首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described allowing the identification and separation of the sulphate esters of the glycol metabolites of [14C]noradrenaline injected into the lateral ventricle of the rat. The esters of both the 3,4-dihydroxy derivative and the 3-methoxy-4-hydroxy derivative are formed in substantial amounts. It is suggested that the quantity of the former may have been underestimated in the past. Contemporaneous administration of pyrogallol, a catechol-O-methyl transferase inhibitor, with [14C] noradrenaline leads to a considerable fall in 3-methoxy-4-hydroxyphenylglycol sulphate without a rise in 3-4-dihydroxyphenylglycol sulphate although free 3-4-dihydroxyphenylglycol rises significantly. It is proposed that the latter may be an index of intraneuronal metabolism of noradrenaline and 3-methoxy-4-hydroxyphenylglycol that of released amine.  相似文献   

2.
—Clearance of [14C]DOPA and [14C]dopamine from CSF was investigated in anaesthetized rhesus monkeys (M. Mulatta) subjected to ventriculocisternal perfusion. The efflux coefficients, kVE, at tracer concentrations (3–5 m ) in the perfusate were 0.0487 ml/min and 0.0325 ml/min for [14C]DOPA and [14C]dopamine, respectively. Carrier DOPA (10 mm ) in the perfusate decreased the efflux of [14C]DOPAsignificantly, but carrier dopamine had no appreciable effect on the clearance of [14C]dopamine. These findings suggest that DOPA is cleared from CSF in part by a saturable mechanism which may be located in the choroid plexus, whereas dopamine leaves the ventricular system by passive diffusion. Radioactivity in the caudate nucleus immediately adjacent to the perfused ventricle averaged 15.5 % and 12.6% of the radioactivity in the perfusates with [14C]DOPA or [14C]dopamine, respectively. These distribution percentages were similar to those found for various extracellular indicators after ventriculocisternal perfusion and may indicate that the efflux of intraventricularly-administered exogenous DOPA and dopamine occurs in part through extracellular channels.  相似文献   

3.
The percentages of labelled lymphocytes in smear preparations of mouse thymus were higher than those in similar preparations of mesenteric lymph nodes with either generally labelled tritiated deoxycytidine, [3H]CdR, or tritiated thymidine, [3H]TdR. Lymphocytes in the thymus cortex and in germinal centres of mesenteric lymph nodes were intensely labelled with [3H]CdR, whereas with [3H]TdR lymphocytes in the peripheral region of thymus and medullary cords of mesenteric lymph nodes were heavily labelled. The majority of lymphocytes in thymic cortex and germinal centres of mesenteric lymph nodes were labelled weakly with [3H]TdR. Thus, labelling patterns with [3H]CdR differed from those with [3H]TdR in lymphoid tissues of the mouse. Mouse lymphocytes can utilize [3H]CdR as a precursor molecule for cytosine and thymine in DNA. The ratio of radioactivity of thymine to that of cytosine was measured biochemically in DNA extracted from lymphocytes labelled with [3H]CdR. This radioactivity ratio in thymus was higher than that in mesenteric lymph nodes. These results suggest that the metabolic activities of utilizing CdR for DNA synthesis differ within lymphocyte populations in various lymphoid tissues in the mouse.  相似文献   

4.
Abstract The binding of [3H]aspartate and [3H]glutamate to membranes prepared from frozen human cerebellar cortex was studied. The binding sites differed in their relative proportions, their inhibition by amino acids and analogues, and by the effects of cations. A proportion (about 30%) of [3H]glutamate binding was to sites similar to those labelled by [3H]aspartate. An additional component of [3H]gluta-mate binding (about 50%) was displaced by quisqualate and aL-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and may represent a “quisqualate-preferring” receptor. Neither N-methyl-d-aspartic acid-sensitive nor dl-2-amino-4-phosphonobutyric acid-sensitive [3H]glutamate binding was detected.  相似文献   

