首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurogenesis, control, and functional significance of gasping   总被引:6,自引:0,他引:6  
Gasps are frequently the first and last breaths of life. Gasping, which is generated by intrinsic medullary mechanisms, differs fundamentally from other automatic ventilatory patterns. A region of the lateral tegmental field of the medulla is critical for the neurogenesis of the gasp but has no role in eupnea. Neuronal mechanisms in separate brain stem regions may be responsible for the neurogenesis of different ventilatory patterns. This hypothesis is supported by the recording of independent respiratory rhythms simultaneously from isolated brain stem segments. Data from fetal and neonatal animals also support gasping and eupnea being generated by separate mechanisms. Gasping may represent the output of a simple but rugged pattern generator that functions as a backup system until the control system for eupnea is developed. Pacemaker elements are hypothesized as underlying the onset of inspiratory activity in gasping. Similar elements, in a different brain stem region, may be responsible for the onset of the eupneic inspiration with neural circuits involving the pons, the medulla, and the spinal cord serving to shape efferent respiratory-modulated neural discharges.  相似文献   

2.
Brain extracellular potassium [( K+]ec) in the ventral respiratory group of the medulla and the phrenic neurogram were recorded in anesthetized vagotomized peripherally chemodenervated ventilated cats during progressive isocapnic carbon monoxide (CO) hypoxia. During hypoxia, the phrenic neurogram was progressively depressed and became silent when arterial O2 content (CaO2) was reduced by 62 +/- 3% (SE). Gasping was seen in the phrenic neurogram when CaO2 was reduced by 78 +/- 1%. Medullary [K+]ec, an indicator of energy production failure due to O2 insufficiency, was 3.2 +/- 0.4 mM before hypoxia and was statistically unchanged at the onset of phrenic apnea during CO hypoxia (4 +/- 0.7 mM). By the onset of gasping, [K+]ec had increased to 6.1 +/- 1 mM, a value that tended to be different from control (P less than 0.1). After initiation of gasping, the rate of rise of [K+]ec increased, and [K+]ec reached a maximum value of 14.3 +/- 2.7 mM before hypoxia was terminated. With reoxygenation, [K+]ec returned to control levels within 20 min. On the basis of these results, we have drawn two major conclusions. 1) Hypoxic depression to the point of phrenic apnea does not appear to be caused by medullary energy insufficiency as measured by loss of [K+]ec homeostasis. 2) The rapid rise in [K+]ec in the medulla that characterizes severe hypoxia is closely associated with the onset of gasping in the phrenic neurogram, suggesting that gasping may serve as a marker for loss of medullary ionic homeostasis and thus onset of medullary energy insufficiency during hypoxia.  相似文献   

3.
Mock cerebrospinal fluid (pH 5.37-8.38) or 2,4-dinitrophenol (DNP) (0.15-1.5 mg) was injected into the subarachnoid space of the ventral brain stem of exteriorized fetal sheep. Changes in pH on the ventral surface of the medulla did not stimulate respiratory efforts or induce significant cardiovascular changes. The respiratory response to DNP injections ranged from no response to prolonged rhythmic ventilation that was independent of the peripheral chemoreceptors or the control arterial pH and blood gas tensions. This inconsistency suggests an effector site somewhat removed from the immediate surface of the medulla. The heart rate and blood pressure were not affected. It is concluded that increased H+ concentration in the extracellular fluid of the fetal ventral medulla does not initiate respiration, and any respiratory response to metabolic inhibitors applied to this area therefore is not attributable to a secondary change in surface pH.  相似文献   

4.
心外膜应用腺苷时c—fos在脊髓延髓和丘脑中的表达   总被引:2,自引:0,他引:2  
马秀英  张连珊 《生理学报》1997,49(4):395-399
在12只切断两侧缓冲神经和迷走神经的麻醉大鼠,观察了心外膜应用腺苷对脊髓,延髓和丘脑c-fos原部基因表达的影响。结果显示:心外膜应用腺苷组大鼠,动脉血压和心率无明显变化;脊髓T3节段背角,延髓巨细胞旁外侧核以及丘脑的腹后外侧核,后核,中央外侧核和束旁核等部位Fos蛋白样免疫阳性反应神经元显著增加;而在溶剂对照组大鼠,仅见少数FLI细胞。  相似文献   

