首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mai Y  Gao G 《PloS one》2010,5(12):e15881
Murine leukemia virus (MLV)-based retroviral vector is widely used for gene transfer. Efficient packaging of the genomic RNA is critical for production of high-titer virus. Here, we report that expression of the insulin-like growth factor II mRNA binding protein 1 (IMP1) enhanced the production of infectious MLV vector. Overexpression of IMP1 increased the stability of viral genomic RNA in virus producer cells and packaging of the RNA into progeny virus in a dose-dependent manner. Downregulation of IMP1 in virus producer cells resulted in reduced production of the retroviral vector. These results indicate that IMP1 plays a role in regulating the packaging of MLV genomic RNA and can be used for improving production of retroviral vectors.  相似文献   

2.
3.
4.
Human immunodeficiency virus (HIV, lentivirus) vector has attractive features for gene therapy, including the ability to transduce non-dividing cells and long-term transgene expression. We have already reported that lentivirus vector can transduce well-differentiated rat cardiac myocytes. Endothelial cells (EC) are an attractive target for gene therapy, both for the treatment of cardiovascular disease and for the systemic delivery of recombinant gene products directly into the circulation. There are several reports regarding application of adenovirus and retrovirus based vectors to EC. However, there have been few reports which show the effect to lentivirus-mediated gene transfer efficiency, compared with adenovirus and retrovirus. In this study, bovine aortic endothelial cells (BAECs) were infected, in vitro, with these virus vectors. Transduction efficiency (TE) of beta-Gal gene transfer in BAECs by adenovirus, lentivirus, or retrovirus at MOI10 (Multiplicity of infection) (determined on Hela cells) is 69+/-11, 33+/-8, or 22+/-6% respectively. In adenovirus and lentivirus, almost 100% of BAECs were transduced at MOI 50. However, in retrovirus, TE showed only 48+/-6% at MOI 50 and no increase at MOI 100. The percentage of beta-Gal positive cells was decreased rapidly at longer passage of cells after being transduced by adenovirus. However, lentivirus and retrovirus showed sustained higher percentage of positive cells. Furthermore, transduction by lentiviral vectors had no significant effect on viability of BAECs. Our results indicate that lentivirus showed high-level and long term gene expression in BAECs. Lentivirus can be an effective vector for the ex vivo, genetically modified EC implantation and in vivo gene therapy.  相似文献   

5.
During the past decade, lentiviral vectors based on the HIV-1 genome have been developed to become highly useful tools for efficient and stable delivery of transgenes to dividing and nondividing cells in a variety of experimental protocols. The vector system has been progressively and substantially improved, mainly to meet growing concerns over safety issues. However, the actual design and size of the lentiviral transfer vector often makes transgene cloning and DNA preparation a troublesome task. In this study, the pHR transfer vector used for lentivirus production in many laboratories was modified to contain a more versatile polylinker than the one present in the original pHR vector. In addition, the vector was significantly reduced in size from 12 to 7 kb, by replacing the original vector backbone with sequence from the multipurpose pUC18 vector. These modifications allowed for easier cloning and higher DNA yields without compromising the fundamental ability of this vector system to transduce cells in vitro and in vivo. Finally, the trimmed vector sequence was fully characterized by sequencing the vector in its entirety. In both cultured cells and directly into the rat striatum, transduction with this lentivirus, based on the modified pHsCXW vector, was as efficient and durable as with the pHR vector-based virus. In conclusion, the modified lentiviral transfer vector pHsCXW holds promise as a new valuable tool for the research community in the field of gene transfer.  相似文献   

6.
慢病毒载体的设计及应用进展   总被引:2,自引:0,他引:2  
慢病毒载体是一类重组逆转录病毒载体,由于其结构和功能的特点作为一种重要的基因转移工具被应用于基因治疗和细胞分子生物学研究领域。目前,为进一步完善慢病毒载体的功能,研究者们从提高载体的生物安全性及增强外源基因的表达调控能力等方面对慢病毒载体进行了改建。本文对慢病毒载体的设计进展及应用进行了简要综述,展望了今后的研究前景。  相似文献   