5.
Abstract— A new combined ion-exchange and thin-layer-chromatographic procedure is described which separates and measures quantitatively, after intraventricular injection of [3H]dopamine (DA), the rat brain content of labelled noradrenaline (NA) and the following labelled noradrenaline metabolites: free 3-methoxy-4-hydroxyphenylethyleneglycol (MOPEG), conjugated MOPEG, free plus conjugated dihydroxyphenylethyleneglycol (DOPEG), vanillic mandelic acid (VMA) and normetanephrine (NM). Labelled dopamine and its metabolites were also measured. The time-course study performed from 5 min to 24 h after [3H]DA showed that MOPEG and DOPEG, mainly as conjugates, are major NA metabolites whereas VMA is a very insignificant NA metabolite in the rat brain. A very rapid initial increase of [3H]NM, free MOPEG and conjugated MOPEG was found during the time interval where the [3H]NA biosynthesis is very high (0–15 min). This combined with the finding that these metabolites stabilize at lower levels during the [3H]NA ‘storage phase’ (9–24 h) provides a strong indication that newly synthesized NA preferentially is metabolized. Our measurements of endogenous NA, free MOPEG and conjugated MOPEG provide additional support. The injections of various decreasing doses of [3H]DA (3·08–0·0010 μg) showed that the proportions of total [3H]MOPEG and total [3H]DOPEG to [3H]NA were constant after all [3H]DA doses investigated. This finding indicates that the [3H]NA synthesized in situ behaves as a tracer, even after injections of non-tracer doses of [3H]DA. The results seem thus to indicate that the present technique provides a powerful tool for the investigations on central noradrenaline metabolism.  相似文献   

6.
The distribution of [14C]-labelled material into subcellular fractions of 15-day-old rat brain was studied at 2 and 24 h following intraperitoneal and intracerebral injection of [2-14C]sodium acetate, [U-14C]glucose and [2-14C]mevalonic acid respectively. The total quantity of labelled isoprenoids in the brain was, except for glucose, greater when the precursor was administered intracerebrally. The intraperitoneal route was more advantageous in the case of [U-14C]glucose. The subcellular distribution of both labelled total isoprenoid material and sterol was distinct for each labelled precursor. Intracerebrally injected [U-14C]glucose at both time periods studied suggested no dominance of labelling in any fraction. After intraperitoneal injection of [U-14C]glucose the microsomes were more prominently labelled. Both methods of administration of sodium [2-14C]acetate resulted in heavy labelling of the myelin fraction after 24 h. The total labelled isoprenoids resided mainly in the microsomes 24 h after injection of [2-14C]mevalonic acid. Labelled sterol was found to be localized more in the myelin and microsomal fractions for all three precursors than was the labelled total isoprenoids. Depending on the type of experiment to be conducted, each of these precursors can give different results, which must be interpreted accordingly.  相似文献   

7.
Abstract— A new procedure is described for the estimation of [3H]noradrenaline (NA) and its major metabolites free and conjugated 3-methoxy-4-hydroxyphenylglycol (MOPEG) and free and conjugated 3,4-dihydroxyphenylglycol (DOPEGI in the rat brain. The procedure involves adsorption on to alumina, cation exchange chromatography. enzymatic hydrolysis of conjugates and thin-layer-chromatography after intraventricular (IVT) or intravenous injection of [3H]tyrosine. In a time-course study the formation and accumulation of the metabolites have been measured from 15min to 23h after IVT injection of [3H]tyrosine. [3H]MOPEG and [3H]DOPEG were found in almost equal amounts during the synthesis phase of [3H]NA as well as during the storage and disappearance phase of [3H]NA. The maximum levels of conjugated [3H]MOPEG and conjugated [3H]DOPEG were found 2 h after IVT [3H]tyrosine. At this time interval the levels of free [3H]MOPEG and free [3H]DOPEG amounted to 25% and 11%, respectively of the corresponding conjugates. Increasing doses of IVT injected [3H]tyrosine (10-90 °Ci) revealed that the accumulation of [3H]NA and metabolites was linear up to about 50 °Ci. Following intravenous instead of IVT injection of [3H]tyrosine. much higher doses (325 °Ci) were needed to obtain measurable amounts of total [3H]MOPEG and [3H]DOPEG-SO4 in the rat brain. The formation of labelled NA metabolites from [3H]NA in the rat brain in vim measured as total [3H]MOPEG and [3H]DOPEG-SO4 was influenced by drugs affecting [3H]NA synthesis, release and metabolism. Synthesis inhibition with a-methyltyrosine (250mg-kg?1) or FLA-63 (30mg-kg?1) and inhibition of monoamine oxidase with pargyline (75mg-kg?1) or clorgyline (2mg-kg?1) strongly decreased the accumulation of total [3H]MOPEG and [3H]DOPEG-SO4. Noradrenaline receptor blockade with phenoxybenzamine (20mg-kg?1) increased both total [3H]MOPEG and [3H]DOPEG-SO4 to about 160% of the control values. NA release and uptake inhibition induced by d-amphetamine (10mg-k?1) or phenylethylamine (two doses of 80mg-kg?1) decrease strongly the levels of [3H]NA and [3H]DOPEG-SO4. whereas total [3H]MOPEG was only very slightly decreased or even increased as compared to controls.  相似文献   