5.
The purpose was to evaluate activities of medullary respiratory neurons during equivalent changes in phrenic discharge resulting from hypercapnia and hypoxia. Decerebrate, cerebellectomized, paralyzed, and ventilated cats were used. Vagi were sectioned at left midcervical and right intrathoracic levels caudal to the origin of right recurrent laryngeal nerve. Activities of phrenic nerve and single respiratory neurons were monitored. Neurons exhibiting antidromic action potentials following stimulations of the spinal cord and recurrent laryngeal nerve were designated, respectively, bulbospinal or laryngeal. The remaining neurons were not antidromically activated. Hypercapnia caused significant augmentations of discharge frequencies for all neuronal groups. Many of these neurons had no change or declines of activity in hypoxia. We conclude that central chemoreceptor afferent influences are ubiquitous, but excitatory influences from carotid chemoreceptors are more limited in distribution among medullary respiratory neurons. Hypoxia will increase activities of neurons that receive sufficient excitatory peripheral chemoreceptor afferents to overcome direct depression by brain stem hypoxia. The possibility that responses of respiratory muscles to hypoxia are programmed within the medulla is discussed.  相似文献   

6.
家兔延髓腹侧防御反应相关神经元   总被引:1,自引:0,他引:1  
实验在25只乌拉坦(700m/kg)、氯醛糖(35mg/kg)麻醉,肌肉麻痹,人工呼吸的家兔上进行。第一组16只家兔中,单或双脉冲刺激下丘脑和中脑防御反应区,在延髓腹侧记录刺激所兴奋的单位。大部分单位分布于网状巨细胞核腹侧α部。52%的单位有自发放电活动。用阈下强度同时刺激下丘脑和中脑,97%单位有兴奋反应,提示家兔下丘脑和中脑防御反应区在延髓腹侧有聚合投射。第二组9只家兔中,在延髓腹表面单侧应用甘氨酸滤纸片或电凝损毁时,血压轻度下降,刺激下丘脑和中脑防御反应区引起的升压反应也部分被阻断。双侧应用甘氨酸或损毁,血压下降到脊动物水平,升压反应几乎完全被阻断。上述结果提示家兔延髓腹侧神经元在维持正常血压水平和在中继防御反应传出通路中起重要作用。  相似文献   

7.
Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge.  相似文献   

8.
We hypothesized that a discrete medullary locus, critical for gasping neurogenesis, could be identified. In decerebrate, cerebellectomized, vagotomized, paralyzed, and ventilated cats, activities of phrenic, hypoglossal, and recurrent laryngeal nerves were monitored. Gasping was induced by freezing the brain stem, via a fork thermode, at the pontomedullary junction. By reversible cooling of the medulla, chemical lesions with kainic acid, and radio-frequency lesions, a critical area for gasping neurogenesis was localized bilaterally 2-3 mm rostral to obex, 2.0-2.5 mm lateral to midline, and 3-4 mm ventral to medullary surface. Electrical stimulation in this area elicited premature gasps, whereas unilateral lesions or lidocaine injections eliminated gasping activities in all nerves. These procedures did not cause similar changes during eupnea. In apneusis, however, lidocaine injections markedly altered the pattern or caused apnea. We conclude that discharge of neurons in a discrete portion of the lateral tegmental field of medulla is required for gasping neurogenesis. Our results are consistent with these neurons comprising the central pattern generator for gasping.  相似文献   