7.
For skin gene therapy, introduction of a desired gene into keratinocyte progenitor or stem cells could overcome the problem of achieving persistent gene expression in a significant percentage of keratinocytes. Although keratinocyte stem cells have not yet been completely characterized and purified for gene targeting purposes, lentiviral vectors may be superior to retroviral vectors at gene introduction into these stem cells, which are believed to divide and cycle slowly. Our initial in vitro studies demonstrate that lentiviral vectors are able to efficiently transduce nondividing keratinocytes, unlike retroviral vectors, and do not require the lentiviral accessory genes for keratinocyte transduction. When lentiviral vectors expressing green fluorescent protein (GFP) were directly injected into the dermis of human skin grafted onto immunocompromised mice, transduction of dividing basal and nondividing suprabasal keratinocytes could be demonstrated, which was not the case when control retroviral vectors were used. However, flow cytometry analysis demonstrated low transduction efficiency, and histological analysis at later time points provided no evidence for progenitor cell targeting. In an alternative in vivo method, human keratinocytes were transduced in tissue culture (ex vivo) with either lentiviral or retroviral vectors and grafted as skin equivalents onto immunocompromised mice. GFP expression was analyzed in these human skin grafts after several cycles of epidermal turnover, and both the lentiviral and retroviral vector-transduced grafts had similar percentages of GFP-expressing keratinocytes. This ex vivo grafting study provides a good in vivo assessment of gene introduction into progenitor cells and suggests that lentiviral vectors are not necessarily superior to retroviral vectors at introducing genes into keratinocyte progenitor cells during in vitro culture.  相似文献   

8.
Effective gene therapy with nonintegrating lentiviral vectors   总被引:7,自引:0,他引:7  
Retroviral and lentiviral vector integration into host-cell chromosomes carries with it a finite chance of causing insertional mutagenesis. This risk has been highlighted by the induction of malignancy in mouse models, and development of lymphoproliferative disease in three individuals with severe combined immunodeficiency-X1 (refs. 2,3). Therefore, a key challenge for clinical therapies based on retroviral vectors is to achieve stable transgene expression while minimizing insertional mutagenesis. Recent in vitro studies have shown that integration-deficient lentiviral vectors can mediate stable transduction. With similar vectors, we now show efficient and sustained transgene expression in vivo in rodent ocular and brain tissues. We also show substantial rescue of clinically relevant rodent models of retinal degeneration. Therefore, the high efficiency of gene transfer and expression mediated by lentiviruses can be harnessed in vivo without a requirement for vector integration. For therapeutic application to postmitotic tissues, this system substantially reduces the risk of insertional mutagenesis.  相似文献   

9.
Murine leukemia virus (MLV)-based retroviral vectors is widely used for gene transfer and basic research, and production of high-titer retroviral vectors is very important. Here we report that expression of the Y-box binding protein 1 (YB-1) enhanced the production of infectious MLV vectors. YB-1 specifically increased the stability of viral genomic RNA in virus-producing cells, and thus increasing viral RNA levels in both producer cells and virion particles. The viral element responsive to YB-1 was mapped to the repeat sequence (R region) in MLV genomic RNA. These results identified YB-1 as a MLV mRNA stabilizer, which can be used for improving production of MLV vectors.  相似文献   

10.

Background  

Lentiviral vectors are efficient vehicles for stable gene transfer in dividing and non-dividing cells. Several improvements in vector design to increase biosafety and transgene expression, have led to the approval of these vectors for use in clinical studies. Methods are required to analyze the quality of lentiviral vector production, the efficiency of gene transfer and the extent of therapeutic gene expression.  相似文献   

11.
12.
可诱导慢病毒载体的优化策略及应用   总被引:1,自引:1,他引:0  
以1型人免疫缺陷病毒(HIV-1)为基础构建的慢病毒载体具有可感染非分裂细胞、免疫反应小、携带的基因片段容量大和可整合进宿主基因组而长期表达等优点,因而成为最理想的基因转移载体之一。可诱导慢病毒载体介导的可诱导基因表达系统能够有效控制目的基因表达,扩大了慢病毒载体的临床应用潜能,成为很有前景的基因治疗载体。主要介绍带有四环素和其他几种诱导系统的可调控性慢病毒载体及其改进,以及可诱导慢病毒载体在RNA干扰中的应用。  相似文献   