8.
Rat pineal organs maintained in organ culture converted [14C]tryptophan to [14C]serotonin and [14C]melatonin. The synthesis of both indoles was stimulated by the presence of norepinephrine or dibutyryl adenosine 3′,5′-monophosphate. This effect of norepinephrine could be blocked by the α-adrenergic blocking drug, propranolol, but was not modified by the a-adrenergic blocking agent, phenoxybenzamine. Neither blocking agent modified the pineal response to dibutyryl adenosine 3′,5′-monophosphate. Unlike dibutyryl adenosine 3′,5′-monophosphate, the naturally occurring adenosine phosphates did not stimulate synthesis of [14C]melatonin in vitro.  相似文献   

9.
To obtain evidence of the site of conversion of [U-14C]glucose into glutamate and related amino acids of the brain, a mixture of [U-14C]glucose and [3H]glutamate was injected subcutaneously into rats. [3H]Glutamate gave rise to several 3H-labelled amino acids in rat liver and blood; only 3H-labelled glutamate, glutamine or γ-aminobutyrate were found in the brain. The specific radioactivity of [3H]glutamine in the brain was higher than that of [3H]glutamate indicating the entry of [3H]glutamate mainly in the ‘small glutamate compartment’. The 14C-labelling pattern of amino acids in the brain and liver after injection of [U-14C]glucose was similar to that previously reported (Gaitonde et al., 1965). The specific radioactivity of [14C]glutamine in the blood and liver after injection of both precursors was greater than that of glutamate between 10 and 60 min after the injection of the precursors. The extent of labelling of alanine and aspartate was greater than that of other amino acids in the blood after injection of [U-14C]glucose. There was no labelling of brain protein with [3H]glutamate during the 10 min period, but significant label was found at 30 and 60 min. The highest relative incorporation of [14C]glutamate and [14C]aspartate in rat brain protein was observed at 5 min after the injection of [U-14C]glucose. The results have been discussed in the context of transport of glutamine synthesized in the brain and the site of metabolism of [U-14C]glucose in the brain.  相似文献   

10.
Abstract— The characteristics of a rapidly labelled and rapidly transported neuronal perikaryal protein fraction (Rose & Sinha . 1974a) were investigated in three experiments. (1) The kinetics of labelling of neuronal cell body and neuropil fractions from [3H]fucose were followed and shown to be similar to those from [3H]lysine, the label first appearing in the neuronal fraction and then being exported. The neuronal/neuropil incorporation ratio fell from 1.37 at 1 h to 0.77 at 4 h. (2) When cycloheximide (5 mg/kg) was injected intraperitoneally 15 min after [3H]lysine, incorporation into neuronal protein was inhibited to a greater extent (85%) than into neuropil (60%). (3) Colchicine was injected at a dose (40 μg/kg) sufficient to prevent accumulation of radioactively labelled protein into synaptosomes but insufficient to affect total incorporation of precursor into protein. [3H]Lysine was injected 1 h after colchicine and neurons and neuropil fractions made 1 h and 4 h later; colchicine inhibited the export of labelled protein from the neuronal perikaryon and its accumulation in the neuropil. We conclude that the rapidly labelled neuronal protein is partially glycoprotein in character and may be normally transported from the cell body by way of the axonal/(dendritic?) flow mechanism.  相似文献   

11.
Studies in vivo and in vitro of the distribution of label in C-1 of glutamate and glutamine and C-4 of aspartate in the free amino acids of brain were carried out. [1-14C]-Acetate was used both in vivo and in vitro and l -[U-14C]aspartate and l -[U-14C]glutamate were used in vitro.
  • 1 The results obtained with labelled acetate and aspartate suggest that CO2 and a 3-carbon acid may exchange at different rates on a COa-fixing enzyme.
  • 2 The apparent cycling times of both glutamate and glutamine show fast components measured in minutes and slow components measured in hours.
  • 3 With [1-14C]acetate in vitro glutamine is more rapidly labelled in C-1 than is glutamate at early time points; the curves cross over at about 7 min.
  • 4 The results support and extend the concept of metabolic compartmentation of amino acid metabolism in brain.
  相似文献   

