous reports have indicated that Plasmodium falciparum-infected red cells (pRBC) have an increased Ca2+ permeability. The magnitude of the increase is greater than that normally required to activate the Ca2+-dependent K+ channel (K Ca channel) of the red cell membrane. However, there is evidence that this channel remains inactive in pRBC. To clarify this discrepancy, we have reassessed both the functional status of the K Ca channel and the Ca2+ permeability properties of pRBC. For pRBC suspended in media containing Ca2+, K Ca channel activation was elicited by treatment with the Ca2+ ionophore A23187. In the absence of ionophore the channel remained inactive. In contrast to previous claims, the unidirectional influx of Ca2+ into pRBC in which the Ca2+ pump was inhibited by vanadate was found to be within the normal range (30–55 μmol (1013 cells · hr)−1), provided the cells were suspended in glucose-containing media. However, for pRBC in glucose-free media the Ca2+ influx increased to over 1 mmol (1013 cells · hr)−1, almost an order of magnitude higher than that seen in uninfected erythrocytes under equivalent conditions. The pathway responsible for the enhanced influx of Ca2+ into glucose-deprived pRBC was expressed at approximately 30 hr post-invasion, and was inhibited by Ni2+. Possible roles for this pathway in pRBC are considered. Received: 12 May 1999/Revised: 8 July 1999  相似文献   

2.
A fluorescence method was adapted to investigate active ion transport in membrane preparations of the SR-Ca-ATPase. The styryl dye RH421 previously used to investigate the Na,K-ATPase was replaced by an analogue, 2BITC, to obtain optimized fluorescence changes upon substrate-induced partial reactions. Assuming changes of the local electric field to be the source of fluorescence changes that are produced by uptake/release or by movement of ions inside the protein, 2BITC allowed the determination of electrogenic partial reactions in the pump cycle. It was found that Ca2+ binding on the cytoplasmic and on the lumenal side of the pump is electrogenic while phosphorylation and conformational transition showed only minor electrogenicity. Ca2+ equilibrium titration experiments at pH 7.2 in the two major conformations of the protein indicated cooperative binding of two Ca2+ ions in state E1 with an apparent half-saturation concentration, K M of 600 nm. In state P-E2 two K M values, 5 μm and 2.2 mM, were determined and are in fair agreement with published data. From Ca2+ titrations in buffers with various pH and from pH titrations in P-E2, it could be demonstrated that H+ binding is electrogenic and that Ca2+ and H+ compete for the same binding site(s). Tharpsigargin-induced inhibition of the Ca-ATPase led to a state with a specific fluorescence level comparable to that of state E1 with unoccupied ion sites, independent of the buffer composition. Received: 21 September 1998/Revised: 18 December 1998  相似文献   

3.
Large Conductance Ca2+-Activated K+ Channels in Human Meningioma Cells   总被引:2,自引:0,他引:2  
Cells from ten human meningiomas were electrophysiologically characterized in both living tissue slices and primary cultures. In whole cells, depolarization to voltages higher than +80 mV evoked a large K+ outward current, which could be blocked by iberiotoxin (100 nm) and TEA (half blocking concentration IC50= 5.3 mm). Raising the internal Ca2+ from 10 nm to 2 mm shifted the voltage of half-maximum activation (V 1/2) of the K+ current from +106 to +4 mV. Respective inside-out patch recordings showed a voltage- and Ca2+-activated (BK Ca ) K+ channel with a conductance of 296 pS (130 mm K+ at both sides of the patch). V 1/2 of single-channel currents was +6, −12, −46, and −68 mV in the presence of 1, 10, 100, and 1000 μm Ca2+, respectively, at the internal face of the patch. In cell-attached patches the open probability (P o ) of BK Ca channels was nearly zero at potentials below +80 mV, matching the activation threshold for whole-cell K+ currents with 10 nm Ca2+ in the pipette. Application of 20 μm cytochalasin D increased P o of BK Ca channels in cell-attached patches within minutes. These data suggest that the activation of BK Ca channels in meningioma cells does not only depend on voltage and internal Ca2+ but is also controlled by the cytoskeleton. Received 18 June 1999/Revised: 18 January 2000  相似文献   

