首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of cortisone and endotoxin, singly and in combination, on ribonucleic acid (RNA) synthesis in livers of adrenalectomized mice was determined. This was accomplished by measuring the incorporation either of inorganic (32)P or of (14)C-orotic acid into the RNA. Under similar conditions, the effect of these agents on the rate of protein synthesis was examined with the use of (14)C-leucine. Bacterial endotoxin was found to augment the uptake of isotope in the RNA and in the protein of the liver. These reactions did not appear to be mediated via the pancreatic hormone insulin, which was found to depress the incorporation of the radioactive compounds into RNA. Cortisone increased the uptake of isotope in liver RNA but depressed the incorporation of leucine into hepatic protein. These results indicate that the previously observed ability of endotoxin to prevent the hormone induction of hepatic enzymes, such as tryptophan oxygenase, is not associated with impaired synthesis of liver RNA or protein.  相似文献   

2.
The influence of endotoxin and cortisone on the function of hepatic cells was studied in relation to the effect of partial hepatectomy on their activity. The overall rate of clearance of carbon (K) suffered a diminution within the first few hours after surgery but carbon uptake per unit weight tissue was elevated as a result of hepatic resection. The K values were increased by endotoxin (100°g i.p.) alone or together with cortisone (1 mg i.p.) but the hormone alone lowered the clearance rates in high doses (5 mg i.p.). Treatment with either substance increased liver weight over and above the control level in early phases of regeneration and lowered it in the later phases. The actions of cortisone and endotoxin were not additive on either process. As regards the influence of cellular cycle on hormonally modified gene activity, refractoriness to the hypertrophic effect of cortisone (5 mg i.p. a dose which lowered the K value at all times) developed soon after hepatic resection and continued for at least 36 h after surgery. These and other results indicate that the RE cells remain susceptible to external influences throughout the regenerative cycle and do not passively follow the behaviour pattern of parenchyma. An active contribution of RE cells is further supported by the observation that regeneration was accompanied by a progressive increase in spleen weight. Furthermore, because uptake and binding of cortisone to 'specific' receptors progressed at least as well as in control mice at all these time periods, the refractoriness to cortisone action must lie at some stage beyond uptake, processing or association of steroid with the appropriate receptor. These data indicate the necessity to consider the behaviour of individual cell types in order to comprehend the integrated responses observed during growth, development and differentiation in the liver.  相似文献   

3.
Endocytosis of [125I]iodixanol was studied in vivo and in vitro in rat liver cells to determine fluid phase endocytic activity in different liver cells (hepatocytes, Kupffer cells and endothelial cells). The Kupffer cells were more active in the uptake of [l25I]iodixanol than parenchymal cells or endothelial cells. Inhibition of endocytic uptake via clathrin-coated pits (by potassium depletion and hypertonic medium) reduced uptake of [125I]iodixanol much more in Kupffer cells and endothelial cells than in hepatocytes. To gain further information about the importance of clathrin-mediated fluid phase endocytosis, the expression of proteins known to be components of the endocytic machinery was investigated. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting, endothelial cells and Kupffer cells were found to express approximately fourfold more rab4, rab5 and rab7 than parenchymal cells, while clathrin was expressed at a higher level in endothelial cells than in Kupffer cells and hepatocytes. Using electron microscopy it was shown that liver endothelial cells contained approximately twice as many coated pits per membrane unit than the parenchymal and Kupffer cells, thus confirming the immunoblotting results concerning clathrin expression. Electron microscopy on isolated liver cells following fluid phase uptake of horseradish peroxidase (HRP) showed that HRP-containing organelles had a different morphology in the different cell types: In the liver endothelial cells HRP was in small, tubular endosomes, while in Kupffer cells HRP was mainly found in larger structures, reminiscent of macropinosomes. Parenchymal cells contained HRP in small vacuolar endosomes with a punctuated distribution. In conclusion, we find that the Kupffer cells and the endothelial cells have a higher pinocytic activity than the hepatocytes. The hepatocytes do, however, account for most of the total hepatic uptake. The fluid phase endocytosis in liver endothelial cells depends mainly on clathrin-mediated endocytosis, while the parenchymal cells have additional clathrin-independent mechanisms that may play an important role in the uptake of plasma membrane components. In the Kupffer cells the major uptake of fluid phase markers seems to take place via a macropinocytic mechanism.  相似文献   