12.
Abstract— The uptake and release of [3H]dopamine was studied in the goldfish retina with the following results: (1) when goldfish retinas were incubated with 2 ± 10-7m -[3H]dopamine for less than 20min and processed for autoradiography. most of the label was associated with dopaminergic terminals that contact certain horizontal cells. Biochemical analysis showed that > 93% of this label was [3H]-dopamine. (2) [3H]dopamine uptake saturated with increasing dopamine concentration and followed Michaelis-Menten kinetics. This uptake could be explained by a single ‘high-affinity’ mechanism with a Km of 2.61 ± 0.41 ± 10-7m and a Vmax of 66 ± 12 ± 10-12 mol/min/mg protein. (3) [3H]dopamine uptake was temperature-dependent with a temperature coefficient of 1.7 and an energy of activation of 11.4 kcal/mol. (4) The initial rate of uptake was unaffected by the absence of Ca2+ or the presence of Co2+; however, more than 85, uptake was blocked in the absence of external Na+. (5) Neither 1 mm -cyanide nor 5 mm -iodoacetate blocked more than 30% of uptake individually; however, in combination > 70% of uptake was blocked. (6) Centrally acting drugs benztropine and diphenylpyraline inhibited at least 60–70% of [3H]dopamine uptake. (7) [3H]dopamine in the retina could be released by increasing the external K+ concentration. This release was Ca2+ -dependent and was blocked by 10mm -Co2+ or 2Omm -Mg2+. The amount of [3H]dopamine released was not affected by the presence of benztropine, diphenylpyraline or fluphenazine in the incubation medium. These studies add further support for dopamine as a neurotransmitter used by interplexiform cells of the goldfish retina.  相似文献   

13.
—Double-labeled sulfatide containing [3-3H]lignoceric acid and [35S]sulfate was synthesized and injected intracerebrally into 28-day-old rats. The 3H-labeled sulfatide was synthesized by condensing (RS)-[3-3H]lignoceroyl chloride with lysosulfatide which had been obtained by saponification of sulfatide. The 35S-labeled sulfatide was synthesized by using [35S]sulfuric acid for sulfating 2′, 4′, 6′-tri-benzoyl-galactosyl N-fatty acyl, N-benzoyl-3-0-benzoyl-sphingosine, which had been obtained by per-benzoylation followed by solvolysis of calf brain nonhydroxycerebrosides. The perbenzoylated [35S]sul-fatide was then subjected to mild alkaline saponification. Eight hours following the injection, the brain lipids contained various radioactive sphingolipids in addition to sulfatides. Fourteen per cent of the injected 3H was recovered in total lipids, and 26% of this was found in sulfatide. Nonhydroxy- and hydroxyceramides, nonhydroxy- and hydroxycerebrosides, and polar lipids contained 7, 1, 8, 3, and 22 per cent of the 3H found in total lipids, respectively. On the other hand, only 6% of the 35S injected was recovered in total lipids; 63% of this was found in sulfatide, 5% in a mixture of seminolipid and cholesterol sulfate and 10% in a water-soluble material.  相似文献   

14.
—The effect of short (4–6 min)‘pulses’ of elevated extracellular potassium ions K0, in the 10–50 mm range, on the efflux of [3H]norepinephrine [3H]NE) and [14C]α-aminoisobutyrate (AIB) has been studied in a superfused neocortical thin slice system. At all the concentrations tested high K0 increases the efflux of both NE and AIB, although thc effects on the former are greater. In the absence of calcium ions, or in the presence of 8 mm -MnCl2, the potassium-stimulated release of both NE and AIB is severely depressed. However, potassium induced NE release is proportional to extracellular calcium ions in the 0–1.5 mm range, while that of AIB does not continue to increase above 0.2 mm -calcium. This permissive role of calcium in amino acid efflux is interpreted as due to changes in the inactivation of membrane sodium conductance.  相似文献   