4.
We have previously demonstrated (Diabetes 39:707–711, 1990) that in vitro glycation of the red cell Ca2+ pump diminishes the Ca2+-ATPase activity of the enzyme up to 50%. Such effect is due to the reaction of glucose with lysine residues of the Ca2+ pump (Biochem. J. 293:369–375, 1993). The aim of this work was to determine whether the effect of glucose is due to a full inactivation of a fraction of the total population of Ca2+ pump, or to a partial inactivation of all the molecules. Glycation decreased the V max for the ATPase activity leaving unaffected the apparent affinities for Ca2+, calmodulin or ATP. The apparent turnover was identical in both, the glycated and the native enzyme. Glycation decreased the V max for the ATP-dependent but not for the calmodulin-activated phosphatase activities. Concomitantly with the inhibition, up to 6.5% of the lysine residues were randomly glycated. The probabilistic analysis of the relation between the enzyme activity and the fraction of nonmodified residues indicates that only one Lys residue is responsible for the inhibition. We suggest that glucose decreases the Ca2+-ATPase activity by reacting with one essential Lys residue probably located in the vicinity of the catalytic site, which results in the full inactivation of the enzyme. Thus, Ca2+-ATPase activity measured in erythrocyte membranes or purified enzyme preparations preincubated with glucose depends on the remaining enzyme molecules in which the essential Lys residue stays unglycated. Received: 9 March 1999/Revised: 11 May 1999  相似文献   

5.
These experiments were conducted to determine the membrane K+ currents and channels in human urinary bladder (HTB-9) carcinoma cells in vitro. K+ currents and channel activity were assessed by the whole-cell voltage clamp and by either inside-out or outside-out patch clamp recordings. Cell depolarization resulted in activation of a Ca2+-dependent outward K+ current, 0.57 ± 0.13 nS/pF at −70 mV holding potential and 3.10 ± 0.15 nS/pF at 30 mV holding potential. Corresponding patch clamp measurements demonstrated a Ca2+-activated, voltage-dependent K+ channel (KCa) of 214 ± 3.0 pS. Scorpion venom peptides, charybdotoxin (ChTx) and iberiotoxin (IbTx), inhibited both the activated current and the KCa activity. In addition, on-cell patch recordings demonstrated an inwardly rectifying K+ channel, 21 ± 1 pS at positive transmembrane potential (V m ) and 145 ± 13 pS at negative V m . Glibenclamide (50 μm), Ba2+ (1 mm) and quinine (100 μm) each inhibited the corresponding nonactivated, basal whole-cell current. Moreover, glibenclamide inhibited K+ channels in inside/out patches in a dose-dependent manner, and the IC50= 46 μm. The identity of this K+ channel with an ATP-sensitive K+ channel (KATP) was confirmed by its inhibition with ATP (2 mm) and by its activation with diazoxide (100 μm). We conclude that plasma membranes of HTB-9 cells contain the KCa and a lower conductance K+ channel with properties consistent with a sulfonylurea receptor-linked KATP. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

