首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
Rubisco活化酶的研究进展   总被引:8,自引:0,他引:8  
韩鹰  陈刚  王忠 《植物学通报》2000,17(4):306-331
Rubisco活化酶是近年中发现的一种可以调节Rubisco活性的酶 ,它能使Rubisco在植株体内条件下达到最大活化程度。Rubisco活化酶不仅具有活化Rubisco的活性 ,而且具有ATP水解酶活性。在ATP水解过程中 ,Rubisco活化酶促使各种磷酸糖抑制物从Rubisco上解离下来 ,恢复Rubisco活性。Rubisco活化酶的发现与研究使许多Rubisco体内活化中的疑难问题得到了阐明。本文还介绍了Rubisco活化酶的分子特性、酶作用机制以及环境因素对它活性影响等方面的最新研究进展。  相似文献   

2.
Rubisco活化酶的分子生物学   总被引:4,自引:0,他引:4  
Rubisco活化酶是广泛存在于光合生物中、调节Rubisco活性的酶,Rubisco活化酶同时具有活化Rubisco和催化ATP水解的作用.它依赖ATP水解,促使RuBP或其它磷酸糖类从Rubisco上解离下来,以恢复Rubisco的活性.该文介绍Rubisco活化酶的分子特性、作用机制、光合作用调节及基因工程的最新研究进展.  相似文献   

3.
烟草Rubisco活化酶的纯化及其特性   总被引:2,自引:0,他引:2  
利用35%饱和硫酸铵分部、DEAE-Sephacel和FPIC-MonoQ柱层析等步骤从烟草叶片中纯化了Rubisco活化酶,并制备了其专一性抗体。此法不仅快速,而且比活力高。以往认为菠菜和拟南芥Rubisco活化酶由两种亚基组成。通过快速制备的粗提液分析.发现烟草Rubisco活化酶由一种42kD的亚基组成。即使在有多种蛋白酶抑制剂存在的情况下,此亚基仍很易降解为39kD的亚基。ATP不仅对酶的活性所必需,而且也有利于维持酶的稳定性。该酶的热稳定性远比Rubisco差。  相似文献   

4.
植物Rubisco活化酶的研究进展   总被引:2,自引:0,他引:2  
植物Rubisco活化酶广泛存在于光合生物中,是AAA+家族成员,具有ATP酶活性,并具有对温度反应的活化Rubisco和分子伴侣的双重功能。该文重点介绍了近年来对Rubisco活化酶的分子特性、作用机制、温度等因子的影响及基因工程研究的最新进展。  相似文献   

5.
水稻 (OryzasativaL .)转绿型白化突变系W2 5在转绿过程中叶绿素、可溶性蛋白质和Rubisco含量的动态变化过程表明 ,白化突变体内叶绿素、可溶性蛋白质和Rubisco含量极低 ,随着转绿过程各组分含量迅速提高 ,转绿至第 30天时超过野生种 2 177s;Rubisco初始活力与Rubisco活化酶含量呈极显著正相关。Rubisco活化酶基因表达的研究结果表明 ,突变体的Rubisco活化酶表达高于野生种 2 177s。在转绿过程中 ,Rubisco活化酶含量的提高要先于Rubisco和光合速率  相似文献   

6.
张国  李滨  邹琦 《植物学报》2005,22(3):313-319
Rubisco活化酶是广泛存在于光合生物中调节Rubisco活性的酶, 我们利用PCR技术, 从小麦(Triticum aestivum)叶片cDNA文库中克隆得到Rubisco活化酶基因cDNA片段, 该片段长度为850 bp, 编码201个氨基酸。Northern blot表明, 小麦叶片在暗诱导衰老的条件下, 叶片中活化酶基因表达水平逐渐下降; 同时, 小麦叶片的光合特性、叶绿素含量和Rubisco活性呈现下降趋势。这些结果表明, 衰老时小麦叶片Rubisco活化酶基因表达水平下降与光合速率下降密切相关。  相似文献   