4.
Formaldehyde treated albumin (F-HSA) was found to consist of a monomeric and a polymeric fraction. Both fractions were primarily endocytosed by rat liver sinusoidal cells. However, immunohistochemical staining of endocytosed material showed that the relative contribution of the endothelial and Kupffer cells in uptake of the monomer and the polymer differed significantly, with the monomer mainly having an endothelial cell- and the polymer predominantly having a Kupffer cell pattern of distribution. To directly confirm these heterogeneous patterns, we injected in vivo the 125I-labeled F-HSA fractions and isolated the endothelial and Kupffer cells by centrifugal elutriation. 73.7% of the monomeric F-HSA was found in endothelial cells and only 14.9% was found in Kupffer cells. In contrast, the polymeric F-HSA (1500 kD) was mainly endocytosed by Kupffer cells (71%), whereas the endothelial cells contributed only for 24% in hepatic uptake. In vivo studies and isolated perfused rat liver experiments showed that endocytosis of both monomer and polymer was inhibited by co-administration of polyinosinic acid, a well known inhibitor for scavenger receptors, indicating that these receptors on endothelial and Kupffer cells are mainly involved in this uptake process.  相似文献   

5.
The liver contains two types of galactose receptors, specific for Kupffer and parenchymal cells respectively. These receptors are only expressed in the liver, and therefore are attractive targets for the specific delivery of drugs. We provided low-density lipoprotein (LDL), a particle with a diameter of 23 nm in which a variety of drugs can be incorporated, with terminal galactose residues by lactosylation. Radioiodinated LDL, lactosylated to various extents (60-400 mol of lactose/ mol of LDL), was injected into rats. The plasma clearance and hepatic uptake of radioactivity were correlated with the extent of lactosylation. Highly lactosylated LDL (greater than 300 lactose/LDL) is completely cleared from the blood by liver within 10 min. Pre-injection with N-acetylgalactosamine blocks liver uptake, which indicates that the hepatic recognition sites are galactose-specific. The hepatic uptake occurs mainly by parenchymal and Kupffer cells. At a low degree of lactosylation, approx. 60 lactose/LDL, the specific uptake (ng/mg of cell protein) is 28 times higher in Kupffer cells than in parenchymal cells. However, because of their much larger mass, parenchymal cells are the main site of uptake. At high degrees of lactosylation (greater than 300 lactose/LDL), the specific uptake in Kupffer cells is 70-95 times that in parenchymal cells. Under these conditions, Kupffer cells are, despite their much smaller mass, the main site of uptake. Thus not only the size but also the surface density of galactose on lactosylated LDL is important for the balance of uptake between Kupffer and parenchymal cells. This knowledge should allow us to design particulate galactose-bearing carriers for the rapid transport of various drugs to either parenchymal cells or Kupffer cells.  相似文献   

6.
1. Hepatic uptake of low-density lipoprotein (LDL) in parenchymal cells and non-parenchymal cells was studied in control-fed and cholesterol-fed rabbits after intravenous injection of radioiodinated native LDL (125I-TC-LDL) and methylated LDL (131I-TC-MetLDL). 2. LDL was taken up by rabbit liver parenchymal cells, as well as by endothelial and Kupffer cells. Parenchymal cells, however, were responsible for 92% of the hepatic LDL uptake. 3. Of LDL in the hepatocytes, 89% was taken up via the B,E receptor, whereas 16% and 32% of the uptake of LDL in liver endothelial cells and Kupffer cells, respectively, was B,E receptor-dependent. 4. Cholesterol feeding markedly reduced B,E receptor-mediated uptake of LDL in parenchymal liver cells and in Kupffer cells, to 19% and 29% of controls, respectively. Total uptake of LDL in liver endothelial cells was increased about 2-fold. This increased uptake is probably mediated via the scavenger receptor. The B,E receptor-independent association of LDL with parenchymal cells was not affected by the cholesterol feeding. 5. It is concluded that the B,E receptor is located in parenchymal as well as in the non-parenchymal rabbit liver cells, and that this receptor is down-regulated by cholesterol feeding. Parenchymal cells are the main site of hepatic uptake of LDL, both under normal conditions and when the number of B,E receptors is down-regulated by cholesterol feeding. In addition, LDL is taken up by B,E receptor-independent mechanism(s) in rabbit liver parenchymal, endothelial and Kupffer cells. The non-parenchymal liver cells may play a quantitatively important role when the concentration of circulating LDL is maintained at a high level in plasma, being responsible for 26% of hepatic uptake of LDL in cholesterol-fed rabbits as compared with 8% in control-fed rabbits. The proportion of hepatic LDL uptake in endothelial cells was greater than 5-fold higher in the diet-induced hypercholesterolaemic rabbits than in controls.  相似文献   

