首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Connexin levels regulate keratinocyte differentiation in the epidermis   总被引:1,自引:0,他引:1  
To understand the role of connexin43 (Cx43) in epidermal differentiation, we reduced Cx43 levels by RNA-mediated interference knockdown and impaired its functional status by overexpressing loss-of-function Cx43 mutants associated with the human disease oculodentodigital dysplasia (ODDD) in rat epidermal keratinocytes. When Cx43 expression was knocked down by 50-75%, there was a coordinate 55-65% reduction in Cx26 level, gap junction-based dye coupling was reduced by 60%, and transepithelial resistance decreased. Importantly, the overall growth and differentiation of Cx43 knockdown organotypic epidermis was severely impaired as revealed by alterations in the levels of the differentiation markers loricrin and involucrin and by reductions in vital and cornified layer thicknesses. Conversely, although the expression of Cx43 mutants reduced the coupling status of rat epidermal keratinocytes by approximately 80% without altering the levels of endogenous Cx43 or Cx26, their ability to differentiate was not altered. In addition, we used a mouse model of ODDD and found that newborn mice harboring the loss-of-function Cx43(G60S) mutant had slightly reduced Cx43 levels, whereas Cx26 levels, epidermis differentiation, and barrier function remained unaltered. This properly differentiated epidermis was maintained even when Cx43 and Cx26 levels decreased by more than 70% in 3-week-old mutant mice. Our studies indicate that Cx43 and Cx26 collectively co-regulate epidermal differentiation from basal keratinocytes but play a more minimal role in the maintenance of established epidermis. Altogether, these studies provide an explanation as to why the vast majority of ODDD patients, where Cx43 function is highly compromised, do not suffer from skin disease.  相似文献   

4.
5.
Keratinocytes express high levels of 25OHD 1alpha-hydroxylase (1OHase). The product of this enzyme, 1,25(OH)(2)D, promotes the differentiation of keratinocytes in vitro. To test whether 1OHase activity is essential for keratinocyte differentiation in vivo we examined the differentiation process in mice null for the expression of the 1alphaOHase gene (1alphaOHase(-/-)) by light and electron microscopy, by immunocytochemistry for markers of differentiation, by ion capture cytochemistry for calcium localization, and by function using transepidermal water loss (TEWL) to assess barrier integrity. Levels of involucrin, filaggrin, and loricrin-markers of differentiation in the keratinocyte and critical for the formation of the cornified envelope-were reduced in the epidermis of 1alphaOHase(-/-) mice. Calcium in the outer epidermis was reduced with loss of the calcium gradient from stratum basale to stratum granulosum. TEWL was normal in the resting state, but following disruption of the barrier, 1alphaOHase(-/-) mice had a markedly prolonged recovery of barrier function associated with a reduction in lamellar body secretion and a failure to reform the calcium gradient. Thus 1,25(OH)(2)D is essential for normal epidermal differentiation, most likely by inducing the proteins and mediating the calcium signaling in the epidermis required for the generation and maintenance of the barrier.  相似文献   

6.
Cystatin A, a cysteine proteinase inhibitor, is a cornified cell envelope constituent expressed in the upper epidermis. We previously reported that a potent protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate, increases human cystatin A expression by the activation of AP-1 proteins. Here, we delineate the signaling cascade responsible for this regulation. Co-transfection of the cystatin A promoter into normal human keratinocytes together with a dominant active form of ras increased the promoter activity by 3-fold. In contrast, a dominant negative form of ras suppressed basal cystatin A promoter activity. Further analyses disclosed that transfection of dominant negative forms of raf-1, MEK1, ERK1, ERK2, or wild-type MEKK1 all increased cystatin A promoter activity in normal human keratinocytes, whereas wild-type raf-1, ERK1, ERK2, or dominant negative forms of MEKK1, MKK7, or JNK1 suppressed the promoter activity. The increased or decreased promoter activity reflected the expression of cystatin A on mRNA and protein levels. These effects were not observed when a cystatin A promoter with a T2 (-272 to -278) deletion was used. In contrast, transfection of dominant negative forms of MKK3, MKK4, or p38 did not affect cystatin A promoter activity. Immunohistochemical analyses revealed that phosphorylated active extracellular signal-regulated kinases and c-Jun N-terminal kinase were expressed in the nuclei of basal cells and cells in the suprabasal-granular cell layer, respectively. These results indicate that the expression of cystatin A is regulated via mitogen-activated protein kinase pathways positively by Ras/MEKK1/MKK7/JNK and negatively by Ras/Raf/MEK1/ERK.  相似文献   

