首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed the cloning of the corresponding open reading frame (ORF), the first bacterial gene for a GeDH (geoA, for geraniol oxidation pathway). The C. defragrans geraniol dehydrogenase is a homodimeric enzyme that affiliates with the zinc-containing benzyl alcohol dehydrogenases in the superfamily of medium-chain-length dehydrogenases/reductases (MDR). The purified enzyme most efficiently catalyzes the oxidation of perillyl alcohol (k(cat)/K(m) = 2.02 × 10(6) M(-1) s(-1)), followed by geraniol (k(cat)/K(m) = 1.57 × 10(6) M(-1) s(-1)). Apparent K(m) values of <10 μM are consistent with an in vivo toxicity of geraniol above 5 μM. In the genetic vicinity of geoA is a putative aldehyde dehydrogenase that was named geoB and identified as a highly abundant protein during growth with phellandrene. Extracts of Escherichia coli expressing geoB demonstrated in vitro a geranial dehydrogenase (GaDH) activity. GaDH activity was independent of coenzyme A. The irreversible formation of geranic acid allows for a metabolic flux from β-myrcene via linalool, geraniol, and geranial to geranic acid.  相似文献   

2.
Starting from 6-chloropurine riboside and NAD+, different reactive analogues of NAD+ have been obtained by introducing diazoniumaryl or aromatic imidoester groups via flexible spacers into the nonfunctional adenine moiety of the coenzyme. The analogues react with different amino-acid residues of dehydrogenases and form stable amidine or azobridges, respectively. After the formation of a ternary complex by the coenzyme, the enzyme and a pseudosubstrate, the reactive spacer is anchored in the vicinity of the active site. Thus, the coenzyme remains covalently attached to the protein even after decomposition of the complex. On addition of substrates the covalently bound coenzyme is converted to the dihydro-form. In enzymatic tests the modified dehydrogenases show 80-90% of the specific activity of the native enzymes, but they need remarkably higher concentrations of free NAD+ to achieve these values. The dihydro-coenzymes can be reoxidized by oxidizing agents like phenazine methosulfate or by a second enzyme system. Various systems for coenzyme regeneration were investigated; the modified enzymes were lactate dehydrogenase from pig heart and alcohol dehydrogenase from horse liver; the auxiliary enzymes were alcohol dehydrogenase from yeast and liver, lactate dehydrogenase from pig heart, glutamate dehydrogenase and alanine dehydrogenase. Lactate dehydrogenase from heart muscle is inhibited by pyruvate. With alanine dehydrogenase as the auxiliary enzyme, the coenzyme is regenerated and the reaction product, pyruvate, is removed. This system succeeds to convert lactate quantitatively to L-alanine. The thermostability of the binary enzyme systems indicates an interaction of covalently bound coenzymes with both dehydrogenases; both binding sites seem to compete for the coenzyme. The comparison of dehydrogenases with different degrees of modifications shows that product formation mainly depends on the amount of incorporated coenzyme.  相似文献   

3.
Reported kinetic pH dependence data for alcohol dehydrogenase from Drosophila melanogaster are analyzed with regard to differences in rate behaviour between this non-metallo enzyme and the zinc-containing liver alcohol dehydrogenase present in vertebrates. For the Drosophila enzyme a mechanism of action is proposed according to which catalytic proton release to solution during alcohol oxidation occurs at the binary-complex level as an obligatory step preceding substrate binding. Such proton release involves an ionizing group with a pKa of about 7.6 in the enzyme.NAD+ complex, tentatively identified as a tyrosyl residue. The ionized form of this group is proposed to participate in the binding of alcohol substrates and to act as a nucleophilic catalyst of the subsequent step of hydride ion transfer from the bound alcohol to NAD+. Herein lie fundamental mechanistic differences between the metallo and non-metallo short chain alcohol dehydrogenases.  相似文献   