6.
Calcium channels in the plasma membrane of root cells fulfill both nutritional and signaling roles. The permeability of these channels to different cations determines the magnitude of their cation conductances, their effects on cell membrane potential and their contribution to cation toxicities. The selectivity of the rca channel, a Ca2+-permeable channel from the plasma membrane of wheat (Triticum aestivum L.) roots, was studied following its incorporation into planar lipid bilayers. The permeation of K+, Na+, Ca2+ and Mg2+ through the pore of the rca channel was modeled. It was assumed that cations permeated in single file through a pore with three energy barriers and two ion-binding sites. Differences in permeation between divalent and monovalent cations were attributed largely to the affinity of the ion binding sites. The model suggested that significant negative surface charge was present in the vestibules to the pore and that the pore could accommodate two cations simultaneously, which repelled each other strongly. The pore structure of the rca channel appeared to differ from that of L-type calcium channels from animal cell membranes since its ion binding sites had a lower affinity for divalent cations. The model adequately accounted for the diverse permeation phenomena observed for the rca channel. It described the apparent submillimolar K m for the relationship between unitary conductance and Ca2+ activity, the differences in selectivity sequences obtained from measurements of conductance and permeability ratios, the changes in relative cation permeabilities with solution ionic composition, and the complex effects of Ca2+ on K+ and Na+ currents through the channel. Having established the adequacy of the model, it was used to predict the unitary currents that would be observed under the ionic conditions employed in patch-clamp experiments and to demonstrate the high selectivity of the rca channel for Ca2+ influx under physiological conditions. Received: 23 August 1999/Revised: 12 November 1999  相似文献   

7.
Phospholamban (PLN) phosphorylation contributes largely to the inotropic and lusitropic effects of beta-adrenergic agonists on the heart. The mechanical effects of PLN phosphorylation on the heart are generally attributed solely to an increase in the apparent affinity of the Ca pump in the sarcoplasmic reticulum (SR) membranes for Ca2+ with little or no effect on V max(Ca). In the present report, we compare the kinetic properties of the cardiac SR Ca pump in commonly studied crude microsomes with those of our recently developed preparation of light SR vesicles. We demonstrate that in crude microsomes, the increase in the apparent affinity of the pump for Ca2+ is larger, while the increase in V max(Ca) is smaller, than in purified vesicles. The greater phosphorylation-induced increase in apparent Ca2+ affinity in crude microsomes may be further enhanced by an ATP-sensitive inhibitory effect of ruthenium red on the activity of the pump at subsaturating, but not saturating, Ca2+ concentrations as a result of a greater inhibition in unphosphorylated microsomes. Upon increasing the ATP concentration from 1 to 5 mm, an inhibition by 10 μm ruthenium red is eliminated in phosphorylated microsomes and reduced in control microsomes. Addition of the phosphoprotein phosphatase inhibitor okadaic acid produces a considerable increase in the phosphorylation-induced effects in both crude and purified microsomes. We conclude that the use of purified cardiac SR vesicles is critical for the demonstration of a major increase in V max(Ca) in addition to an increase in the pump's apparent affinity for Ca2+ in response to phosphorylation of PLN by protein kinase A. Received: 20 May 1998/Revised: 13 November 1998  相似文献   

8.
The Ca2+-activated maxi K+ channel is predominant in the basolateral membrane of the surface cells in the distal colon. It may play a role in the regulation of the aldosterone-stimulated Na+ reabsorption from the intestinal lumen. Previous measurements of these basolateral K+ channels in planar lipid bilayers and in plasma membrane vesicles have shown a very high sensitivity to Ca2+ with a K 0.5 ranging from 20 nm to 300 nm, whereas other studies have a much lower sensitivity to Ca2+. To investigate whether this difference could be due to modulation by second messenger systems, the effect of phosphorylation and dephosphorylation was examined. After addition of phosphatase, the K+ channels lost their high sensitivity to Ca2+, yet they could still be activated by high concentrations of Ca2+ (10 μm). Furthermore, the high sensitivity to Ca2+ could be restored after phosphorylation catalyzed by a cAMP dependent protein kinase. There was no effect of addition of protein kinase C. In agreement with the involvement of enzymatic processes, lag periods of 30–120 sec for dephosphorylation and of 10–280 sec for phosphorylation were observed. The phosphorylation state of the channel did not influence the single channel conductance. The results demonstrate that the high sensitivity to Ca2+ of the maxi K+ channel from rabbit distal colon is a property of the phosphorylated form of the channel protein, and that the difference in Ca2+ sensitivity between the dephosphorylated and phosphorylated forms of the channel protein is more than one order of magnitude. The variety in Ca2+ sensitivities for maxi K+ channels from tissue to tissue and from different studies on the same tissue could be due to modification by second messenger systems. Received: 28 February 1995/Revised: 22 December 1995  相似文献   