7.
小麦Rubisco活化酶基因的克隆和表达特性   总被引:3,自引:0,他引:3  
张国  李滨  邹琦 《植物学通报》2005,22(3):313-319
Rubisco活化酶是广泛存在于光合生物中调节Rubisco活性的酶,我们利用PCR技术,从小麦(Triticum aestivum)叶片cDNA文库中克隆得到Rubisco活化酶基因cDNA片段,该片段长度为850 bp,编码201个氨基酸.Northern blot表明,小麦叶片在暗诱导衰老的条件下,叶片中活化酶基因表达水平逐渐下降;同时,小麦叶片的光合特性、叶绿素含量和Rubisco活性呈现下降趋势.这些结果表明,衰老时小麦叶片Rubisco活化酶基因表达水平下降与光合速率下降密切相关.  相似文献   

8.
Rubisco活化酶的研究进展   总被引:5,自引:0,他引:5  
唐如航  李立人 《生命科学》1998,10(4):159-163,166
Rubisco活化酶是最近发现的一种该编码的叶绿体蛋白,它在叶绿体内具有激活光合碳同化限速酶Rubisco的功能,该酶能在生理水平RuBP,CO2浓度(10μmol/L)下使Rubisco达到最大的活化程度,Rubisco活化酶的研究揭示了长期以来未能解决的Rubisco在体内活化的机理,Rubisco活化酶能解除磷酸糖对Rubisco活性的抑制作用,它的活化活性需要有ATP的存在,同时它有ATP  相似文献   

9.
水稻Rubisco和RCA的日变化及其细胞定位   总被引:7,自引:0,他引:7  
采用免疫胶体金标记电镜技术对水稻(Oryza satova subsp.indica cv.浙农952)叶片中的Rubisco及其活化酶(RCA)进行细胞器定位和定量,同时用免疫扩散法进行叶片含量分析,研究了这两种酶含量及活力的日变化。结果表明Rubisco主要分布于叶绿体,RCA分布于叶绿体和线粒体中;光合速率(Pn)、Rubisco初始活力和RCA活力与光合日变化密切相关;在光照最强的13时,出现光合“午休”,叶绿体中Rubisco的密度有一定程度降低,而全叶的总Rubisco保持稳定,Rubisco初始活力也有明显的“午休”,这意味着体内Rubisco的活力除受RCA调节外,可能还与叶绿体中Rubisco的分布有关。RCA活力变化与叶绿体中RCA含量变化较为一致,表明RCA在叶绿体中的分布对调节其本身活力和Rubisco活性有重要作用。  相似文献   

10.
光和糖对水稻Rubisco活化酶基因表达的影响   总被引:1,自引:0,他引:1  
水稻黄化苗在光照2h内其Rubisco。活化酶的mRNA和蛋白量明显增加,然后维持在相对稳定的水平。光对水稻Rubisco活化酶的基因表达的诱导作用主要在转录水平上。Rubisco活化酶主要在绿叶中表达,这与Rubisco基因表达的器官特异性完全一致。用等渗葡萄糖喂养成熟的水稻叶片1h,促使水稻Rubisco大、小亚基和Rubisco活化酶可翻译mRNA含量下降。同样蔗糖对Rubisco小亚基和Rubisco活化酶的表达也有抑制,其作用弱于葡萄糖。  相似文献   

11.
Adenosine triphosphate hydrolysis by purified rubisco activase   总被引:15,自引:0,他引:15  
Activation of ribulose bisphosphate carboxylase/oxygenase (rubisco) in vivo is mediated by a specific protein, rubisco activase. In vitro, activation of rubisco by rubisco activase is dependent on ATP and is inhibited by ADP. Purified rubisco activase hydrolyzed ATP with a specific activity of 1.5 mumol min-1 mg-1 protein, releasing approximately stoichiometric amounts of ADP and Pi. Hydrolysis was highly specific for ATP-Mg and had a broad pH optimum, with maximum activity at pH 8.0-8.5. ATPase activity was inhibited by ADP but not by molybdate, vanadate, azide, nitrate, or fluoride. Addition of rubisco in either the inactive or activated form had no significant effect on ATPase activity. Incubation of rubisco activase in the absence of ATP resulted in loss of both ATPase and rubisco activation activities. Both activities were also heat labile, with 50% loss in activity after 5 min at 38 degrees C and complete inhibition following treatment at 43 degrees C. Both activities showed a sigmoidal response to ATP concentration, with half-maximal activity at 0.053 mM ATP. Rubisco activation activity was dependent on the concentrations of both ATP and ADP. The results suggest that ATPase activity is an intrinsic property of rubisco activase.  相似文献   