4.
We have been working to develop an enzymatic assay for the alcohol 2-methyl-3-buten-2-ol (232-MB), which is produced and emitted by certain pines. To this end we have isolated the soil bacterium Pseudomonas putida MB-1, which uses 232-MB as a sole carbon source. Strain MB-1 contains inducible 3-methyl-2-buten-1-ol (321-MB) and 3-methyl-2-buten-1-al dehydrogenases, suggesting that 232-MB is metabolized by isomerization to 321-MB followed by oxidation. 321-MB dehydrogenase was purified to near-homogeneity and found to be a tetramer (151 kDa) with a subunit mass of 37,700 Da. It catalyzes NAD+-dependent, reversible oxidation of 321-MB to 3-methyl-2-buten-1-al. The optimum pH for the oxidation reaction was 10.0, while that for the reduction reaction was 5.4. 321-MB dehydrogenase oxidized a wide variety of aliphatic and aromatic alcohols but exhibited the highest catalytic specificity with allylic or benzylic substrates, including 321-MB, 3-chloro-2-buten-1-ol, and 3-aminobenzyl alcohol. The N-terminal sequence of the enzyme contained a region of 64% identity with the TOL plasmid-encoded benzyl alcohol dehydrogenase of P. putida. The latter enzyme and the chromosomally encoded benzyl alcohol dehydrogenase of Acinetobacter calcoaceticus were also found to catalyze 321-MB oxidation. These findings suggest that 321-MB dehydrogenase and other bacterial benzyl alcohol dehydrogenases are broad-specificity allylic and benzylic alcohol dehydrogenases that, in conjunction with a 232-MB isomerase, might be useful in an enzyme-linked assay for 232-MB.  相似文献   

5.
Strawberry seeds are shown to contain at least two alcohol dehydrogenases; one is NAD specific and reacts with ethanol and allyl alcohol, and the other is NADP specific and reacts with benzyl alcohol and geraniol. These two alcohol dehydrogenases were distinguished on disc electrophoresis. Their properties were different each other in ammonium sulfate fractionation, optimum reaction pH and thermostability.  相似文献   

6.
Acyclic monoterpene primary alcohol:NADP+ oxidoreductase, a key enzyme in the biosynthesis of monoterpene alcohols in plants, is unstable and has been only poorly characterized. However we have established conditions which stabilize the enzyme from Rauwolfia serpentina cells, and then purified it to homogeneity. It is a monomer with a molecular weight of about 44,000 and contains zinc ions. Various branched-chain allylic primary alcohols such as nerol, geraniol, and 10-hydroxygeraniol were substrates, but ethanol was inert. The enzyme exclusively requires NADP+ or NADPH as the cofactor. Steady-state kinetic studies showed that the nerol dehydrogenation proceeds by an ordered Bi-Bi mechanism. NADP+ binds the enzyme first and then NADPH is the second product released from it. Gas chromatography-mass spectrometric analysis of the reaction products showed that 10-hydroxygeraniol undergoes a reversible dehydrogenation to produce 10-oxogeraniol or 10-hydroxygeranial, which are oxidized further to give 10-oxogeranial, the direct precursor of iridodial. The enzyme has been found to exclusively transfer the pro-R hydrogen of NADPH to neral. The N-terminal sequence of the first 21 amino acids revealed no significant homology with those of various other proteins including the NAD(P)(+)-dependent alcohol dehydrogenases registered in a protein data bank.  相似文献   

