首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micronuclei are formed from chromosomes and chromosomal fragments that lag behind in anaphase and are left outside daughter nuclei in telophase. They may also be derived from broken anaphase bridges. Nuclear buds, micronucleus-like bodies attached to the nucleus by a thin nucleoplasmic connection, have been proposed to be generated similarly to micronuclei during nuclear division or in S-phase as a stage in the extrusion of extra DNA, possibly giving rise to micronuclei. To better understand these phenomena, we have characterized the contents of 894 nuclear buds and 1392 micronuclei in normal and folate-deprived 9-day cultures of human lymphocytes using fluorescence in situ hybridization with pancentromeric and pantelomeric DNA probes. Such information has not earlier been available for human primary cells. Surprisingly, there appears to be no previous data on the occurrence of telomeres in micronuclei (or buds) of normal human cells in general. Our results suggest that nuclear buds and micronuclei have partly different mechanistic origin. Interstitial DNA without centromere or telomere label was clearly more prevalent in nuclear buds (43%) than in micronuclei (13%). DNA with only telomere label or with both centromere and telomere label was more frequent in micronuclei (62% and 22%, respectively) than in nuclear buds (44% and 10%, respectively). Folate deprivation especially increased the frequency of nuclear buds and micronuclei harboring telomeric DNA and nuclear buds harboring interstitial DNA but also buds and micronuclei with both centromeric and telomeric DNA. According to the model we propose, that micronuclei in binucleate lymphocytes primarily derive from lagging chromosomes and terminal acentric fragments during mitosis. Most nuclear buds, however, are suggested to originate from interstitial or terminal acentric fragments, possibly representing nuclear membrane entrapment of DNA that has been left in cytoplasm after nuclear division or excess DNA that is being extruded from the nucleus.  相似文献   

2.
A micronucleus test in combination with fluorescent in situ hybridization (FISH) using telomere-, centromere-specific probes and 5S and 25S rDNA was used for a detailed analysis of the effects of gamma ray irradiation on the root tip meristem cells of barley, Hordeum vulgare (2n = 14). FISH with four DNA probes was used to examine the involvement of specific chromosomes or chromosome fragments in gamma ray-induced micronuclei formation and then to explain their origin. Additionally, a comparison of the possible origin of the micronuclei induced by physical and chemical treatment: maleic hydrazide (MH) and N-nitroso-N-methylurea (MNU) was done. The micronuclei induced by gamma ray could originate from acentric fragments after chromosome breakage or from whole lagging chromosomes as a result of a dysfunction of the mitotic apparatus. No micronuclei containing only centromeric signals were found. An application of rDNA as probes allowed it to be stated that 5S rDNA–bearing chromosomes are involved in micronuclei formation more often than NOR chromosomes. This work allowed the origin of physically- and chemically-induced micronuclei in barley cells to be compared: the origin of micronuclei was most often from terminal fragments. FISH confirmed its usefulness in the characterization of micronuclei content, as well as in understanding and comparing the mechanisms of the actions of mutagens applied in plant genotoxicity.  相似文献   

3.
The present study is a rare example of a detailed characterization of chromosomal aberrations by identification of individual chromosomes (or chromosome arms) involved in their formation in plant cells by using fluorescent in situ hybridization (FISH). In addition, the first application of more than 2 DNA probes in FISH experiments in order to analyse chromosomal aberrations in plant cells is presented. Simultaneous FISH with 5S and 25S rDNA and, after reprobing of preparations, telomeric and centromeric DNA sequences as probes, were used to compare the cytogenetic effects of 2 chemical mutagens: N-nitroso-N-methylurea (MNU) and maleic hydrazide (MH) on root tip meristem cells of Hordeum vulgare (2n=14). The micronucleus (MN) test combined with FISH allowed the quantitative analysis of the involvement of specific chromosome fragments in micronuclei formation and thus enabled the possible origin of mutagen-induced micronuclei to be explained. Terminal deletions were most frequently caused by MH and MNU. The analysis of the frequency of micronuclei with signals of the investigated DNA probes showed differences between the frequency of MH- and MNU-induced micronuclei with specific signals. The micronuclei with 2 signals, telomeric DNA and rDNA (5S and/or 25S rDNA), were the most frequently observed in the case of both mutagens, but with a higher frequency after treatment with MH (46%) than MNU (37%). Also, 10% of MH-induced micronuclei were characterized by the presence of only telomere DNA sequences, whereas there were almost 3-fold more in the case of MNU-induced micronuclei (28%). Additionally, by using FISH with the same probes, an attempt was made to identify the origin of chromosome fragments in mitotic anaphase.  相似文献   