7.
Involucrin is synthesized in abundance during terminal differentiation of keratinocytes. Involucrin is a substrate for transglutaminase and one of the precursors of the cross-linked envelopes present in the corneocytes of the epidermis and other stratified squamous epithelia. These envelopes make an important contribution to the physical resistance of the epidermis. We have generated mice lacking involucrin from embryonic stem cells whose involucrin gene had been ablated by homologous recombination. These mice developed normally, possessed apparently normal epidermis and hair follicles, and made cornified envelopes that could not be distinguished from those of wild-type mice. No compensatory increase of mRNA for other envelope precursors was observed.  相似文献   

8.
The cornified envelope, located beneath the plasma membrane of terminally differentiated keratinocytes, is formed as protein precursors are cross-linked by a membrane associated transglutaminase. This report characterizes a new precursor to the cornified envelope. A monoclonal antibody derived from mice immunized with cornified envelopes of human cultured keratinocytes stained the periphery of more differentiated cells in epidermis and other stratified squamous epithelia including hair and nails. The epitope was widely conserved among mammals as determined by immunohistochemical and Western analysis. Immunoelectron microscopy localized the epitope to the cell periphery in the upper stratum spinosum and granulosum of epidermis. In the hair follicle, the epitope was present in the internal root sheath and in the infundibulum, the innermost aspect of the external root sheath. The antibody recognized a protein of relative mobility (M(r)) 82,000, pI 7.8. The protein was a transglutaminase substrate as shown by a dansylcadaverine incorporation assay. Purified cornified envelopes absorbed the reactivity of the antibody to the partially purified protein and cleavage of envelopes by cyanogen bromide resulted in release of immunoreactive fragments. The protein was soluble only in denaturing buffers such as 8 M urea or 2% sodium dodecyl-sulfate (SDS). Partial solubility could be achieved in 50 mM TRIS pH 8.3 plus 0.3 M NaCl (high salt buffer); the presence of a reducing agent did not affect solubility. Extraction of cultured keratinocytes in 8 M urea and subsequent dialysis against 50 mM TRIS pH 8.3 buffer resulted in precipitation of the protein with the keratin filaments. Dialysis against high salt buffer prevented precipitation of the protein. The unique solubility properties of this protein suggest that it aggregates with itself and/or with keratin filaments. The possible role of the protein in cornified envelope assembly is discussed. We have named this protein Sciellin (from the old english "sciell" for shell).  相似文献   

9.
The importance of the extracellular calcium-sensing receptor (CaR) in the stringent control of extracellular Ca(2+) concentration is well established. However, the presence of CaR in tissues not directly involved in regulating mineral ion homeostasis such as the epidermis suggests a role for CaR in other cellular functions. Although extracellular Ca(2+) regulates the differentiation of epidermal keratinocytes, the role of CaR in this process in the epidermis is not fully understood. In this study we showed using in situ hybridization and immunohistochemistry that CaR is expressed in suprabasal keratinocytes of the mammalian epidermis. We then evaluated the changes in epidermal keratinocyte morphology and differentiation in Casr(-/-) mice lacking the full-length CaR. These mice show increased expression of an alternatively spliced form of CaR which lacks acute Ca(2+)-signaling properties. The absence of the full-length CaR in the epidermis resulted in ultrastructural changes (abnormal keratohyalin granule formation and precocious lamellar body secretion) in the terminally differentiated granular keratinocytes. Furthermore, the expression of both mRNA and protein for the calcium inducible keratinocyte differentiation markers, filaggrin and loricrin, were down-regulated in the epidermis of Casr(-/-) mice, whereas the number of proliferating cells were increased even though the calcium gradient within the epidermis was enhanced. Our results demonstrate that the epidermal expression of the full-length CaR is required for the normal terminal differentiation of keratinocytes.  相似文献   