12.
The effect of polyethylene glycol (PEG) on the enzymatic and physical properties of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase was examined. In the presence of PEG, Rubisco activase exhibited higher ATPase and Rubisco activating activities, concomitant with increased apparent affinity for ATP and Rubisco. Specific ATPase activity, which was dependent on Rubisco activase concentration, was also higher in the presence of Ficoll, polyvinylpyrrolidone, and bovine serum albumin. The ability of Rubisco activase to facilitate dissociation of the tight-binding inhibitor 2-carboxyarabinitol 1-phosphate from carbamylated Rubisco was also enhanced in the presence of PEG. Mixing experiments with Rubisco activase from two different sources showed that tobacco Rubisco activase, which exhibited little activation of spinach Rubisco by itself, was inhibitory when included with spinach Rubisco activase. Polyethylene glycol improved the ability of tobacco and a mixture of tobacco plus spinach Rubisco activase to activate spinach Rubisco. Estimates based on rate zonal sedimentation and gel-filtration chromatography indicated that the apparent molecular mass of Rubisco activase was two- to fourfold higher in the presence of PEG. The increase in apparent molecular mass was consistent with the propensity of solvent-excluding reagents like PEG to promote self-association of proteins. Likewise, the change in enzymatic properties of Rubisco activase in the presence of PEG and the dependence of specific activity on protein concentration resembled changes that often accompany self-association. For Rubisco activase, high concentrations of protein in the chloroplast stroma would provide an environment conducive to self-association and cause expression of properties that would enhance its ability to function efficiently in vivo.  相似文献   

13.
Heat stress inhibits photosynthesis by reducing the activation of Rubisco by Rubisco activase. To determine if loss of activase function is caused by protein denaturation, the thermal stability of activase was examined in vitro and in vivo and compared with the stabilities of two other soluble chloroplast proteins. Isolated activase exhibited a temperature optimum for ATP hydrolysis of 44 degrees C compared with > or =60 degrees C for carboxylation by Rubisco. Light scattering showed that unfolding/aggregation occurred at 45 degrees C and 37 degrees C for activase in the presence and absence of ATPgammaS, respectively, and at 65 degrees C for Rubisco. Addition of chemically denatured rhodanese to heat-treated activase trapped partially folded activase in an insoluble complex at treatment temperatures that were similar to those that caused increased light scattering and loss of activity. To examine thermal stability in vivo, heat-treated tobacco (Nicotiana rustica cv Pulmila) protoplasts and chloroplasts were lysed with detergent in the presence of rhodanese and the amount of target protein that aggregated was determined by immunoblotting. The results of these experiments showed that thermal denaturation of activase in vivo occurred at temperatures similar to those that denatured isolated activase and far below those required to denature Rubisco or phosphoribulokinase. Edman degradation analysis of aggregated proteins from tobacco and pea (Pisum sativum cv "Little Marvel") chloroplasts showed that activase was the major protein that denatured in response to heat stress. Thus, loss of activase activity during heat stress is caused by an exceptional sensitivity of the protein to thermal denaturation and is responsible, in part, for deactivation of Rubisco.  相似文献   