4.
The short-term evolution of micronuclei derived from acentric fragments and whole chromosomes was studied in root tips of Vicia faba. Micronuclei were induced by X-rays (30 cGy and 120 cGy) and colchicine (10(-5) M and 3 X 10(-4) M). Frequencies of chromosome breakage or loss of micronuclei in interphase and mitotic cells were studied. The DNA content of micronuclei in interphase cells was also measured. Micronuclei derived from whole chromosome showed a higher probability to survive and to undergo mitotic condensation in synchrony with main nuclei than micronuclei derived from an acentric fragment. PCC (Premature Chromosome Condensation) was not observed for both types of micronuclei in Vicia faba, in contrast to the ones reported in mammalian cells in culture.  相似文献   

5.
Fluorescence in situ hybridization (FISH) with a telomeric peptide nucleic acid (PNA) probe was employed to analyze the induction of incomplete chromosome elements (ICE, i.e., unjoined or “open” chromosome elements with telomeric signal at only one end) and excess acentric fragments (i.e., in excess of fragments resulting from the formation of dicentric and ring chromosomes) by the methylating agent streptozotocin (STZ) in a Chinese hamster embryo (CHE) cell line. CHE cells were treated with 0–4 mM STZ and chromosomal aberrations were analyzed in the first mitosis after treatment using the telomeric probe. Centric (incomplete chromosomes) and acentric (terminal fragments) ICE were the only unstable chromosome-type aberrations induced by STZ in CHE cells. The induction of these aberrations exhibited a curvilinear concentration–response relationship. About 40% of the metaphases present in cell cultures treated with STZ contained one or more pairs of ICE. In STZ-treated cells, ICE were always observed as pairs consisting of an incomplete chromosome and a terminal fragment. Moreover, all of the excess acentric fragments induced by STZ were of terminal type. These results indicate that chromosomal incompleteness is a very common event following exposure to STZ and suggest that all of the excess acentric fragments induced by STZ originate from terminal deletions.  相似文献   

6.
X-ray-induced telomeric instability in Atm-deficient mouse cells   总被引:6,自引:0,他引:6  
The gene responsible for ataxia telangiectasia (AT) encodes ATM protein, which plays a major role in the network of a signal transduction initiated by double strand DNA breaks. To determine how radiation-induced genomic instability is modulated by the dysfunction of ATM protein, we examined radiation-induced delayed chromosomal instability in individual cell lines established from wild-type Atm(+/+), heterozygote Atm(+/-), and knock-out Atm(-/-) mouse embryos. The results indicate that Atm(-/-) mouse cells are highly susceptible to the delayed induction of telomeric instability and end-to-end chromosome fusions by radiation in addition to the elevated spontaneous telomeric instability detected by telomere fluorescence in situ hybridization (FISH). The telomeric instability was characterized by abnormal telomere FISH signals, including loss of the signals and the extra-chromosomal signals that were associated and/or not associated with chromosome ends, suggesting that Atm deficiency makes telomeres vulnerable to breakage. Thus, the present study shows that Atm protein plays an essential role in maintaining telomere integrity and prevents chromosomes from end-to-end fusions, indicating that telomeres are a target for the induction of genomic instability by radiation.  相似文献   

7.
A simplifying assumption made when calculating the probability of a chromosomal aberration resulting in a micronucleus is that virtually all radiation-induced micronuclei result from acentric fragments. In the present study we used antibodies to chromosomal centromeres (kinetochores) to determine the frequency of centric versus acentric micronuclei in normal human fibroblasts exposed to 6 Gy of 60Co gamma rays while they were in density-inhibited growth. Up to 14% of the micronuclei induced by this exposure contained one or more kinetochores; i.e., they were not composed of acentric chromatin. By deleting kinetochore-positive micronuclei from the analysis, and by reconstructing micronucleus frequencies based on the fraction of cells that had divided following radiation exposure, a direct comparison between micronuclei and acentric chromosome fragments was made. On that basis, the probability of an acentric fragment becoming a visible micronucleus in either daughter cell of a dividing pair was estimated to be about 0.6. The distribution of acentric fragments among mitotic cells conformed to Poisson expectation, while the distribution of micronuclei among daughter cells was significantly overdispersed. The phenomenon of overdispersion is discussed in connection with proposed cellular processes that effect a nonrandom segregation of acentric fragments.  相似文献   