9.
Ventral medullary blood flow was measured in 33 chloralose-urethan anesthetized cats during 60 min of isocapnia-hypoxia, mild hypocapnia-hypoxia, or severe hypocapnia-hypoxia. In an additional group of six animals we measured ventral medullary extracellular fluid (ECF) pH during mild hypocapnia-hypoxia. The increase in blood flow during hypoxia was reduced by mild hypocapnia and eliminated by severe hypocapnia. With the exception of an initial decrease in ECF [H+], which occurred during the first 10 min of mild hypocapnia-hypoxia, ECF [H+] increased progressively throughout the exposure and recovery periods and was significantly elevated from the control value by the first 10 min of the recovery period. The results suggest that hypocapnia affects the hypoxic cerebrovascular response of the ventral medulla and that this phenomenon could affect the regulation of ventral medullary ECF [H+].  相似文献   

10.
The topographic relationship between previously identified medullary ventral surface respiratory chemosensitive regions and brain surface extracellular fluid (ECF) acid production during acute hypoxia was explored in anesthetized, paralyzed, and artificially ventilated cats. Glass pH electrodes (0.8-mm diam, sheathed in stainless steel tubing) were mounted in mechanical contact with surfaces of medullary surface or adjacent pyramids, pons, spinal cord, or parietal cortex. Isocapnic hypoxia of 5 min [at arterial O2 saturation (SaO2) = 48 +/- 10%] reduced pH over rostral (Mitchell) and caudal (Loeschcke) areas by 0.12 +/- 0.09 and 0.07 +/- 0.04, respectively (n = 10, P < 0.05). Change in pH (delta pH) was proportional to desaturation with slopes 100 delta pH/delta SaO2 of 0.45 (rostral) and 0.20 (caudal) (R = 0.91 and 0.88, respectively). pH drop usually began within 3 min of hypoxia, became stable between 5 and 15 min, began to rise within 2 min of reoxygenation, and returned to control within 10 min. During equally hypoxic tests, intermediate area (Schl?fke), pons, and spinal cord surfaces showed no significant acid shift. Parietal cortex ECF pH dropped more slowly but steadily by 0.079 +/- 0.034 during 20 min at SaO2 = 50% after a small but significant initial alkaline shift, and acidification of cortical surface continued for > 5 min after reoxygenation. We conclude that medullary ventral chemosensitive regions produce more lactic acid during hypoxia than neighboring brain surfaces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The respiratory pattern of gasping has been characterized on the phrenic nerve as rapidonset, rapid-rise, large-amplitude bursts of neural activity. Furthermore, medullary sites critical for the neurogenesis of gasping have been identified and are not the sites of identified respiratory neurons, such as the dorsal and ventral respiratory groups. I classified envelopes of phrenic nerve activity as eupneic breaths, or gasps based on the time-domain features of duration, shape, and amplitude. Gasps were elicited by hypoxia and low blood pressure in 9 of 12 decerebrate cats. Inspiratory times were 1.15 +/- 0.43 (SD) for eupneic breaths and 0.55 +/- 0.18s for gasps. The high-frequency peaks in the power spectra of phrenic nerve activity were at 80 +/- 13 Hz for eupneic breaths and at 120 +/- 21 Hz for gasps. Three of the 12 cats developed a breathing pattern that began as a normal breath and terminated in a gasp. Power spectra of the normal portion had eupneic spectral peaks (75 +/- 24 Hz); power spectra of the gasp portion had the high peaks at 110 +/- 23 Hz, a value 1.5 times higher than that for the normal peaks. Although this analysis of peripheral nerve activity cannot distinguish between two central pattern generators at two distinct anatomical sites or one pattern generator operating in two distinct modes, the fact that gasps were much shorter in duration and had markedly higher spectral peaks than control breaths supports the idea that the central pattern generator for gasping is not the central pattern generator for eupnea.  相似文献   