14.
Mechanism for deactivation of Rubisco under moderate heat stress   总被引:4,自引:0,他引:4  
Photosynthesis is particularly sensitive to direct inhibition by heat stress. This inhibition is closely associated with the inactivation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). To develop a more complete understanding of the mechanism of inactivation of Rubisco under moderate heat stress, various aspects of the process were examined both in vivo and in vitro. Experiments with isolated Rubisco revealed that the rate of synthesis of the catalytic misfire product, xylulose-1,5-bisphosphate, increased with temperature. Activated Rubisco, produced by reaction with activase at a control temperature of 25°C or by incubation with high CO2, deactivated when the temperature of the reaction exceeded temperatures that were equivalent to the optimum for activase adenosine triphosphatase (ATPase) activity. Measurements of the activation state of Rubisco in cotton and tobacco leaves showed that Rubisco inactivated within 7 s of imposing a heat stress. Thus, elevated temperature had an opposite effect on the two processes that ultimately determine the activation state of Rubisco, decreasing activase activity but stimulating the catalytic misfire reaction that inactivates Rubisco. These data support a mechanism for the inactivation of Rubisco at high temperature involving an inability of activase to overcome the inherently faster rates of Rubisco inactivation. That the net effect of elevated temperatures on Rubisco activation is similar both in vivo and under controlled conditions in vitro argues for a direct effect of temperature on the activation of Rubisco by activase and against the proposal that the deactivation of Rubisco under moderate heat stress is a secondary consequence of perturbations in the thylakoid membrane.  相似文献   

15.
When desalted extracts of soluble protein from dark-adaptedwheat leaves were assayed for ribulose-1, 5-bisphosphate carboxylase/oxygenase(Rubisco) activase activity in the presence of 1 mM ATP andan ATP-regenerating system, very little ATP-dependent activationof RuBP-inactivated Rubisco was found. In extracts from light-adaptedleaves a very similar pattern of Rubisco activation was observedexcept that the overall level of Rubisco activity was much lowerthan in the extracts from dark-adapted leaves. These featureswere apparent both at low (120µg per ml) and high (640µg per ml) protein concentrations. We were unable to demonstrateRubisco activase activity in crude leaf extracts. Consequently,in order to establish that Rubisco activase was present in wheatleaf extracts the wheat leaf protein was purified to homogeneity.The identity of the protein was confirmed with antibodies tothe spinach enzyme, ATPase activity and activase-mediated releaseof the inhibitor, carboxyara-binitol-1-phosphate (CA1P) fromthe tertiary Rubisco complex. The pure wheat Rubisco activaserelieved the CA1P-induced inhibition of Rubisco activity. Rubiscoactivase had no significant effect on the affinity of wheatRubisco for the substrate, ribulose-1, 5-bisphosphate (RuBP). Key words: Rubisco activase, Rubisco, regulation  相似文献   

16.
Regulation of Rubisco activase and its interaction with Rubisco   总被引:2,自引:0,他引:2  
The large, alpha-isoform of Rubisco activase confers redox regulation of the ATP/ADP response of the ATP hydrolysis and Rubisco activation activities of the multimeric activase holoenzyme complex. The alpha-isoform has a C-terminal extension that contains the redox-sensitive cysteine residues and is characterized by a high content of acidic residues. Cross-linking and site-directed mutagenesis studies of the C-terminal extension that have provided new insights into the mechanism of redox regulation are reviewed. Also reviewed are new details about the interaction between activase and Rubisco and the likely mechanism of 'activation' that resulted from mutagenesis in a 'Sensor 2' domain of activase that AAA(+) proteins often use for substrate recognition. Two activase residues in this domain were identified that are involved in Rubisco recognition. The results directly complement earlier studies that identified critical residues for activase recognition in the large subunit of Rubisco.  相似文献   