8.
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.  相似文献   

9.
The aim of the study was to compare the spontaneous and ex vivo radiation-induced chromosomal damage in lymphocytes of untreated prostate cancer patients and age-matched healthy donors, and to evaluate the chromosomal damage, induced by radiotherapy, and its persistence. Blood samples from 102 prostate cancer patients were obtained before radiotherapy to investigate the excess acentric fragments and dicentric chromosomes. In addition, in a subgroup of ten patients, simple exchanges in chromosomes 2 and 4 were evaluated by fluorescent in situ hybridization (FISH), before the onset of therapy, in the middle and at the end of therapy, and 1 year later. Data were compared to blood samples from ten age-matched healthy donors. We found that spontaneous yields of acentric chromosome fragments and simple exchanges were significantly increased in lymphocytes of patients before onset of therapy, indicating chromosomal instability in these patients. Ex vivo radiation-induced aberrations were not significantly increased, indicating proficient repair of radiation-induced DNA double-strand breaks in lymphocytes of these patients. As expected, the yields of dicentric and acentric chromosomes, and the partial yields of simple exchanges, were increased after the onset of therapy. Surprisingly, yields after 1 year were comparable to those directly after radiotherapy, indicating persistence of chromosomal instability over this time. Our results indicate that prostate cancer patients are characterized by increased spontaneous chromosomal instability. This instability seems to result from defects other than a deficient repair of radiation-induced DNA double-strand breaks. Radiotherapy-induced chromosomal damage persists 1 year after treatment.  相似文献   

10.
Heterogeneity for the length of telomeric DNA sequences has been found among different mitotic chromosomes in several mammalian species. However, there are no studies reporting such heterogeneity in meiotic chromosomes. To analyse this heterogeneity we have performed fluorescence in situ hybridization with a telomeric (C(3)TA(2))(3) peptide nucleic acid (PNA) probe on spread metaphase chromosomes during both male mouse meiotic divisions. Our results show that independently of the meiotic division, telomeric DNA signals were always surrounded by DAPI-stained chromatin, even at centromeric regions. Moreover, we have found heterogeneity for the size of telomeric DNA signals among different chromosomes, between homologues, and even within a given chromosome. We discuss the functional significance of the location of telomeric DNA in condensed meiotic chromosomes, and then the possible origin for the different polymorphisms found.  相似文献   

11.
The long interstitial telomeric repeat sequence (ITRS) blocks located in the pericentromeric chromosomal regions of most of Chinese hamster chromosomes behave as hot spots for spontaneous and induced chromosome breakage and recombination. The DBD-FISH (DNA breakage detection-fluorescence in situ hybridization) procedure demonstrated that these ITRS are extremely sensitive to alkaline unwinding, being enriched in constitutive alkali-labile sites (ALS). To determine whether this chromatin modification occurs in other genomes with large ITRS that are not phylogenetically related to mammalian species, the grasshopper Pyrgomorpha conica was analyzed. We chose this species because, with conventional FISH, their chromosomes yield extremely small telomeric signals when probed with the (TTAGG)n polynucleotide, but large ITRS blocks as part of their pericentromeric constitutive heterochromatin. A high density of constitutive ALS was evidenced in the ITRS when intact meiotic cells or somatic cells were subjected to the DBD-FISH technique and probed with the specific telomeric DNA. DBD-FISH with simultaneous hybridization using telomeric and whole genome DNA probes showed that the ITRS tend to colocalize with areas of stronger signal from the whole genome probe. Nevertheless, the signal from the whole genome was more widespread than that from the ITRS, thus providing evidence that a high frequency of constitutive ALS was present in more than one DNA sequence type. Furthermore, stretched DNA fibers processed with DBD-FISH, revealed a distribution of telomeric sequences alternating interspersed with other possible highly repetitive DNA sequences. The abundance of ALS varied from one meiotic stage to another. Interestingly, most of the breakage and meiotic recombination in males takes place close to the constitutive heterochromatin, particularly enriched in ALS. These results provide further evidence of a particular, and possible universal, chromatin structure enriched in constitutive ALS at constitutive heterochromatic regions.  相似文献   

12.
Oligonucleotides were annealed to complementary sequences in fixed human metaphase chromosomes and extended with DNA polymerase. The newly synthesized fragments were labeled by incorporating bio-11-dUTP instead of TTP, and the sites of synthesis were detected by immunocytochemistry, using fluorochromes as the reporter molecules. We have obtained clear localization with oligonucleotides from alphoid (centromeric sequences), simple sequence (satellite) DNAs, a variety of Alu-dispersed repeated sequences, and oligonucleotides derived from the Tetrahymena and Trypanosoma telomere-specific sequences. The simple sequence and alphoid oligonucleotides gave results at least comparable to those obtained using the whole molecule as a probe for in situ hybridization, whereas the Alu oligonucleotides produced a diversity of results which depended on the absolute length and location of the oligonucleotide within the Alu sequence. The telomere-specific oligomers also produced a variety of results. The G-rich Trypanosoma oligomer and its complementary C-rich sequence produced strong telomeric signals and some interstitial signals on mouse chromosomes, but only weak telomeric signals on human chromosomes. The G-rich Tetrahymena oligomer produced detectable telomeric signals on human chromosomes. The technique appears to be a valuable extension of present tools for mapping and examining the organization of DNA sequences within chromosomes.  相似文献   