10.
11.
Cathepsin E (CatE) is predominantly expressed in the rapidly regenerating gastric mucosal cells and epidermal keratinocytes, in addition to the immune system cells. However, the role of CatE in these cells remains unclear. Here we report a crucial role of CatE in keratinocyte terminal differentiation. CatE deficiency in mice induces abnormal keratinocyte differentiation in the epidermis and hair follicle, characterized by the significant expansion of corium and the reduction of subcutaneous tissue and hair follicle. In a model of skin papillomas formed in three different genotypes of syngeneic mice, CatE deficiency results in significantly reduced expression and altered localization of the keratinocyte differentiation induced proteins, keratin 1 and loricrin. Involvement of CatE in the regulation of the expression of epidermal differentiation specific proteins was corroborated by in vitro studies with primary cultures of keratinocytes from the three different genotypes of mice. In wild-type keratinocytes after differentiation inducing stimuli, the CatE expression profile was compatible to those of the terminal differentiation marker genes tested. Overexpression of CatE in mice enhances the keratinocyte terminal differentiation process, whereas CatE deficiency results in delayed differentiation accompanying the reduced expression or the ectopic localization of the differentiation markers. Our findings suggest that in keratinocytes CatE is functionally linked to the expression of terminal differentiation markers, thereby regulating epidermis formation and homeostasis.  相似文献   

12.
To determine the function and mechanism of action of the 8S-lipoxygenase (8-LOX) product of arachidonic acid, 8S-hydroxyeicosatetraenoic acid (8S-HETE), which is normally synthesized only after irritation of the epidermis, transgenic mice with 8-LOX targeted to keratinocytes through the use of a loricrin promoter were generated. Histological analyses showed that the skin, tongue, and stomach of transgenic mice are highly differentiated, and immunoblotting and immunohistochemistries of skin showed higher levels of keratin-1 expression compared with wild-type mice. The labeling index, however, of the transgenic epidermis was twice that of the wild-type epidermis. Furthermore, 8S-HETE treatment of wild-type primary keratinocytes induced keratin-1 expression. Peroxisome proliferator activated receptor alpha (PPARalpha) was identified as a crucial component of keratin-1 induction through transient transfection with expression vectors for PPARalpha, PPARgamma, and a dominant-negative PPAR, as well as through the use of known PPAR agonists. From these studies, it is concluded that 8S-HETE plays an important role in keratinocyte differentiation and that at least some of its effects are mediated by PPARalpha.  相似文献   

13.
Ultrastructural localization of caspase-14 in human epidermis.   总被引:1,自引:0,他引:1  
Caspase-14 has been implicated in the formation of stratum corneum because of its specific expression and activation in terminally differentiating keratinocytes. However, its precise physiological role and its protein substrate are elusive. We studied the ultrastructural localization of caspase-14 in human epidermis to compare its distribution pattern with that of well-characterized differentiation markers. Immunogold cytochemistry confirmed that caspase-14 is nearly absent in basal and spinous layers. In the granular, layer nuclei and keratohyalin granules were labeled with increasing intensity towards the transitional layer. Particularly strong caspase-14 labeling was associated with areas known to be occupied by involucrin and loricrin, whereas F-granules, occupied by profilaggrin/filaggrin, were much less labeled. A high density of gold particles was also present at the forming cornified cell envelope, including desmosomes. In corneocytes, intense labeling was both cytoplasmic and associated with nuclear remnants and corneodesmosomes. These observations will allow focusing efforts of biochemical substrate screening on a subset of proteins localizing to distinct compartments of terminally differentiated keratinocytes.  相似文献   