7.
F Fan  J A Lorenzen  B V Plapp 《Biochemistry》1991,30(26):6397-6401
In the three-dimensional structures of enzymes that bind NAD or FAD, there is an acidic residue that interacts with the 2'- and 3'-hydroxyl groups of the adenosine ribose of the coenzyme. The size and charge of the carboxylate might repel the binding of the 2'-phosphate group of NADP and explain the specificity for NAD. In the NAD-dependent alcohol dehydrogenases, Asp-223 (horse liver alcohol dehydrogenase sequence) appears to have this role. The homologous residue in yeast alcohol dehydrogenase I (residue 201 in the protein sequence) was substituted with Gly, and the D223G enzyme was expressed in yeast, purified, and characterized. The wild-type enzyme is specific for NAD. In contrast, the D223G enzyme bound and reduced NAD+ and NADP+ equally well, but, relative to wild-type enzyme, the dissociation constant for NAD+ was increased 17-fold, and the reactivity (V/K) on ethanol was decreased to 1%. Even though catalytic efficiency was reduced, yeast expressing the altered or wild-type enzyme grew at comparable rates, suggesting that equilibration of NAD and NADP pools is not lethal. Asp-223 participates in binding NAD and in excluding NADP, but it is not the only residue important for determining specificity for coenzyme.  相似文献   

8.
The L-(+)-lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) of Streptococcus lactis C10, like that of other streptococci, was activated by fructose 1,6-diphosphate (FDP). The enzyme showed some activity in the absence of FDP, with a pH optimum of 8.2; FDP decreased the Km for both pyruvate and reduced nicotinamide adenine dinucleotide (NADH) and shifted the pH optimum to 6.9. Enzyme activity showed a hyperbolic response to both NADH and pyruvate in all the buffers tried except phosphate buffer, in which the response to increasing NADH was sigmoidal. The FDP concentration required for half-maximal velocity (FDP0.5V) was markedly influenced by the nature of the assay buffer used. Thus the FDP0.5V was 0.002 mM in 90 mM triethanolamine buffer, 0.2 mM in 90 mM tris(hydroxymethyl)aminomethanemaleate buffer, and 4.4 mM in 90 mM phosphate buffer. Phosphate inhibition of FDP binding is not a general property of streptococcal lactate dehydrogenase, since the FDP0.5V value for S. faecalis 8043 lactate dehydrogenase was not increased by phosphate. The S. faecalis and S. lactis lactate dehydrogenases also differed in that Mn2+ enhanced FDP binding in S. faecalis but had no effect on the S. lactis dehydrogenase. The FDP concentration (12 to 15 mM) found in S. lactis cells during logarithmic growth on a high-carbohydrate (3% lactose) medium would be adequate to give almost complete activation of the lactate dehydrogenase even if the high FDP0.5V value found in 90 mM phosphate were similar to the FDP requirement in vivo.  相似文献   

9.
Five different immobilized NAD+ derivatives were employed to compare the behavior of four amino acid dehydrogenases chromatographed using kinetic-based enzyme capture strategies (KBECS): S6-, N6-, N1-, 8'-azo-, and pyrophosphate-linked immobilized NAD+. The amino acid dehydrogenases were NAD+-dependent phenylalanine (EC 1.4.1.20), alanine (EC 1.4.1.1), and leucine (EC 1.4.1.9) dehydrogenases from various microbial species and NAD(P)+-dependent glutamate dehydrogenase from bovine liver (GDH; EC 1.4.1.3). KBECS for bovine heart L-lactate dehydrogenase (EC 1.1.1.27) and yeast alcohol dehydrogenase (EC 1.1.1.1) were also applied to assist in a preliminary assessment of the immobilized cofactor derivatives. Results confirm that the majority of the enzymes studied retained affinity for NAD+ immobilized through an N6 linkage, as opposed to an N1 linkage, replacement of the nitrogen with sulfur to produce an S6 linkage, or attachment of the cofactor through the C8 position or the pyrophosphate group of the cofactor. The one exception to this was the dual-cofactor-specific GDH from bovine liver, which showed no affinity for N6-linked NAD+ but was biospecifically adsorbed to S6-linked NAD+ derivatives in the presence of its soluble KBEC ligand. The molecular basis for this is discussed together with the implications for future development and application of KBECS.  相似文献   