13.
Expression of the human T-cell leukemia virus type I (HTLV-I) Tax oncoprotein rapidly engenders DNA damage as reflected in a significant increase of micronuclei (MN) in cells. To understand better this phenomenon, we have investigated the DNA content of MN induced by Tax. Using an approach that we termed FISHI, fluorescent in situ hybridization and incorporation, we attempted to characterize MN with centric or acentric DNA fragments for the presence or absence of free 3'-OH ends. Free 3'-OH ends were defined as those ends accessible to in situ addition of digoxigenin-dUTP using terminal deoxynucleotidyl transferase. MN were also assessed for centromeric sequences using standard fluorescent in situ hybridization (FISH). Combining these results, we determined that Tax oncoprotein increased the frequency of MN containing centric DNA with free 3'-OH and decreased the frequency of MN containing DNA fragments that had incorporation-inaccessible 3'-ends. Recently, it has been suggested that intracellular DNA breaks without detectable 3'-OH ends are stabilized by the protective addition of telomeric caps, while breaks with freely detectable 3'-OH are uncapped and are labile to degradation, incomplete replication, and loss during cell division. Accordingly, based on increased detection of free 3'-OH-containing DNA fragments, we concluded that HTLV-I Tax interferes with protective cellular mechanism(s) used normally for stabilizing DNA breaks.  相似文献   

14.
Using a human lymphoblastoid cell line WTK-1, we applied multicolor fluorescence in situ hybridization (mFISH) technique to analyze mitomycin C (MMC)-induced chromatid exchanges, focusing especially on the triradial chromosomes. It was found that the triradial chromosomes were formed with a specific rearrangement, "recipient and donor" relationship. The exchange sites of the recipient chromosomes were on single chromatid breaks and distributed randomly throughout the interstitial, pericentromeric, and terminal regions. In counterpart, donor chromosomes exchanged on isochromatid breaks of their telomeric and/or subtelomeric regions with the single chromatid breaks of recipient chromosomes. More than 80% of the scored triradial chromosomes were formed with such rearrangements, and few acentric chromosome fragments derived from the donor chromosomes could be detected in the metaphases observed. We therefore suggest that biological mechanisms of breakages between the recipient and donor chromosomes are different: the former due to direct DNA-damage by MMC, but the latter due to indirect DNA-damage depending on telomeric specific structure/function.  相似文献   

15.
Chung HW  Kang SJ  Kim SY 《Mutation research》2002,516(1-2):49-56
The cytokinesis-block micronucleus (CBMN) assay has emerged as one of the preferred methods for assessing chromosome damage. Micronuclei (MN) are small, extranuclear bodies that are formed in mitosis from acentric chromosomal fragments or chromosomes that are not included in each daughter nucleus. Thus, MN contain either chromosomal fragments or whole chromosomes. The CBMN assay, together with a fluorescence in situ hybridization (FISH) technique using specific centromeric probes for chromosomes 7 and 8, were employed in mitogen-stimulated human lymphocytes pretreated with the benzene metabolite, 1,2,4-benzenetriol (BT). Treatment of human lymphocytes resulted in the induction of MN in a dose-dependent manner. The frequency of MN in control lymphocytes was 4.5 per 1000 binucleated (BN) cells and this increased to 9.5, 14, 28 and 40 per 1000 BN cells at 10, 25, 50 and 100 microM BT, respectively. The frequency of aneuploidy 7 and 8 in BN cells also increased at each concentration. Aneuploidy 8 was more frequent than aneuploidy 7, suggesting that chromosome 8 is more sensitive to aneuploidy induction by BT. The frequency of MN containing centromere positive signals for chromosomes 7 and 8 increased with the concentration of BT. The frequency of MN with centromere positive signals was higher for chromosome 8 than for chromosome 7, also suggesting a greater sensitivity of chromosome 8 to this agent. These results suggest that combined application of the CBMN assay with a FISH technique, using chromosome-specific centromeric probes, would allow the detection of aneuploidy in human lymphocytes and identify the mechanistic origin of MN induced by a clastogen or aneugen.  相似文献   