12.
Renal medullary hypoxia‐inducible factor (HIF)‐1α and its target genes, such as haem oxygenase and nitric oxide synthase, have been indicated to play an important role in the regulation of sodium excretion and blood pressure. HIF prolyl hydroxylase domain‐containing proteins (PHDs) are major enzymes to promote the degradation of HIF‐1α. We recently reported that high salt intake suppressed the renal medullary PHD2 expression and thereby activated HIF‐1α‐mediated gene regulation in the renal medulla in response to high salt. To further define the functional role of renal medullary PHD2 in the regulation of renal adaptation to high salt intake and the longer term control of blood pressure, we transfected PHD2 expression plasmids into the renal medulla in uninephrectomized rats and determined its effects on pressure natriuresis, sodium excretion after salt overloading and the long‐term control of arterial pressure after high salt challenge. It was shown that overexpression of PHD2 transgene increased PHD2 levels and decreased HIF‐1α levels in the renal medulla, which blunted pressure natriuresis, attenuated sodium excretion, promoted sodium retention and produced salt sensitive hypertension after high salt challenge compared with rats treated with control plasmids. There was no blood pressure change in PHD2‐treated rats that were maintained in low salt diet. These results suggested that renal medullary PHD2 is an important regulator in renal adaptation to high salt intake and a deficiency in PHD2‐mediated molecular adaptation in response to high salt intake in the renal medulla may represent a pathogenic mechanism producing salt sensitive hypertension.  相似文献   

13.
Electrical stimulation (50-150 microA, 0.5-ms duration, 3-300 Hz) was performed within three different regions (lateral, ventrolateral, and ventral) of the C2-C3 spinal cord of decerebrate, vagotomized, paralyzed, and artificially ventilated cats. Spinal cord stimulation sites were located by inserting monopolar or bipolar stimulating electrodes either at the dorsolateral sulcus or at least 1 mm medial or lateral to the sulcus. With stimulation at each site, alterations in respiratory rhythm, orthodromic phrenic nerve responses, and antidromic activation of medullary respiratory-modulated neurons were examined. Phrenic nerve responses to cervical spinal cord stimulation consisted of an early excitation (2-4 ms) and/or a late excitation (4-8 ms). Stimulation of the lateral region evoked the greatest amplitude early response and stimulation of the ventrolateral region produced the greatest late excitation. All three stimulus sites elicited antidromic activation of some respiratory-modulated neurons in the dorsal (DRG) and ventral respiratory groups (VRG). The lateral region was the least effective resetting site, and it had the highest incidence of antidromic activation of both DRG and VRG neurons. The ventrolateral region of the cervical spinal cord was the most effective resetting site, but it had the lowest incidence of antidromic activation of DRG respiratory-modulated neurons. In addition, resetting responses were observed with spinal cord stimulation at similar sites in the thoracic and lumbar spinal cord regions thought to be devoid of inspiratory bulbospinal axons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
St. John, Walter M. Medullary regions for neurogenesisof gasping: noeud vital or noeuds vitals? J. Appl.Physiol. 81(5): 1865-1877, 1996.Gasping isa critical mechanism for survival in that it serves as a mechanism forautoresuscitation when eupnea fails. Eupnea and gasping are separablepatterns of automatic ventilatory activity in all mammalian speciesfrom the day of birth. The neurogenesis of the gasp is dependent on thedischarge of neurons in the rostroventral medulla. This gasping centeroverlaps a region termed "the pre-Bötzinger complex."Neuronal activities of this complex, characterized in an in vitro brainstem spinal cord preparation of the neonatal rat, have beenhypothesized to underlie respiratory rhythm generation. Yet, therhythmic activity of this in vitro preparation is markedly differentfrom eupnea but identical with gasping in vivo. In eupnea, medullaryneuronal activities generating the gasp and the identical rhythm of the in vitro preparation are incorporated into a portion of thepontomedullary circuit defining eupneic ventilatory activity. However,these medullary neuronal activities do not appear critical for theneurogenesis of eupnea, per se.