13.
Retroviral vectors have yet not been tested for their potential as vaccines despite their frequent utilization in gene therapy allowing for highly efficient gene transfer into a number of cell types and their suitability for large-scale production in biotechnology. To investigate MLV-based vectors suitability for inducing immune response against HIV-1-antigens, we generated a MLV(HIV-1) pseudotype vector enabling CD4-specific transduction of HIV-1 genes env, vpu, tat and rev originating from the pathogenic SHIV-89.6P. Functional expression of the lentiviral genes in packaging cells, human and rhesus CD4+ target cells was demonstrated by various assays. Following highly efficient ex vivo transduction, up to 3.4x10(7) autologous, transfer vector-positive rhesus peripheral blood mononuclear cells (rhPBMCs) were re-inoculated into a rhesus macaque. Five weeks after the initial inoculation HIV-1 Env-specific antibodies were detected using ELISA. ELIspot-assay revealed the induction of a HIV-1 Rev and Env-specific CTL-response 7.5 weeks after immunization. Thus, these novel MLV(HIV-1) vectors facilitate efficient transduction and subsequent expression of HIV-1-genes in CD4-positive host cells. Induction of both humoral and cellular HIV-1-specific immune responses in vivo confirmed their potential as an effective HIV-1 vaccine to be further studied in SHIV/rhesus macaque model of lentivirus infection.  相似文献   

14.
Currently, amphotropic retroviral vectors are widely used for gene transfer into CD34+ hematopoietic progenitor cells. The relatively low levels of transduction efficiency associated with these vectors in human cells is due to low viral titers and limitations in concentrating the virus because of the inherent fragility of retroviral envelopes. Here we show that a human immunodeficiency virus type 1 (HIV-1)-based retroviral vector containing the firefly luciferase reporter gene can be pseudotyped with a broad-host-range vesicular stomatitis virus envelope glycoprotein G (VSV-G). Higher-efficiency gene transfer into CD34+ cells was achieved with a VSV-G-pseudotyped HIV-1 vector than with a vector packaged in an amphotropic envelope. Concentration of virus without loss of viral infectivity permitted a higher multiplicity of infection, with a consequent higher efficiency of gene transfer, reaching 2.8 copies per cell. These vectors also showed remarkable stability during storage at 4 degrees C for a week. In addition, there was no significant loss of titer after freezing and thawing of the stock virus. The ability of VSV-G-pseudotyped retroviral vectors to achieve a severalfold increase in levels of transduction into CD34+ cells will allow high-efficiency gene transfer into hematopoietic progenitor cells for gene therapy purposes. Furthermore, since it has now become possible to infect CD34+ cells with pseudotyped HIV-1 with a high level of efficiency in vitro, many important questions regarding the effect of HIV-1 on lineage-specific differentiation of hematopoietic progenitors can now be addressed.  相似文献   

15.
We have constructed and characterized a Rous sarcoma virus-based retroviral vector with the host range of the amphotropic murine leukemia virus (MLV). The chimeric retroviral genome was created by replacing the env coding region in the replication-competent retroviral vector RCASBP(A) with the env region from an amphotropic MLV. The recombinant vector RCASBP-M(4070A) forms particles containing MLV Env glycoproteins. The vector replicates efficiently in chicken embryo fibroblasts and is able to transfer genes into mammalian cells. Vector stocks with titers exceeding 10(6) CFU/ml on mammalian cells can be easily prepared by passaging transfected chicken embryo fibroblasts. Since the vector is inherently defective in mammalian cells, it appears to have the safety features required for gene therapy.  相似文献   

16.
17.
Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer.  相似文献   

18.
19.
Gene transfer into mammalian somatic cells in vivo.   总被引:3,自引:0,他引:3  
Direct gene transfer into mammalian somatic tissues in vivo is a developing technology with potential application for human gene therapy. During the past 2 years, extensive progress and numerous breakthroughs have been made in this area of research. Genetically engineered retroviral vectors have been used successfully to infect live animals, effecting foreign gene expression in liver, blood vessels, and mammary tissues. Recombinant adenovirus and herpes simplex virus vectors have been utilized effectively for in vivo gene transfer into lung and brain tissues, respectively. Direct injection or particle bombardment of DNA has been demonstrated to provide a physical means for in situ gene transfer, while carrier-mediated DNA delivery techniques have been extended to target specific organs for gene expression. These technological developments in conjunction with the initiation of the NIH human gene therapy trials have marked a milestone in developing new medical treatments for various genetic diseases and cancer. Various in vivo gene transfer techniques should also provide new tools for basic research in molecular and developmental genetics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号