10.
Particulate alcohol dehydrogenase of acetic acid bacteria that is mainly participated in vinegar fermentation was purified to homogeneous state from Gluconobacter suboxydans IFO 12528. Solubilization of enzyme from the bacterial membrane fraction by Triton X-100 and subsequent fractionation on DEAE-Sephadex A-50 and hydroxylapatite was successful in enzyme purification. A cytochrome c-like component was tightly bound to the dehydrogenase protein and existed as an enzyme-cytochrome complex. It was also confirmed that the alcohol dehydrogenase is not a cytochrome component itself. The molecular weight of the enzyme was determined to be 150,000, and gel electrophoresis showed the presence of three subunits having a molecular weight of 85,000, 49,000 and 14,400. The smallest subunit was corresponded to the cytochrome c-like component. Ethanol was oxidized in the presence of dyes in vitro but NAD or NADP were not required as hydrogen acceptor. Unlike NAD- linked alcohol dehydrogenase in yeast or liver and other primary alcohol dehydrogenases in methanol utilizing bacteria, the enzyme from the acetic acid bacteria showed its optimum pH at fairly acidic pH.  相似文献   

11.
W Maret  M Zeppezauer 《Biochemistry》1986,25(7):1584-1588
The conformational change of horse liver alcohol dehydrogenase induced by binding of NAD+ was studied by electronic absorption spectroscopy using cobalt as a spectroscopic probe in the active site. The complex of the enzyme with NAD+ exists in an acidic and an alkaline form. The transition between the two forms proceeds through several intermediates and is controlled by an apparent pKa of 6.9. Only at pH values below this pKa can a complex between enzyme, NAD+, and Cl- be formed. The spectral changes indicate that chloride displaces the cobalt-bound water molecule in a tetracoordinate structure. We conclude that a negative charge at the active site is necessary to stabilize the closed conformation of the enzyme in the presence of NAD+. Spectral correlations are given which strongly support the postulation of a metal-bound alkoxide in the closed structure of the enzyme as an essential feature of the catalytic mechanism of horse liver alcohol dehydrogenase.  相似文献   

12.
The thermodynamic parameters for the binding of NAD to some dehydrogenases have been determined calorimetrically at 25° and pH 7.6. Except for liver alcohol dehydrogenase (LADH) the ΔGo, ΔHo and ΔSo values for NAD binding to the dehydrogenases are very similar pointing out a possible structure - thermodynamics correlation. The large deviation observed in the case of LADH would be consistent with the occurrence of a conformational change in this enzyme upon binding NAD.  相似文献   

13.
A soluble NAD+-linked isocitrate dehydrogenase has been isolated from Crithidia fasciculata. The enzyme was purified 128-fold, almost to homogeneity, and was highly specific for NAD+ as the coenzyme. There is also a cytoplasmic NADP+-linked and a mitochondrial isocitrate dehydrogenase in the organism. Studies of the physical and kinetic properties of the soluble NAD+-isocitrate dehydrogenase from this organism showed that it resembled microbial NADP+-isocitrate dehydrogenases in general, all of which are cytoplasmic enzymes. The enzyme appeared not to be related to other NAD+-isocitrate dehydrogenases, which are found in the mitochondria of eukaryotic cells. The molecular weight of the soluble NAD+-isocitrate dehydrogenase was 105,000 which is within the range of the values for microbial NADP+-isocitrate dehydrogenases. Similar to the NADP+-isocitrate dehydrogenase in this organism, the enzyme was inhibited in a concerted manner by glyoxalate plus oxalacetate. Kinetic analysis revealed that Mn2+ was involved in the binding of isocitrate to the enzyme. Inhibition of the NAD+-linked isocitrate dehydrogenase by p-chloromercuribenzoate could be prevented by prior incubation of the enzyme with both Mn2+ and isocitrate; however, neither ion alone conferred protection. Free isocitrate, free Mn2+, and the Mn2+-isocitrate complex could all bind to the enzyme. Four different mechanisms with respect to the binding of isocitrate to the enzyme were tested. Of these, the formation of the active enzyme-Mn2+-isocitrate complex from (a) the random binding of Mn2+, isocitrate, and the Mn2+-isocitrate complex, or (b) the binding of Mn2+-isocitrate with free Mn2+ and isocitrate acting as dead-end competitors were both in agreement with these data.  相似文献   