9.
We examined the effects of pH, internal ionized Ca (Ca2+ i ), cellular ATP, external divalent cations and quinine on Cl-independent ouabain-resistant K+ efflux in volume-clamped sheep red blood cells (SRBCs) of normal high (HK) and low (LK) intracellular K+ phenotypes. In LK SRBCs the K+ efflux was higher at pH 9.0 (350%) than at pHs 7.4 and 6.5, and was inhibited by external divalent cations, quinine, and cellular ATP depletion. The above findings suggest that the increased K+ efflux at alkaline pH is due to the opening of ion channels or specific transporters in the cell membrane. In addition, K+ efflux was activated (100%) when Ca2+ i was increased (+A23187, +Ca2+ o ) into the μm range. However, in comparison to human red blood cells, the Ca2+ i -induced increase in K+ efflux in LK SRBCs was fourfold smaller and insensitive to quinine and charybdotoxin. The Na+ efflux was also higher at pH 9.0 than at pH 7.4, and activated (about 40%) by increasing Ca2+ i . In contrast, in HK SRBCs the K+ efflux at pH 9.0 was neither inhibited by quinine nor activated by Ca2+ i . These studies suggest the presence in LK SRBCs, of at least two pathways for Cl-independent K+ and Na+ transport, of which one is unmasked by alkalinization, and the other by a rise in Ca2+ i . Received: 23 May 1996/Revised: 6 December 1996  相似文献   

10.
Melanoma cells are transformed melanocytes of neural crest origin. K+ channel blockers have been reported to inhibit melanoma cell proliferation. We used whole-cell recording to characterize ion channels in four different human melanoma cell lines (C8161, C832C, C8146, and SK28). Protocols were used to identify voltage-gated (KV), Ca2+-activated (KCa), and inwardly rectifying (KIR) K+ channels; swelling-sensitive Cl channels (Clswell); voltage-gated Ca2+ channels (CaV) and Ca2+ channels activated by depletion of intracellular Ca2+ stores (CRAC); and voltage-gated Na+ channels (NaV). The presence of Ca2+ channels activated by intracellular store depletion was further tested using thapsigargin to elicit a rise in [Ca2+] i . The expression of K+ channels varied widely between different cell lines and was also influenced by culture conditions. KIR channels were found in all cell lines, but with varying abundance. Whole-cell conductance levels for KIR differed between C8161 (100 pS/pF) and SK28 (360 pS/pF). KCa channels in C8161 cells were blocked by 10 nm apamin, but were unaffected by charybdotoxin (CTX). KCa channels in C8146 and SK28 cells were sensitive to CTX (K d = 4 nm), but were unaffected by apamin. KV channels, found only in C8146 cells, activated at ∼−20 mV and showed use dependence. All melanoma lines tested expressed CRAC channels and a novel Clswell channel. Clswell current developed at 30 pS/sec when the cells were bathed in 80% Ringer solution, and was strongly outwardly rectifying (4:1 in symmetrical Cl). We conclude that different melanoma cell lines express a diversity of ion channel types. Received: 2 April 1996/Revised: 22 August 1996  相似文献   