7.
The purpose of the present investigation was twofold: The isolation of Kupffer cell lysosomes by changing their density in vivo through uptake of colloidal silver iodide (NeosilvolR), and the characterization of the isolated fraction. No significant changes in the activities or distribution of acid phosphatase, aryl sulphatase, and cathepsin D were found after the injection of NeosilvolR. A method is presented for the isolation of silver-loaded lysosomes from rat liver Kupffer cells by means of ultracentrifugation in sucrose gradients. Morphological and biochemical data indicate that the lysosomal fraction was contaminated with other subcellular organelles only to a minor degree. The lysosomal fraction showed non-parallel enrichment of various acid hydrolases, with the highest degree of purification found for aryl sulphatase and the lowest for acid phosphatase. The lysosomal enzyme activity pattern was similar to that found in Kupffer cell preparations.  相似文献   

8.
The characteristics of the recognition system involved in the receptor mediated endocytosis of the neoglycoprotein, fucose human serum albumin (HSA) were studied. It was found that (i) fucose-HSA showed strong affinity binding and uptake by various macrophages; (ii) binding was specific for L-fucose and D-mannose; (iii) binding was found to be inhibited by oxidant like H2O2 and swainsonine whereas it was elevated by dexamethasone; (iv) clearance of125I-fucose-HSA was rapid and strongly inhibited by unlabelled fucose-HSA. Greater than 70% of fucose-HSA was found in liver and more than 60% of this was found in liver lysosomes; (v) uptake of fucose-HSA was thirty-fold more efficient in liver macrophages (Kupffer cells) than in hepatocytes; (vi) moreover, mannose-HSA and ovalbumin which are potent inhibitors of mannose/N-acetylglucosamine receptors inhibited clearance and uptake of fucose-HSA by liver as well as by isolated Kupffer cells suggesting the involvement of both fucose and mannose receptors or a single type of receptor having greater affinity for fucose-HSA than for mannose-HSA. These results emphasize the important role of fucose-terminated glycoproteins in site-specific drug targeting.  相似文献   

9.
To determine whether hepatic sinusoidal cells contain glucagon receptors and, if so, to study the significance of the receptors in the cells, binding of [125I]-glucagon to nonparenchymal cells (mainly endothelial cells and Kupffer cells) isolated from mouse liver was examined by quantitative autoradiography and biochemical methods. Furthermore, the pathway of intracellular transport of colloidal gold-labeled glucagon (AuG) was examined in vivo. Autoradiographic and biochemical results demonstrated many glucagon receptors in both endothelial cells and Kupffer cells, and more receptors being present in endothelial cells than in Kupffer cells. In vivo, endothelial cells internalized AuG particles into coated vesicles via coated pits and transported the particles to endosomes, lysosomes, and abluminal plasma membrane. Therefore, receptor-mediated transcytosis of AuG occurs in endothelial cells. The number of particles present on the abluminal plasma membrane was constant if the amount of injected AuG increased. Therefore, the magnitude of receptor-mediated transcytosis of AuG appears to be regulated by endothelial cells. Kupffer cells internalized the ligand into cytoplasmic tubular structures via plasma membrane invaginations and transported the ligand exclusively to endosomes and lysosomes, suggesting that the ligand is degraded by Kupffer cells.  相似文献   