14.
Lessons from disorders of epidermal differentiation-associated keratins   总被引:2,自引:0,他引:2  
A number of diseases have been associated with mutations in genes encoding keratin intermediate filaments. Several of these disorders have skin manifestations, in which histological changes highlight the role of various different keratins in epidermal differentiation. For example, mutations in either K1 or K10 (the major keratin pair expressed in differentiated keratinocytes) usually lead to clumped keratin filaments and cytolysis. Furthermore, the precise nature of the mutation has direct implications for disease phenotype. Specifically, mutations in the H1 and alpha-helical rod domains of K1/K10 result in bullous congenital ichthyosiform erythroderma, underscoring the critical role for this keratin filament domain in maintaining cellular integrity. However, a lysine to isoleucine substitution in the V1 domain of K1 underlies a form of palmoplantar keratoderma, which has different cell biological implications. Keratins are cross-linked into the cornified cell envelopes through this particular lysine residue and the consequences of the mutation lead to changes in keratin-desmosome association and cornified cell morphology, suggesting a role for this keratin subdomain in cornified cell envelope formation. Recently, to extend genotype-phenotype correlation, a frameshift mutation in the V2 region of the K1 tail domain was identified in ichthyosis hystrix (Curth-Macklin type), in which keratin filaments show a characteristic shell-like structure and fail to form proper bundles. In this case, the association of desmosomes with loricrin was also altered, implicating this keratin domain in organizing the intracellular distribution of loricrin during cornification. Collectively, these mutations in K1/K10 provide a fascinating insight into both normal and abnormal processes of epidermal differentiation.  相似文献   

15.
Transforming growth factor-beta-activated kinase 1 (TAK1) is a member of the mitogen-activated protein (MAP) kinase family and is an upstream signaling molecule of nuclear factor-kappaB (NF-kappaB). Given that NF-kappaB regulates keratinocyte differentiation and apoptosis, TAK1 may be essential for epidermal functions. To test this, we generated keratinocyte-specific TAK1-deficient mice from Map3k7(flox/flox) mice and K5-Cre mice. The keratinocyte-specific TAK1-deficient mice were macroscopically indistinguishable from their littermates until postnatal day 2 or 3, when the skin started to roughen and wrinkle. This phenotype progressed, and the mice died by postnatal day 7. Histological analysis showed thickening of the epidermis with foci of keratinocyte apoptosis and intra-epidermal micro-abscesses. Immunohistochemical analysis showed that the suprabasal keratinocytes of the TAK1-deficient epidermis expressed keratin 5 and keratin 14, which are normally confined to the basal layer. The expression of keratin 1, keratin 10, and loricrin, which are markers for the suprabasal and late phase differentiation of the epidermis, was absent from the TAK1-deficient epidermis. Furthermore, the TAK1-deficient epidermis expressed keratin 16 and had an increased number of Ki67-positive cells. These data indicate that TAK1 deficiency in keratinocytes results in abnormal differentiation, increased proliferation, and apoptosis in the epidermis. However, the keratinocytes from the TAK1-deficient epidermis induced keratin 1 in suspension culture, indicating that the TAK1-deficient keratinocytes retain the ability to differentiate. Moreover, the removal of TAK1 from cultured keratinocytes of Map3k7(flox/flox) mice resulted in apoptosis, indicating that TAK1 is essential for preventing apoptosis. In conclusion, TAK1 is essential in the regulation of keratinocyte growth, differentiation, and apoptosis.  相似文献   