16.
S Marín  A Martín  F Barro 《Génome》2008,51(8):580-588
Hordeum chilense Roem. et Schult. (2n = 14) is an autogamous wild barley from Chile and Argentina included in the section Anisolepis Nevski. This species shows interesting agronomic traits that can be incorporated into crop plant species. Hordeum chilense has been successfully crossed with species of the genus Aegilops. Among the amphiploids obtained, the hexaploid tritordeum (2n = 6x = 42, AABBHchHch) is outstanding and shows good agronomic characteristics, suggesting its potential either as a new crop or as a bridge species to introgress interesting traits into cultivated cereals. The aim of the present work was to study the hybridization patterns of the two repetitive DNA probes pAs1 and pSc119.2 to evaluate their utility for the identification of H. chilense chromosomes. Fourteen lines of H. chilense were analyzed with fluorescent in situ hybridization using probes pSc119.2 and pAs1. The probe pAs1 was more widely dispersed than pSc119.2 over the H. chilense (Hch) genome. We found 89 different signals for pAs1, distributed evenly over the whole genome, and 10 for pSc119.2, located mainly over the telomeric regions. Five distinct hybridization signals were found for pAs1 and four distinct signals for pSc119.2. These signals allow the identification of different H. chilense lines. For example, centromeric signals for pAs1 on the short arms of chromosomes 1 and 7 identify line H46, and a telomeric signal for pSc119.2 on the short arm of chromosome 2 identifies line H1. A high degree of polymorphism in the hybridization patterns was found, confirming the extensive variability present in H. chilense. This work provides tools for the identification of H. chilense chromosomes in different genetic backgrounds.  相似文献   

17.
BACKGROUND: Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis. RESULTS: Using GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6-8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus. CONCLUSIONS: These data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells.  相似文献   

18.
To assess why during in vitro aging of fibroblasts the maintenance of chromosomal stability is effective or occasionally fails, a detailed cytogenetic analysis was performed in normal human IMR-90 fetal lung fibroblasts. The onset of senescence was inferred from proliferation activity, expression pattern of cell cycle regulating proteins, activity of β-galactosidase, and morphological features. Over the period of proliferation, a moderate increase of non-transmissible structural chromosomal aberrations was observed. In addition, using fluorescence in situ hybridization (mFISH and mBAND) techniques, we detected clonally expanding translocations in up to 70% of the analyzed metaphases, all involving one homolog of chromosome 9 as an acceptor. Notably, chromosomes are randomly involved as donor-chromosomes of the translocated terminal acentric fragments. These fragments result from duplication because the donor chromosomes are apparently unchanged. Interstitial telomeric signals were detectable at fusion sites, most likely belonging to chromosome 9. Quantitative fluorescence in situ hybridization (QFISH) detecting telomere sequences, followed by mFISH technique revealed that already in young cells the respective telomeres of one chromosome 9 were particularly short. For the first time, we have observed dysfunctional telomeres of one specific chromosome in normal human cells that have been stabilized by duplicated terminal sequences.  相似文献   

19.
The yield of radiation-induced micronuclei in human lymphocytes was assessed by two methods, i.e., by incorporating bromodeoxyuridine or by inhibiting cytokinesis by cytochalasin for identification of cells which have undergone one cell division. The cytochalasin block method was found to be more efficient with a capacity to detect between 60 and 90% of the induced fragments. Dose-response characteristics and the results of fractionation experiments indicate that the yield of micronuclei reflects both classes of acentric fragments, i.e., those associated and independent of exchange type of aberrations.  相似文献   

20.
Cytogenetic screening of the androgenetic brook trout (Salvelinus fontinalis, Mitchill 1814) offspring hatched from eggs exposed to 420 Gy of X-radiation before insemination exhibited residues of the irradiated maternal nuclear genome in the form of small chromosome fragments. Remnants of the irradiated chromosomes had different sizes, and their number varied intraindividually from 1 to 15. To efficiently pass through the series of the cell divisions, such chromosome fragments must have had functional kinetochores. Distribution patterns of the telomeric hybridization signals on the chromosome fragments enabled us to distinguish their 3 groups: (i) telomere-less ring chromosomes with fused broken chromosome arms, (ii) rings formed in the course of fusion of the radiation-broken chromosome arm with the opposite telomeric region and exhibiting interstitial telomeric signals at the fusion point, and (iii) chromosome fragments with fused unprotected sister chromatids of 1 broken arm and intact telomeres from the other arm. Disturbances during segregation of such fragments, mainly breakages during anaphase, may partially explain intraindividual variation in the number and size of the chromosome fragments observed in the androgenetic brook trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号