15.
Abstract— Rabbit retinae were homogenized in isotonic sucrose and subjected to differential and density gradient centrifugation. Preliminary electron microscopic examination of some of the fractions indicated that in addition to the subcellular particles usually observed in brain homogenates, the photoreceptor cells gave rise to several characteristic fragments. These included fragmented outer limbs, aggregations of mitochondria from the inner segments, and photoreceptor terminals. Unlike the synaptosomes formed from the conventional type of synapses in the retina, these photoreceptor terminals appeared to sediment mainly in the low speed crude nuclear pellet (P1).
Retinae were incubated with low concentrations of [14C]GABA and/or [3H]dopamine prior to subcellular fractionation and in these experiments the P2 pellet was further fractionated on sucrose density gradients. Analysis of the radioactivity in the fractions showed that labelled GABA was accumulated by osmotically sensitive particles which had the sedimentation characteristics of synaptosomes. The panicles accumulating [3H]dopamine appeared to belong to a different, slightly lighter, population than those accumulating [14C]GABA. It is tentatively suggested that the particles accumulating labelled GABA were synaptosomes because the fractions containing these particles also possessed most of the GAD activity of the gradient. In contrast, GABA-T and MAO activity was found in the dense fractions of the gradients usually associated with mitochondria.
When retinae were incubated with a high concentration of labelled GABA a'lighter'population of particles seemed to accumulate the amino acid than when a low external GABA concentration was used. These results suggest that the high and low affinity uptake processes for GABA in the retina may have different cellular sites.  相似文献   

16.
Abstract— A 100,000 g supernatant fraction from rat brain that was passed through a column of Sephadex G-25-40 was able, after addition of some factors, to incorporate [I4C]arginine (apparent Km= 5 μM) and [14C]tyrosine (apparent Km= 20 μM) into its own proteins. The factors required for the incorporation of [14C]arginine were: ATP (optimal concentration = 0-25-2 μM) and Mg2+ (optimal concentration 5 mM). For the incorporation of [I4C]tyrosine the required factors were: ATP (apparent Km= 0-75 μM), Mg2+ (optimalconcentration 8-16 mM) and K+ (apparent Km= 16 mM). Addition of 19 amino acids did not enhance these incorporations. Optimal pHs were: for [14C]arginine and [14C]tyrosine, respectively, 7-4 and 7-0 in phosphate buffer and 7–9 and 7-3-8-1 in tris-HCl buffer. Pancreatic ribonuclease abolished the incorporation of [14C]arginine but had practically no effect in the incorporation of [14C]tyrosine. Furthermore, [14C]arginyl-tRNA was a more effective donor of arginyl groups than [14C]arginine, whereas [14C]tyrosyl-tRNA was considerably less effective than [14C]tyrosine. The incorporations of [14C]arginine and [14C]tyrosine into brain proteins were from 25- to 2000-fold higher than for any other amino acid tested (12 in total). In brain [14C]arginine incorporation was higher than in liver and thyroid but somewhat lower than in kidney. In comparison to brain, the incorporation of [14C]tyrosine was negligible in liver, thyroid or kidney. Kinetic studies showed that the macromolecular factor in the brain preparation was complex. The protein nature of the products was inferred from their insolubilities in hot TCA and from the action of pronase that rendered them soluble. [14C]Arginine was bound so that its a-amino group remained free. Maximal incorporation of [14C]tyrosine in brain of 30-day-old rats was about one-third of that in the 5-day-old rat. The changes with postnatal age in the incorporation of [14C]arginine were not statistically significant.  相似文献   

17.
The efflux of [3H]GABA or [14C]GABA from superfused neocortical thin slices, held on quick transfer electrodes, has been compared with that of the non-transmitter amino acid model [14C]α- amino-isobutyrate (AIB), and, to a lesser extent, with [3H]norepinephrine. Electrical stimulation of the slices with sine-wave current (50 Hz); rectangular, biphasic pulses, (80/s, 3 ms); or rectangular, monophasic pulses (100/s, 5 ms), was unable to release GABA at stimulating potentials that are able to release known transmitter substances. Release of GABA and AIB was only seen with higher applied potentials, when also non-transmitter amino acids were released. It was also found that amino-oxyacetic acid(10-5 M and 5 × 10-5 M) increased the excitability of the slices, and allowed the release of both GABA and AIB to occur with weaker stimuli. This effect was independent of extracellular calcium.  相似文献   