11.
We have previously reported the presence of two Ca2+ influx components with relatively high (KCa= 152 ± 79 μm) and low (KCa= 2.4 ± 0.9 mm) affinities for Ca2+ in internal Ca2+ pool-depleted rat parotid acinar cells [Chauthaiwale et al. (1996) Pfluegers Arch. 432:105–111]. We have also reported the presence of a high affinity Ca2+ influx component with KCa= 279 ± 43 μm in rat parotid gland basolateral plasma membrane vesicles (BLMV). [Lockwich, Kim & Ambudkar (1994) J. Membrane Biol. 141:289–296]. The present studies show that a low affinity Ca2+ influx component is also present in BLMV with KCa= 2.3 ± 0.41 mm (Vmax= 16.36 ± 4.11 nmoles of Ca2+/mg protein/min). Our data demonstrate that this low affinity component is similar to the low affinity Ca2+ influx component that is activated by internal Ca2+ store depletion in dispersed parotid gland acini by the following criteria: (i) similar KCa for calcium flux, (ii) similar IC50 for inhibition by Ni2+ and Zn2+; (iii) increase in KCa at high external K+, (iv) similar effects of external pH. The high affinity Ca2+ influx in cells is different from the low affinity Ca2+ influx component cells in its sensitivity to pH, KCl, Zn2+ and Ni2+. The low and high affinity Ca2+ influx components in BLMV can also be distinguished from each other based on the effects of Zn2+, Ni2+, KCl, and dicyclohexylcarbodiimide. In aggregate, these data demonstrate the presence of a low affinity passive Ca2+ influx pathway in BLMV which displays characteristics similar to the low affinity Ca2+ influx component detected in parotid acinar cells following internal Ca2+ store depletion. Received: 19 March 1997/Revised: 25 November 1997  相似文献   

12.
Lung lamellar bodies maintain an acidic interior by an energy-dependent process. The acidic pH may affect the packaging of surfactant phospholipids, processing of surfactant proteins, or surfactant protein A-dependent lipid aggregation. The electron-probe microanalysis of lamellar body elemental composition has previously suggested that lamellar bodies contain high levels of calcium some of which may be in ionic form. In this study, we investigated the Ca2+ uptake characteristics in isolated lung lamellar bodies. The uptake of Ca2+ was measured by monitoring changes in the fluorescence of Fluo-3, a Ca2+ indicator dye. The uptake of Ca2+ in lamellar bodies was ATP-dependent and increased with increasing concentrations of Ca2+. At 100 nm Ca2+, the uptake was almost completely inhibited by bafilomycin A1, a selective inhibitor of vacuolar type H+-ATPase, or by NH4Cl, which raises the lamellar body pH, suggesting that the pH gradient regulates the uptake. The uptake of Ca2+ increased as the Ca2+ concentration was increased, but the relative contribution of bafilomycin A1-sensitive uptake decreased. At 700 nm, it comprised only 20% of the total uptake. These results suggest the presence of additional mechanism(s) for uptake at higher Ca2+ concentrations. At 700 nm Ca2+, the rate and extent of uptake were lower in the absence of K+ than in the presence of K+. The inhibitors of Ca2+-activated K+-channels, tetraethylammonium, Penitrem A, and 4-aminopyridine, also inhibited the K+-dependent Ca2+ uptake at 700 nm Ca2+. Thus the uptake of Ca2+ in isolated lung lamellar bodies appears to be regulated by two mechanisms, (i) the H+-gradient and (ii) the K+ transport across the lamellar body membrane. We speculate that lamellar bodies accumulate Ca2+ and contribute to regulation of cytosolic Ca2+ in type II cells under resting and stimulated conditions. Received: 18 August 1999/Revised: 9 November 1999  相似文献   