14.
A structural analog of NAD+, NICOTINAMIDE 3,N-4ethenocytosine dinucleotide (epsilonNCD+), has been synthesized, characterized, and compared in activity with the natural coenzyme in several enzyme systems. The Vmax and apparent Km values were determined for NAD+, epsilonNCD+, and epsilonNAD+ (nicotinamide 1, N6-ethenoadenine dinucleotide) with yeast alcohol, horse liver alcohol, pig heart malate, beef liver glutamate, and rabbit muscle lactate and glyceraldehyde-3-phosphate dehydrogenases. The Vmax for epsilonNCD+ was as great or greater than that obtained for NAD+ with three of the enzymes, 60-80 per cent with two others, and 14 percent with one. EpsilonNCD+ was found to be more active than epsilonNAD+ with all six dehydrogenases. EpsilonNCD+ served as a substrate for Neurospora crassa tnadase, but could not be phosphorylated with pigeon liver NAD+ kinase. NAD+ pyrophosphorylase from pig liver was unable to catalyze the formation of epsilonNCD+ from the triphosphate derivative of epsilon-cytidine and nicotinamide mononucleotide, but was able to slowly catalyze the pyrolytic cleavage of epsilonNCD+. The coenzyme activity of epsilonNCD+ with dehydrogenases can be discussed in terms of the close spatial homology of epsilonNCD+ and NAD+, which may allow similar accommodations within the enzyme binding regions.  相似文献   

15.
To improve the efficiency and applicability of biocatalytic redox-reactions for asymmetric ketone-reduction and enantioselective alcohol-oxidation catalyzed by nicotinamide-dependent dehydrogenases/reductases, several achievements for cofactor-recycling have been made during the last two years. First, the use of hydrogenases for NADPH recycling in a two enzyme system. Second, preparative transformations with alcohol dehydrogenases coupled with NADH oxidases for NAD+/NADP+ recycling. Third, an exceptional chemo-stable alcohol dehydrogenase can efficiently use i-propanol and acetone as cosubstrates for reduction and oxidation, respectively, in a single-enzyme system. Novel carbonyl reductases and dehydrogenases derived from plant cells are particularly suited for sterically demanding substrates.  相似文献   

16.
Drosophila alcohol dehydrogenase belongs to the short chain dehydrogenase/reductase (SDR) family which lack metal ions in their active site. In this family, it appears that the three amino acid residues, Ser138, Tyr151 and Lys155 have a similar function as the catalytic zinc in medium chain dehydrogenases. The present work has been performed in order to obtain information about the function of these residues. To obtain this goal, the pH and temperature dependence of various kinetic coefficients of the alcohol dehydrogenase from Drosophila lebanonensis was studied and three-dimensional models of the ternary enzyme-coenzyme-substrate complexes were created from the X-ray crystal coordinates of the D. lebanonensis ADH complexed with either NAD(+) or the NAD(+)-3-pentanone adduct. The kon velocity for ethanol and the ethanol competitive inhibitor pyrazole increased with pH and was regulated through the ionization of a single group in the binary enzyme-NAD(+) complex, with a DeltaHion value of 74(+/-4) kJ/mol (18(+/-1) kcal/mol). Based on this result and the constructed three-dimensional models of the enzyme, the most likely candidate for this catalytic residue is Ser138. The present kinetic study indicates that the role of Lys155 is to lower the pKa values of both Tyr151 and Ser138 already in the free enzyme. In the binary enzyme-NAD(+) complex, the positive charge of the nicotinamide ring in the coenzyme further lowers the pKa values and generates a strong base in the two negatively charged residues Ser138 and Tyr151. With the OH group of an alcohol close to the Ser138 residue, an alcoholate anion is formed in the ternary enzyme NAD(+) alcohol transition state complex. In the catalytic triad, along with their effect on Ser138, both Lys155 and Tyr151 also appear to bind and orient the oxidized coenzyme.  相似文献   