18.
I. Binding of [3H]apomorphine to dopaminergic receptors in rat striatum was most reproducible and clearly detectable when incubations were run at 25°C in Tris-HCl buffer, pH 7.5, containing 1 mM-EDTA and 0.01% ascorbic acid, using a washed total-membrane fraction. The receptor binding was stereospecifically inhibited by (+)-butaclamol, and dopamine agonists and antagonists showed high binding affinity for these sites. Unlabelled apomorphine inhibited an additional nonstereospecific binding site, which was unrelated to dopamine receptors. EDTA in the incubation mixture considerably lowered nonstereospecific [3H]apomorphine binding, apparently by preventing the complexation of the catechol moiety with metal ions which were demonstrated in membrane preparations. Stereospecific [3H]apomorphine binding was not detectable in the frontal cortex, whereas in the absence of EDTA much saturable nonstereospecific binding occurred. II. Kinetic patterns of stereospecific [3H]spiperone and [3H] apomorphine binding to rat striatal membranes and the inhibition patterns of a dopamine antagonist and an agonist were evaluated at different temperatures in high-ionic-strength Tris buffer with salts added and low-ionic-strength Tris buffer with EDTA. Apparent KD, values of spiperone decreased with decreasing tissue concentrations. KD, values of both spiperone and apomorphine were little influenced by temperature changes. Scatchard plots of the stereospecific binding changed from linear to curved; the amount of nonstereospecific binding of the 3H ligands varied considerably, but in opposite directions for spiperone and apomorphine in the different buffers. In various assay conditions, interactions between agonists, and between antagonists, appeared fully competitive, but agonist-antagonist interactions were of mixed type. The anomalous binding patterns are interpreted in terms of surface phenomena occurring upon reactions of a ligand with complex physicochemical properties and nonsolubilized sites on membranes suspended in a buffered aqueous solution. It is concluded that anomalous binding patterns are not necessarily an indication of binding to multiple sites or involvement of distinct receptors for high-affinity agonist and antagonist binding.  相似文献   

19.
Abstract: The binding of [3H]dopamine to brain regions of calf, rat, and human was investigated. The calf caudate contained the highest density of [3H]dopamine binding sites, with a Bmax value of 185 fmol/mg protein, whereas rat and human striatum contained one-third this number of sites. The KD values for [3H]dopamine in all tissues were 2–3 nM. Dopaminergic catecholamines (dopamine, apomorphine, 6,7-dihydroxy-2-aminotetralin, and N-propylnorapomorphine) inhibited the binding of [3H]dopamine in all three species, at low concentrations, with IC50 values of 1.5 to 6 nM. Neuroleptics, in contrast, inhibited the binding at high concentrations (with IC50 values of 200 to 40,000 nM). The [3H]dopamine binding sites were saturable, heat-labile, and detectable only in dopamine-rich brain regions; these sites differed from D2 dopamine sites (labeled by [3H]butyrophenone neuroleptics), and from Dl dopamine sites (labeled by [3H]thioxanthene neuroleptics) associated with the dopamine-stimulated adenylate cyclase. We have, therefore, called these high-affinity [3H]dopamine binding sites D3 sites. [3H]Apomorphine and [3H]ADTN also appeared to label D3 sites. These ligands however, were less selective than [3H]dopamine, and labeled sites other than D3 as well. Assay conditions were important in determining the parameters of [3H]dopamine binding. The optimum conditions for selective labeling of the D3 dopaminergic sites, using [3H]dopamine, required the presence of EDTA and ascorbate.  相似文献   

20.
Abstract: With [3H]guanosine triphosphate ([3H]GTP) and [3H]β, γ -imidoguanosine 5′-triphosphate ([3H]GppNHp) as the labelled substrates, both the binding and the catabolism of guanine nucleotides have been studied in various brain membrane preparations. Both labelled nucleotides bound to a single class of noninteracting sites (KD= 0.1-0.5 μm ) in membranes from various brain regions (hippocampus, striatum, cerebral cortex). Unlabelled GTP, GppNHp, and guanosine diphosphate (GDP) but not guanosine monophosphate (GMP) and guanosine competitively inhibited the specific binding of [3H]guanine nucleotides. Calcium (0.1–5 mm ) partially prevented the binding of [3H]GTP and [3H]GppNHp to hippocampal and striatal membranes. This resulted from both an increased catabolism of [3H]GTP (into [3H]guanosine) and the likely formation of Ca-guanine nucleotide2- complexes. The blockade of guanine nucleotide catabolism was responsible for the enhanced binding of [3H]GTP to hippocampal membranes in the presence of 0.1 mm -ATP or 0.1 mm -GMP. Striatal lesions with kainic acid produced both a 50% reduction of the number of specific guanine nucleotide binding sites and an acceleration of [3H]GTP and [3H]GppNHp catabolism (into [3H]guanosine) in membranes from the lesioned striatum. This suggests that guanine nucleotide binding sites were associated (at least in part) with intrinsic neurones whereas the catabolising enzyme(s) would be (mainly) located to glial cells (which proliferate after kainic acid lesion). The characteristics of the [3H]guanine nucleotide binding sites strongly suggest that they may correspond to the GTP subunits regulating neurotransmitter receptors including those labelled with [3H]5-hydroxytryptamine ([3H]5-HT) in the rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号