13.
The outer sulcus epithelium was recently shown to absorb cations from the lumen of the gerbil cochlea. Patch clamp recordings of excised apical membrane were made to investigate ion channels that participate in this reabsorptive flux. Three types of channel were observed: (i) a nonselective cation (NSC) channel, (ii) a BK (large conductance, maxi K or K Ca ) channel and (iii) a small K+ channel which could not be fully characterized. The NSC channel found in excised insideout patch recordings displayed a linear current-voltage (I-V) relationship (27 pS) and was equally conductive for Na+ and K+, but not permeable to Cl or N-methyl-d-glucamine. Channel activity required the presence of Ca2+ at the cytosolic face, but was detected at Ca2+ concentrations as low as 10−7 m (open probability (P o ) = 0.11 ± 0.03, n= 8). Gadolinium decreased P o of the NSC channel from both the external and cytosolic side (IC50∼ 0.6 μm). NSC currents were decreased by amiloride (10 μm− 1 mm) and flufenamic acid (0.1 mm). The BK channel was also frequently (38%) observed in excised patches. In symmetrical 150 mm KCl conditions, the I-V relationship was linear with a conductance of 268 pS. The Goldman-Hodgkin-Katz equation for current carried solely by K+ could be fitted to the I-V relationship in asymmetrical K+ and Na+ solutions. The channel was impermeable to Cl and N-methyl-d-glucamine. P o of the BK channel increased with depolarization of the membrane potential and with increasing cytosolic Ca2+. TEA (20 mm), charybdotoxin (100 nm) and Ba2+ (1 mm) but not amiloride (1 mm) reduced P o from the extracellular side. In contrast, external flufenamic acid (100 μm) increased P o and this effect was inhibited by charybdotoxin (100 nm). Flufenamic acid inhibited the inward short-circuit current measured by the vibrating probe and caused a transient outward current. We conclude that the NSC channel is Ca2+ activated, voltage-insensitive and involved in both constitutive K+ and Na+ reabsorption from endolymph while the BK channel might participate in the K+ pathway under stimulated conditions that produce an elevated intracellular Ca2+ or depolarized membrane potential. Received: 14 October 1999/Revised: 10 December 1999  相似文献   

14.
Properties of large conductance Ca2+-activated K+ channels were studied in the soma of motoneurones visually identified in thin slices of neonatal rat spinal cord. The channels had a conductance of 82 ± 5 pS in external Ringer solution (5.6 mm K+ o //155 mm K+ i ) and 231 ± 4 pS in external high-K o solution (155 mm K+ o //155 mm K+ i ). The channels were activated by depolarization and by an increase in internal Ca2+ concentration. Potentials of half-maximum channel activation (E50) were −13, −34, −64 and −85 mV in the presence of 10−6, 10−5, 10−4 and 10−3 m internal Ca2+, respectively. Using an internal solution containing 10−4 m Ca2+, averaged KCa currents showed fast activation within 2–3 msec after a voltage step to +50 mV. Averaged KCa currents did not inactivate during 400 msec voltage pulses. External TEA reduced the apparent single-channel amplitude with a 50% blocking concentration (IC50) of 0.17 ± 0.02 mm. KCa channels were completely suppressed by externally applied 100 mm charybdotoxin. It is concluded that KCa channels activated by Ca2+ entry during the action potential play an important role in the excitability of motoneurones. Received: 7 November 1996/Revised: 29 October 1997  相似文献   

15.
Effects of the extracellular Ca2+ concentration ([Ca2+] o ) on whole cell membrane currents were examined in mouse osteoclastic cells generated from bone marrow/stromal cell coculture. The major resting conductance in the presence of 1 mm Ca2+ was mediated by a Ba2+-sensitive, inwardly rectifying K+ (IRK) current. A rise in [Ca2+] o (5–40 mm) inhibited the IRK current and activated an 4,4′-diisothiocyano-2,2′-stilbenedisulfonate (DIDS)-sensitive, outwardly rectifying Cl (ORCl) current. The activation of the ORCl current developed slowly and needed higher [Ca2+] o than that required to inhibit the IRK current. The inhibition of the IRK current consisted of two components, initial and subsequent late phases. The initial inhibition was not affected by intracellular application of guanosine 5′-O-(3-thiotriphosphate) (GTPγS) or guanosine 5′-O-(2-thiodiphosphate) (GDPβS). The late inhibition, however, was enhanced by GTPγS and attenuated by GDPβS, suggesting that GTP-binding proteins mediate this inhibition. The activation of the ORCl current was suppressed by pretreatment with pertussis toxin, but not potentiated by GTPγS. An increase in intracellular Ca2+ level neither reduced the IRK current nor activated the ORCl current. Staurosporine, an inhibitor for protein kinase C, did not modulate the [Ca2+] o -induced changes in the IRK and ORCl conductances. These results suggest that high [Ca2+] o had a dual action on the membrane conductance of osteoclasts, an inhibition of an IRK conductance and an activation of an ORCl conductance. The two conductances modulated by [Ca2+] o may be involved in different phases of bone resorption because they differed in Ca2+ sensitivity, temporal patterns of changes and regulatory mechanisms. Received: 28 May 1996/Revised: 28 January 1997  相似文献   