17.
The ATPase activity and fluoresence of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activase were determined over a range of MgCl2, KCl, and activase concentrations. Both salts promoted ADP release from ATP and intrinsic fluorescence enhancement by adenosine 5[prime]-[[gamma]-thio] triphosphate, but Mg2+ was about 10 times more effective than K+. ATPase and fluorescence enhancement both increased from zero to saturation within the same Mg2+ and K+ concentration ranges. At saturating concentrations (5 mM Mg2+ and 22 mM K+), the specific activity of ATPase (turnover time, about 1 s) and specific intrinsic fluorescence enhancement were maximal and unaffected by activase concentration above 1 [mu]M activase; below 1 [mu]M activase, both decreased sharply. These responses are remarkably similar to the behavior of actin. Intrinsic fluorescence enhancement of Rubisco activase reflects the extent of polymerization, showing that the smaller oligomer or monomer present in low-salt and activase concentrations is inactive in ATP hydrolysis. However, quenching of 1-anilinonapthaline-8-sulfonate fluorescence revealed that ADP and adenosine 5[prime]-[[gamma]-thio] triphosphate bind equally well to activase at low- and high-salt concentrations. This is consistent with an actin-like mechanism requiring a dynamic equilibrium between monomer and oligomers for ATP hydrolysis. The specific activation rate of substrate-bound decarbamylated Rubisco decreased at activase concentrations below 1 [mu]M. This suggests that a large oligomeric form of activase, rather than a monomer, interacts with Rubisco when performing the release of bound ribulose-1,5-bisphosphate from the inactive enzyme.  相似文献   

18.
The discovery of Rubisco activase – yet another story of serendipity   总被引:1,自引:0,他引:1  
A brief history of Rubisco (ribulose bisphosphate carboxylase oxygenase) research and the events leading to the discovery and initial characterization of Rubisco activase are described. Key to the discovery was the chance isolation of a novel Arabidopsis photosynthesis mutant. The characteristics of the mutant suggested that activation of Rubisco was not a spontaneous process in vivo, but involved a heritable factor. The search for the putative factor by 2D electrophoresis identified two polypeptides, genetically linked to Rubisco activation, that were missing in chloroplasts from the mutant. An assay for the activity of these polypeptides, which were given the name Rubisco activase, was developed after realizing the importance of including ribulose bisphosphate (RuBP) in the assay. The requirement for ATP and the subsequent identification of activase as an ATPase came about fortuitously, the result of a RuBP preparation that was contaminated with adenine nucleotides. Finally, the ability of activase to relieve inhibition of the endogenous Rubisco inhibitor, 2-carboxyarabinitol 1-phosphate, provided an early indication of the mechanism by which activase regulates Rubisco. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Wang ZY  Portis AR 《Plant physiology》1992,99(4):1348-1353
Ribulose bisphosphate (RuBP), a substrate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is an inhibitor of Rubisco activation by carbamylation if bound to the inactive, noncarbamylated form of the enzyme. The effect of Rubisco activase on the dissociation kinetics of RuBP bound to this form of the enzyme was examined and characterized with the use of 3H-labeled RuBP and proteins purified from spinach (Spinacia oleracea L.) In the absence of Rubisco activase and in the presence of a large excess of unlabeled RuBP, the dissociation rate of bound [1-3H]RuBP was much faster after a short (30 second) incubation than after an extended incubation (1 hour). After 1 hour of incubation, the dissociation rate constant (Koff) of the bound RuBP was 4.8 × 10−4 per second, equal to a half-time of about 35 minutes, whereas the rate after only 30 seconds was too fast to be accurately measured. This time-dependent change in the dissociation rate was reflected in the subsequent activation kinetics of Rubisco in the presence of RuBP, CO2, and Mg2+, and in both the absence or presence of Rubisco activase. However, the activation of Rubisco also proceeded relatively rapidly without Rubisco activase if the RuBP level decreased below the estimated catalytic site concentration. High pH (pH 8.5) and the presence of Mg2+ in the medium also enhanced the dissociation of the bound RuBP from Rubisco in the presence of RuBP. In the presence of Rubisco activase, Mg2+, ATP (but not the nonhydrolyzable analog, adenosine-5′-O-[3-thiotriphosphate]), excess RuBP, and an ATP-regenerating system, the dissociation of [1-3H]RuBP from Rubisco was increased in proportion to the amount of Rubisco activase added. This result indicates that Rubisco activase-mediated hydrolysis of ATP is required for promotion of the enhanced dissociation of the bound RuBP from Rubisco. Furthermore, product analysis by ion-exchange chromatography demonstrated that the release of the bound RuBP, in an unchanged form, was considerably faster than the observed increase in Rubisco activity. Thus, RuBP dissociation was experimentally separated from activation and precedes the subsequent formation of active, carbamylated Rubisco during activation of Rubisco by Rubisco activase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号