  相似文献   

15.
The purpose of this study was to determine the effect of blocking synaptic transmission in the dorsal horn on the cardiovascular responses produced by activation of muscle afferent neurons. Synaptic transmission was blocked by applying the GABA(A) agonist muscimol to the dorsal surface of the spinal cord. Cats were anesthetized with alpha-chloralose and urethane, and a laminectomy was performed. With the exception of the L(7) dorsal root, the dorsal and ventral roots from L(5) to S(2) were sectioned on one side, and static contraction of the ipsilateral triceps surae muscle was evoked by electrically stimulating the peripheral ends of the L(7) and S(1) ventral roots. The dorsal surface of the L(4)--S(3) segments of the spinal cord were enclosed within a "well" created by applying layers of vinyl polysiloxane. Administration of a 1 mM solution of muscimol (based on dose-response data) into this well abolished the reflex pressor response to contraction (change in mean arterial blood pressure before was 47 +/- 7 mmHg and after muscimol was 3 +/- 2 mmHg). Muscle stretch increased mean arterial blood pressure by 30 +/- 8 mmHg before muscimol, but after drug application stretch increased MAP by only 3 +/- 2 mmHg. Limiting muscimol to the L(7) segment attenuated the pressor responses to contraction (37 +/- 7 to 24 +/- 11 mmHg) and stretch (28 +/- 2 to 16 +/- 8 mmHg). These data suggest that the dorsal horn of the spinal cord contains an obligatory synapse for the pressor reflex. Furthermore, these data support the hypothesis that branches of primary afferent neurons, not intraspinal pathways, are responsible for the multisegmental integration of the pressor reflex.  相似文献   

16.
The role of a sudden increase in brain perfusion on ventral medullary surface pH (Vm pH) and minute ventilation (VI) was assessed in anesthetized peripherally chemo denervated cats. Acute hypertension (AH), produced by rapid inflation of an aortic balloon, and hypoxemia, produced with either inhalation of 1% CO (COHx) or inhalation of a hypoxic gas (HHx), were used to increase brain blood flow. In the AH group, increasing arterial blood pressure (from 122 +/- 3 to 180 +/- 5 mmHg) caused a rapid (less than 5 s) increase in Vm pH in every trial (n = 18). Associated with the mean peak increases in Vm pH (0.003 +/- 0.0004 pH units) were significant decrease in tidal volume (7-9%). In the COHx group, 17% HbCO caused a significant increase in Vm pH (0.003 +/- 0.0005 pH unit) and diminution of VI (9%). Further increases in HbCO caused a progressive ventral medullary acidosis and greater reductions in VI. The results from the HHX group were qualitatively similar to the COHx group; there was a biphasic response of Vm pH, i.e., an initial increase in Vm pH (0.008 +/- 0.001) followed by a steady decrease in Vm pH, with reductions in VI associated with both phases. We conclude that hyperperfusion, per se, produces an increase in Vm pH and a reduction in VI equivalent in magnitude to that predicted from the CO2 stimulus-response curve; the alkalotic shift in Vm pH and concomitant diminution in VI associated with mild hypoxia is probably related to an increase in ventral medullary perfusion; and the ventilatory depression associated with the medullary acidosis of moderate brain hypoxia must be attributed to another mechanism.  相似文献   

17.
We performed anatomical and physiological studies to determine the site and actions of sulfated cholecystokinin octapeptide (CCK8-S) on breathing. Peptide locations were determined by combined immunodetection of CCK8-S- containing synaptic varicosities and retrograde labeling of medullary neurons projecting to the ventral respiratory group. Retrogradely labeled neurons and CCK8-S immunolabeled varicosities overlapped within the nuclei of the solitary tract, ventral respiratory group, and the Kolliker-Fuse nucleus. Additional CCK8-S immunoreactive terminals were located in the rostroventrolateral medullary reticular nucleus, lateral paragigantocellular reticular nucleus, and the caudal pontine reticular nucleus. The respiratory effects of CCK8-S, which binds to CCK(A) and CCK(B) receptors, were examined by intravenous injection in adult rats and by bath application in the in vitro neonatal rat brainstem - spinal cord preparation. CCK8-S produced an increase in the mean amplitude of diaphragmatic electromyogram (EMG) of 28 +/- 35% (SD) and a decrease in mean respiratory interval of 13 +/- 4% in vivo. In vitro, CCK8-S significantly increased inspiratory duration and decreased respiratory interval, primarily by shortening expiratory duration. CCK8-unsulfated, a specific agonist for CCK(B) receptors, did not produce these effects. CCK8-S effects in the in vitro preparation were partially blocked by the CCK receptor antagonist lorglumide (final bath concentration 600 nM). These results suggest that CCK8-S modulates the respiratory rhythm via CCK(A) receptors within one or more medullary or pontine respiratory groups in both neonatal and adult rats.  相似文献   