16.
The current-voltage (I/V) profiles of Ventricaria (formerly Valonia) membranes were measured at a range of external potassium concentrations, [K+] o , from 0.1 to 100 mm. The conductance-voltage (G/V) characteristics were computed to facilitate better resolution of the profile change with time after exposure to different [K+] o . The resistance-voltage (R/V) characteristics were computed to attempt resolution of plasmalemma and tonoplast. Four basic electrophysiological stages emerged: (1) Uniform low resistance between −60 and +60 mV after the cell impalement. (2) High resistance between +50 and +150 for [K+] o from 0.1 to 1.0 mm and hypotonic media. (3) High resistance between −150 and −20 mV for [K+] o of 10 mm (close to natural seawater) and hypertonic media. (4) High resistance between −150 and +170 mV at [K+] o of 100 mm. The changes between these states were slow, requiring minutes to hours and sometimes exhibiting spontaneous oscillations of the membrane p.d. (potential difference). Our analysis of the I/V data supports a previous hypothesis, that Ventricaria tonoplast is the more resistive membrane containing a pump, which transports K+ into the vacuole to regulate turgor. We associate state (1) with the plasmalemma conductance being dominant and the K+ pump at the tonoplast short-circuited probably by a K+ channel, state (2) with the K+ pump ``off' or short-circuited at p.d.s more negative than +50 mV, state (3) with the K+ pump ``on,' and state (4) with the pump dominant, but affected by high K+. A model for the Ventricaria membrane system is proposed. Received: 5 November 1998/Revised: 11 May 1999  相似文献   

17.
To assess the activation of the charybdotoxin-insensitive K+ channel responsible for Regulatory Volume Decrease (RVD) after substantial volume increases, we measured intracellular pH (pH i ), intracellular calcium ([Ca2+] i ) and inhibitors of kinases and phosphoprotein phosphatases in guinea pig jejunal villus enterocytes in response to volume changes. Fluorescence spectroscopy was used to measure pH i and [Ca2+] i of cells in suspension, loaded with 2,7,bis-carboxyethyl-5-6-carboxyfluorescein and Indo-1, respectively, and cell volume was assessed using electronic cell sizing. A modest 7% volume increase or substantial 15 to 20% volume increase caused [Ca2+] i to increase proportionately but the 7% increase caused alkalinization while the larger increases resulted in acidification of ≃0.14 pH units. Following a 15% volume increase, 1-N-0-bis (5-isoquinoline-sulfonyl)-N-methyl-l-4-phenyl-piperazine (KN-62, 50 μm), an inhibitor of Ca2+/calmodulin kinase II, blocked RVD. Gramicidin (0.5 μm) bypassed this inhibition suggesting that the K+ channel had been affected by the KN-62. RVD after a modest 7% volume increase was not influenced by KN-62 unless the cell was acidified. Okadaic acid, an inhibitor of phosphoprotein phosphatases 1 and 2A, accelerated RVD after a 20% volume increase; inhibition of RVD generated by increasing the K+ gradient was bypassed by okadaic acid. Tyrosine kinase inhibitor, genistein (100 μm) had no effect on RVD after 20% volume increases. We conclude that activation of charybdotoxin-insensitive K+ channels utilized for RVD after substantial (>7%) `nonphysiological' volume increases requires phosphorylation mediated by Ca2+/calmodulin kinase II and that increases in cytosolic acidification rather than larger increases in [Ca2+] i are a critical determinant of this activation. Received: 30 March 1999/Revised: 6 July 1999  相似文献   