10.
Lysosomal acid lipase (LAL) is the critical enzyme for the hydrolysis of triglycerides (TGs) and cholesteryl esters (CEs) in lysosomes. LAL defects cause Wolman disease (WD) and CE storage disease (CESD). An LAL null (lal-/-) mouse model closely mimics human WD/CESD, with hepatocellular, Kupffer cell and other macrophage, and adrenal cortical storage of CEs and TGs. The effect on the cellular targeting of high-mannose and complex oligosaccharide-type oligosaccharide chains was tested with human LAL expressed in Pichia pastoris (phLAL) and CHO cells (chLAL), respectively. Only chLAL was internalized by cultured fibroblasts, whereas both chLAL and phLAL were taken up by macrophage mannose receptor (MMR)-positive J774E cells. After intraperitoneal injection into lal-/- mice, phLAL and chLAL distributed to macrophages and macrophage-derived cells of various organs. chLAL was also detected in hepatocytes. Ten injections of either enzyme over 30 d into 2- and 2.5-mo-old lal-/- mice produced normalization of hepatic color, decreased liver weight (50%-58%), and diminished hepatic cholesterol and TG storage. Lipid accumulations in macrophages were diminished with either enzyme. Only chLAL cleared lipids in hepatocytes. Mice double homozygous for the LAL and MMR deficiences (lal-/-;MMR-/-) showed phLAL uptake into Kupffer cells and hepatocytes, reversal of macrophage histopathology and lipid storage in all tissues, and clearance of hepatocytes. These results implicate MMR-independent and mannose 6-phosphate receptor-independent pathways in phLAL uptake and delivery to lysosomes in vivo. In addition, these studies show specific cellular targeting and physiologic effects of differentially oligosaccharide-modified human LALs mediated by MMR and that lysosomal targeting of mannose-terminated glycoproteins occurs and storage can be eliminated effectively without MMR.  相似文献   

11.
1. Pig lactate dehydrogenase isoenzyme M4 was labelled with O-(4-diazo-3,5-di[125I]iodobenzoyl)sucrose and injected intravenously into rats. Previous work has shown that this label does not influence the clearance of the enzyme (half-life about 26 min) and that it is retained within the lysosomes for several hours after endocytosis and breakdown of the protein [De Jong, Bouma & Gruber (1981) Biochem. J. 198, 45--51]. 2. The distribution of the radioactivity over a large number of tissues was determined 2 h after injection. A high percentage of the injected dose was found in liver (41%), spleen (10%) and bone including marrow (21%). 3. Autoradiography indicated uptake of the enzyme mainly by Kupffer cells of the liver, by spleen macrophages and by bone marrow macrophages. 4. Liver cells were isolated 1 h after injection of the enzyme. Kupffer cells, endothelial cells and parenchymal cells were found to endocytose the enzyme at rates corresponding to 4230, 35 and 25 ml of plasma/day per g of cell protein, respectively. 5. Previous injection of carbon particles greatly reduced the uptake of the enzyme by liver and spleen, but the uptake by bone marrow was not significantly changed.  相似文献   

12.
The distribution of insulin receptors was studied in rat liver cell suspensions using a latex minibead covalently bound to insulin. This probe can be visualized by electron microscopy (EM). Using this visual probe, the highest density of the receptor was found on endothelial cells in the cell suspension, with hepatocytes having only few receptors and Kupffer cells having none. Fractionation of liver cell suspensions on metrizamide gradients yielded two populations of cells; large cells (hepatocytes) and small cells which consisted mostly of Kupffer cells and endothelial cells, distinguishable by their surface and cytoplasmic features. Again, by the use of an insulin-minibead probe, the highest density of receptors was found on endothelial cells. It is suggested that the endothelium has a crucial role in the uptake and transport of the hormone across the tissue-blood barrier.  相似文献   

13.
The relative role of specific liver cells in the uptake of sulfobromophthalein (BSP) was ascertained by utilizing enzymatically isolated rat hepatic Kupffer and parenchymal cells. Kupffer cells demonstrated the ability neither to remove BSP from the incubation medium nor to form a BSP-glutathione conjugate. In contrast, parenchymal cells removed BSP from the medium and formed a BSP-glutathione conjugate. The rate and maximum uptake of BSP by the parenchymal cells were inversely related to the concentration of serum or albumin in the incubation medium. In an effort to evaluate the influence of ethanol on BSP uptake, parenchymal cells were incubated in the presence of varying concentrations of ethanol. No alteration in BSP uptake was induced by the prior addition of ethanol to the incubation medium. The uptake and conjugation of BSP are exclusive functional expressions of the hepatic parenchymal cell population.  相似文献   