17.
The activity of NAD+ and NADP+-linked aldehyde dehydrogenases has been investigated in yeast cells grown under different conditions. As occurs in other dehydrogenase reactions the NAD(P)+-linked enzyme was strongly repressed in all hypoxic conditions; nervetheless, the NADP+-linked enzyme was active. The results suggest that the NAD(P)+ aldehyde dehydrogenase is involved in the oxidation of ethanol to acetyl-CoA, and that when the pyruvate dehydrogenase complex is repressed the NADP+-linked aldehyde dehydrogenase is operative as an alternative pathway from pyruvate to acetyl-CoA: pyruvate leads to acetaldehyde leads to acetate leads to acetyl-Coa. In these conditions the supply of NADPH is advantageous to the cellular economy for biosynthetic purposes. Short term adaptation experiments suggest that the regulation of the levels of the aldehyde dehydrogenase-NAD(P)+ takes place by the de novo synthesis of the enzyme.  相似文献   

18.
1. The reduction of NAD(+), by an enzyme preparation from rat liver, in the presence of 2-mercaptoethanol is reported. 2. It is suggested that the NAD(+)-linked alcohol dehydrogenase in the extract transfers hydrogen from 2-mercaptoethanol to NAD(+). 3. Both yeast and horse-liver alcohol dehydrogenases were observed to reduce NAD(+) in the presence of 2-mercaptoethanol. 4. Some interactions of 2-mercaptoethanol, cysteine or hydroxylamine with the alcohol dehydrogenases from rat liver, horse liver and yeast are discussed.  相似文献   

19.
A new form of alcohol dehydrogenase, designated mu-alcohol dehydrogenase, was identified in surgical human stomach mucosa by isoelectric focusing and kinetic determinations. This enzyme was anodic to class I (alpha, beta, gamma) and class II (pi) alcohol dehydrogenases on agarose isoelectric focusing gels. The partially purified mu-alcohol dehydrogenase, specifically using NAD+ as cofactor, catalyzed the oxidation of aliphatic and aromatic alcohols with long chain alcohols being better substrates, indicating a barrel-shape hydrophobic binding pocket for substrate. mu-Alcohol dehydrogenase stood out in high Km values for both ethanol (18 mM) and NAD+ (340 microM) as well as in high Ki value (320 microM) for 4-methylpyrazole, a competitive inhibitor for ethanol. mu-Alcohol dehydrogenase may account for up to 50% of total stomach alcohol dehydrogenase activity and appeared to play a significant role in first-pass metabolism of ethanol in human.  相似文献   

20.
The yeast Candida parapsilosis possesses two routes of electron transfer from exogenous NAD(P)H to oxygen. Electrons are transferred either to the classical cytochrome pathway at the level of ubiquinone through an NAD(P)H dehydrogenase, or to an alternative pathway at the level of cytochrome c through another NAD(P)H dehydrogenase which is insensitive to antimycin A. Analyses of mitoplasts obtained by digitonin/osmotic shock treatment of mitochondria purified on a sucrose gradient indicated that the NADH and NADPH dehydrogenases serving the alternative route were located on the mitochondrial inner membrane. The dehydrogenases could be differentiated by their pH optima and their sensitivity to amytal, butanedione and mersalyl. No transhydrogenase activity occurred between the dehydrogenases, although NADH oxidation was inhibited by NADP+ and butanedione. Studies of the effect of NADP+ on NADH oxidation showed that the NADH:ubiquinone oxidoreductase had Michaelis-Menten kinetics and was inhibited by NADP+, whereas the alternative NADH dehydrogenase had allosteric properties (NADH is a negative effector and is displaced from its regulatory site by NAD+ or NADP+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号