18.
Isoproterenol (IPR) and 8-(4-chlorophenylthio)-cyclic AMP (cpt-cAMP) enhanced carbachol (CCh)-induced fluid secretion from rat parotid glands, but had no effect by themselves. The enhancement by IPR was blocked by propranolol. In dispersed parotid acinar cells, IPR and cpt-cAMP potentiated CCh-induced K+ and Cl currents (I K and I Cl). IPR at the concentration of 0.1 μm significantly potentiated the CCh-induced increase in intracellular Ca2+ concentration ([Ca2+] i ), but 1 mm cpt-cAMP did not. The incidence of the potentiation by IPR in CCh-induced Mn2+ entry was 31% and that by cpt-cAMP was 21%. The potentiation by IPR in the ionic currents and the [Ca2+] i was suppressed by propranolol. These results suggest that the CCh-induced fluid secretion from rat parotid glands is enhanced by IPR through the potentiation of I K and I Cl mainly by the increased cyclic AMP level and partially by the potentiated Ca2+ influx and [Ca2+] i increase, and that IPR is more effective than cpt-cAMP in the enhancement of the CCh-induced [Ca2+] i increase. Received: 6 October 1997/Revised: 16 April 1998  相似文献   

19.
The K+ channel KCNQ1 (KVLQT1) is a voltage-gated K+ channel, coexpressed with regulatory subunits such as KCNE1 (IsK, mink) or KCNE3, depending on the tissue examined. Here, we investigate regulation and properties of human and rat KCNQ1 and the impact of regulators such as KCNE1 and KCNE3. Because the cystic fibrosis transmembrane conductance regulator (CFTR) has also been suggested to regulate KCNQ1 channels we studied the effects of CFTR on KCNQ1 in Xenopus oocytes. Expression of both human and rat KCNQ1 induced time dependent K+ currents that were sensitive to Ba2+ and 293B. Coexpression with KCNE1 delayed voltage activation, while coexpression with KCNE3 accelerated current activation. KCNQ1 currents were activated by an increase in intracellular cAMP, independent of coexpression with KCNE1 or KCNE3. cAMP dependent activation was abolished in N-terminal truncated hKCNQ1 but was still detectable after deletion of a single PKA phosphorylation motif. In the presence but not in the absence of KCNE1 or KCNE3, K+ currents were activated by the Ca2+ ionophore ionomycin. Coexpression of CFTR with either human or rat KCNQ1 had no impact on regulation of KCNQ1 K+ currents by cAMP but slightly shifted the concentration response curve for 293B. Thus, KCNQ1 expressed in Xenopus oocytes is regulated by cAMP and Ca2+ but is not affected by CFTR. Received: 13 December 2000/Revised: 30 March 2001  相似文献   

20.
Rodent lens connexin46 (rCx46) formed active voltage-dependent hemichannels when expressed in Xenopus oocytes. Time-dependent macroscopic currents were evoked upon depolarization. The observed two activation time constants were weakly voltage-dependent and in the order of hundreds of milliseconds and seconds, respectively. Occasionally, the macroscopic steady-state current and the corresponding current-voltage curve showed inactivation at high depolarizing voltages (>+50 mV). To account for the fast recovery from inactivation (<2 msec) favored by hyperpolarization, a four-state kinetic model (C 1 closed C 2 closed O open I inactivated ) is proposed. In the absence of inactivation, the macroscopic conductance decreased and inactivation became visible at voltages positive of +50 mV when the rCx46-expressing oocytes were treated with the protein-kinase-C-activators OAG or TPA, high external concentrations of Ca2+ or H+. However, the underlying mechanisms of OAG, H+ or Ca2+ action were different. While OAG did not alter the voltage-dependent activation of the rCx46-hemichannels, an increase in the external Ca2+ or H+ level shifted the voltage threshold for activation to more positive voltages. In contrast to Ca2+, protons were not effective in the physiological concentration range. We propose that under physiological conditions only external Ca2+ and intracellular PKC-dependent processes regulate rCx46 in the lens. Received: 30 March 1999/Revised: 18 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号