14.
The effect of insulin on the in vivo glucose utilization by different hepatic cells was investigated using the euglycemic, hyperinsulinemic clamp, combined with the 2-deoxyglucose tracer technique. Rats were infused with insulin at a rate of 2.8 or 9.0 mU/min/kg for 220 min, resulting in plasma concentrations of the hormone of about 80 microU/ml and 340 microU/ml, respectively. Glucose use by the whole liver was elevated by more than 200% following insulin. However, glucose uptake by the parenchymal cells was only elevated by 50-60%. By contrast nonparenchymal cells were more responsive to insulin. Glucose uptake by endothelial cells was increased 100% and Kupffer cells displayed the most marked response to insulin showing a 3- to 6-fold increase in glucose uptake. These data indicate that the sinusoidal nonparenchymal cells are the major sites of the insulin-mediated increased glucose utilization by the liver.  相似文献   

15.
16.
This study was carried out to determine whether Kupffer cell Fc receptor function is depressed after injury. Three approaches to the determination of Fc receptor function were evaluated: IgG-coated erythrocytes (EIgG) were used as the receptor probe with a perfused liver system, EIgG were used as the receptor probe in vivo, and small aggregates of IgG (AIgG) were used as the receptor probe in vivo. Nearly half of the injected dose of EIgG was taken up by the perfused liver (nonrecirculating, serum-free system). In contrast, only 2.6% of erythrocytes not coated with IgG were taken up, and only 5.6% of erythrocytes coated with IgM were taken up by the perfused liver. Thus, there was little nonspecific or complement-dependent uptake of EIgG by the liver. The uptake of EIgG by the perfused liver was depressed following thermal injury, endotoxemia, and the phagocytosis of EIgG. These results were interpreted as indicating that Kupffer cell Fc receptor function was depressed under these conditions. The results obtained with the hepatic uptake of EIgG in vivo were very similar to those with EIgG in the perfused liver. However, since it was found that complement receptors as well as Fc receptors were probably involved in the in vivo clearance of EIgG, these results could be due to a depression of one or both of these receptors. The hepatic uptake of AIgG was not depressed by complement depletion, but was decreased by the injection of large aggregates of IgG. However, the hepatic uptake of AIgG was not depressed following thermal injury, endotoxemia, or the phagocytosis of EIgG. Thus, AIgG was not sensitive to the effects of injury on Kupffer cell function, whereas the uptake of EIgG by the perfused liver may provide an indication of Kupffer cell Fc receptor function. The depression of Kupffer cell Fc receptor function following injury may contribute to the impairment of host defense caused by injury.  相似文献   

17.
The influence of thyroid hormone (L-3, 3', 5-triiodothyronine, T3) on Kupffer cell function was studied in the isolated perfused rat liver by colloidal carbon infusion. Rates of carbon uptake were determined from the influent minus effluent concentration difference and the flow rate, and the respective carbon-induced respiratory activity was calculated by integration of the area under the O2 curves during carbon infusion. In the concentration range of 0.2 to 2.0 mg of carbon/ml, livers from euthyroid rats exhibited a sigmoidal-type kinetics of carbon uptake, with a Vmax of 4.8 mg/g liver/min and a concentration of 0.82 mg/ml for half-maximal rate; carbon-induced O2 uptake presented a hyperbolic-type kinetics, with a Vmax of 4.57 μmol of O2/g liver and a Km of 0.74 mg of carbon/ml, which significantly correlates with the carbon uptake rates. Light-microscopy showed that carbon was taken up exclusively by non-parenchymal cells, predominantly by Kupffer cells. Thyroid calorigenesis was found in parallel with increased rates of hepatic O2 consumption and thiobarbituric acid reactive substances (TBARS) formation, glutathione (GSH) depletion, and higher sinusoidal lactate dehydrogenase (LDH) efflux compared to control values. In the concentration range of 0.25 to 0.75 mg/ml, carbon infusion did not modify liver LDH efflux in control rats, while it was significantly enhanced in T3-treated animals. In this latter group, higher carbon concentrations (1 and 1.3 mg/ml) led to loss of viability of the liver. At 0.25 to 0.75 mg of carbon/ml, both the rates of carbon uptake and the associated carbon-induced respiratory activities were significantly increased by T3 treatment, effects that were abolished by pretreatment of the rats with gadolinium chloride (GdCl3). In addition, GdCl3 decreased by 50% the changes induced by T3 in hepatic GSH content and TBARS formation. It is concluded that hyperthyroidism enhances Kupffer cell function, correlated with the increased number of liver macrophages observed histologically, which may represent an alternate source of reactive O2 species to that induced in parenchymal cells, thus contributing to the enhanced oxidative stress status developed.  相似文献   