16.
17.
We have previously shown that the promoter of a 6.5 kb mouse loricrin clone contains a functional AP-1 element and directs tissue-specific, but not differentiation-specific, expression. We now report the isolation of a 14-kb genomic clone containing an additional 7 kb of genomic sequence. The additional sequences limit expression of a reporter construct to differentiated keratinocytes in culture. The expression of the 6.5-kb and 14-kb loricrin constructs were also analyzed in transgenic mice. Significantly, loricrin was found in all layers of the epidermis of the 6.5-kb transgenics, including basal and spinous cells. The expression of the 14-kb clone was indistinguishable from that of the endogenous gene, confirming that the additional sequences contain negative regulatory elements that restrict loricrin expression to the granular layer in vivo. In addition, we show the AP-1 element localized in the loricrin proximal promoter is necessary but not sufficient for expression of the loricrin gene in vivo in transgenic mice. Finally, to gain further insight into how AP-1 family members regulate expression of the loricrin gene, we co-transfected the loricrin reporter constructs with expression plasmids for various fos and jun family members and demonstrated that c-Fos/Jun-B heterodimers could mimic the differentiation-specific induction of loricrin.  相似文献   

18.
19.
The cyclin-dependent kinase inhibitor p21(WAF1/Cip1) plays a central role in a spatial and temporal balance of epidermal keratinocyte proliferation and growth arrest. However, what controls p21 expression in keratinocytes remains uncertain. Hypoxia-inducible factor 1alpha (HIF-1alpha) does not only express a variety of genes essential for hypoxic adaptation, but also up-regulates p21 so as to slow down cell cycle under hypoxic conditions. In the present study, we examined the role of HIF-1alpha in p21-mediated growth arrest of keratinocyte. Keratinocyte proliferation was arrested in the G1 phase at a high cell density. p21 was also up-regulated in a cell density-dependent manner and was found to be highly expressed in epidermal keratinocytes of normal human skins. In addition, in the same specimens and cells, we noted robust HIF-1alpha expression. HIF-1alpha siRNAs inhibited p21 expression and released the G1 arrest. In vivo, moreover, the intradermal injection of HIF-1alpha siRNA attenuated p21 expression in rat epidermis and induced skin hyperplasia. Mechanistically, we propose that the production of mitochondrial reactive oxygen species and the activation of the MEK/ERK pathway are involved in the HIF-1alpha stabilization in keratinocytes. These results imply that HIF-1alpha functions as an up-stream player in the p21-mediated growth arrest of keratinocytes.  相似文献   

20.
Mutations in the cornified cell envelope protein loricrin have been reported recently in some patients with Vohwinkel syndrome (VS) and progressive symmetric erythrokeratoderma (PSEK). To establish a causative relationship between loricrin mutations and these diseases, we have generated transgenic mice expressing a COOH-terminal truncated form of loricrin that is similar to the protein expressed in VS and PSEK patients. At birth, transgenic mice (ML.VS) exhibited erythrokeratoderma with an epidermal barrier dysfunction. 4 d after birth, high-expressing transgenic animals showed a generalized scaling of the skin, as well as a constricting band encircling the tail and, by day 7, a thickening of the footpads. Histologically, ML. VS transgenic mice also showed retention of nuclei in the stratum corneum, a characteristic feature of VS and PSEK. Immunofluorescence and immunoelectron microscopy showed the mutant loricrin protein in the nucleus and cytoplasm of epidermal keratinocytes, but did not detect the protein in the cornified cell envelope. Transfection experiments indicated that the COOH-terminal domain of the mutant loricrin contains a nuclear localization signal. To determine whether the ML.VS phenotype resulted from dominant-negative interference of the transgene with endogenous loricrin, we mated the ML.VS transgenics with loricrin knockout mice. A severe phenotype was observed in mice that lacked expression of wild-type loricrin. Since loricrin knockout mice are largely asymptomatic (Koch, P.K., P. A. de Viragh, E. Scharer, D. Bundman, M.A. Longley, J. Bickenbach, Y. Kawachi, Y. Suga, Z. Zhou, M. Huber, et al., J. Cell Biol. 151:389-400, this issue), this phenotype may be attributed to expression of the mutant form of loricrin. Thus, deposition of the mutant protein in the nucleus appears to interfere with late stages of epidermal differentiation, resulting in a VS-like phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号