18.
Studies in cats have shown that, in addition to respiratory neuron groups in the dorsomedial (DRG) and ventrolateral (VRG) medulla, neural structures in the most ventral medullary regions are important for the maintenance of respiratory rhythm. The purpose of this study was to determine whether a similar superficially located ventral region was present in the dog and to assess the role of each of the other regions in the canine medulla important in the control of breathing, in 20 anesthetized, vagotomized, and artificially ventilated dogs, a cryoprobe was used to cool selected regions of the medulla to 15-20 degrees C. Respiratory output was determined from phrenic nerve or diaphragm electrical activity. Cooling in or near the nucleus of the solitary tract altered timing and produced little change in the amplitude or rate of rise of inspiratory activity; lengthening of inspiratory time was the most common timing effect observed. Cooling in ventrolateral regions affected the amplitude and rate of rise of respiratory activity. Depression of neural tidal volume and apnea could be produced by unilateral cooling in two ventrolateral regions: 1) near the nucleus ambiguus and nucleus para-ambiguus and 2) just beneath the ventral medullary surface. These findings indicate that in the dog dorsomedial neural structures influence respiratory timing, whereas more ventral structures are important to respiratory drive.  相似文献   

19.
We examined the effects of destroying bulbospinal catecholaminergic neurons with the immunotoxin anti-dopamine beta-hydroxylase-saporin (anti-DbetaH-Sap) on splanchnic nerve activity (SNA) and selected sympathetic reflexes in rats. Anti-DbetaH-Sap was administered into the thoracic spinal cord with the retrograde tracer fast blue. After 3-5 wk, anti-DbetaH-Sap eliminated most bulbospinal C1 (>74%), C3 ( approximately 84%), A5 ( approximately 98%), and A6 cells. Noncatecholaminergic bulbospinal neurons of the rostral ventrolateral medulla and serotonergic neurons were spared. Under chloralose anesthesia, mean arterial pressure and heart rate of anti-DbetaH-Sap-treated rats (3-5 wk) were normal. Resting SNA was not detectably altered, but the baroreflex range and gain were reduced approximately 40% (P < 0.05). Phenyl biguanide-induced decreases in mean arterial pressure, heart rate, and SNA were unchanged by anti-DbetaH-Sap, but the sympathoexcitatory response to intravenous cyanide was virtually abolished (P < 0.05). Rats that received spinal injections of saporin conjugated to an anti-mouse IgG had intact bulbospinal C1 and A5 cells and normal physiological responses. These data suggest that C1 and A5 neurons contribute modestly to resting SNA and cardiopulmonary reflexes. However, bulbospinal catecholaminergic neurons appear to play a prominent sympathoexcitatory role during stimulation of chemoreceptors.  相似文献   

20.
Respiratory network plasticity is a modification in respiratory control that persists longer than the stimuli that evoke it or that changes the behavior produced by the network. Different durations and patterns of hypoxia can induce different types of respiratory memories. Lateral pontine neurons are required for decreases in respiratory frequency that follow brief hypoxia. Changes in synchrony and firing rates of ventrolateral and midline medullary neurons may contribute to the long-term facilitation of breathing after brief intermittent hypoxia. Long-term changes in central respiratory motor control may occur after spinal cord injury, and the brain stem network implicated in the production of the respiratory rhythm could be reconfigured to produce the cough motor pattern. Preliminary analysis suggests that elements of brain stem respiratory neural networks respond differently to hypoxia and hypercapnia and interact with areas involved in cardiovascular control. Plasticity or alterations in these networks may contribute to the chronic upregulation of sympathetic nerve activity and hypertension in sleep apnea syndrome and may also be involved in sudden infant death syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号