18.
Summary Light and electron microscopic localization of cathepsin D in rat liver was investigated by post-embedding immunoenzyme and protein A-gold techniques. By light microscopy, cytoplasmic granules of parenchymal cells and Kupffer cells were stained for cathepsin D. Weak staining was also noted in sinusoidal endothelial cells. In the parenchymal cells many of positive granules located around bile canaliculi. In the Kupffer cells and the endothelial cells, diffuse staining was noted in the cytoplasm in addition to granular staining. By electron microscopy, gold particles representing the antigenic sites for cathepsin D were seen in typical secondary lysosomes and some multivesicular bodies of the parenchymal cells and Kupffer cells. The lysosomes of the endothelial cells and fat-storing cells were weakly labeled. Quantitative analysis of the labeling density in the lysosomes of these three types of cells demonstrated that the lysosomes of parenchymal cells and Kupffer cells are main containers of cathepsin D in rat liver. The results suggest that cathepsin D functions in the intracellular digestive system of parenchymal cells and Kupffer cells but not so much in that of the endothelial cells.  相似文献   

19.
Receptor-mediated hepatic uptake of low density lipoproteins (LDL) conjugated to colloidal gold was studied by perfusion of livers from rats treated for 5 d with 17 alpha-ethinylestradiol. Estrogen treatment resulted in a marked decrease in serum lipid and lipoprotein concentrations. After 15 min of perfusion the conjugate was bound to the hepatic microvilli of both control and estrogen-treated rats; the estrogen-treated rats showed an 8- to 11-fold greater number of membrane-bound conjugates. The conjugates were bound to the membrane receptor by the LDL particle because the gold granules were regularly displaced from the membrane by 20 +/- 3.2 nm, the diameter of LDL. Internalization of the conjugate, evident by gold particles in multivesicular bodies, occurred at coated pits at the base of the microvillus where coated vesicles containing a single gold-LDL conjugate were released. After 1 h of perfusion, the livers from the estrogen-treated rats showed all phases of endocytosis and incorporation into multivesicular bodies of the conjugate. After 2 h of perfusion, there was congregation of gold-labeled lysosomes near the bile canaliculi. Gold-LDL conjugates were also observed to bind and be internalized by Kupffer cells and sinusoidal endothelium. These findings indicate that estrogen treatment induces hepatic receptors for LDL. The catabolic pathway of binding and endocytosis of the conjugate is similar to that seen in fibroblasts, although slower. Because gold-LDL conjugates were also present in the Kupffer and endothelial cells, the uptake of LDL by the liver involves the participation of more than a single cell type.  相似文献   

20.
S Yokota  H Tsuji  K Kato 《Histochemistry》1985,82(2):141-148
Light and electron microscopic localization of cathepsin D in rat liver was investigated by post-embedding immunoenzyme and protein A-gold techniques. By light microscopy, cytoplasmic granules of parenchymal cells and Kupffer cells were stained for cathepsin D. Weak staining was also noted in sinusoidal endothelial cells. In the parenchymal cells many of positive granules located around bile canaliculi. In the Kupffer cells and the endothelial cells, diffuse staining was noted in the cytoplasm in addition to granular staining. By electron microscopy, gold particles representing the antigenic sites for cathepsin D were seen in typical secondary lysosomes and some multivesicular bodies of the parenchymal cells and Kupffer cells. The lysosomes of the endothelial cells and fat-storing cells were weakly labeled. Quantitative analysis of the labeling density in the lysosomes of these three types of cells demonstrated that the lysosomes of parenchymal cells and Kupffer cells are main containers of cathepsin D in rat liver. The results suggest that cathepsin D functions in the intracellular digestive system of parenchymal cells and Kupffer cells but not so much in that of the endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号