首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysosomal membrane proteins are delivered from their synthesis site, the endoplasmic reticulum (ER) to late endosomes/lysosomes through the Golgi complex. It has been proposed that after leaving the Golgi they are transported either directly or indirectly (via the cell surface) to late endosomes/lysosomes. In the present study, we examined the transport routes taken by two structurally different lysosomal membrane proteins, LGP85 and LGP107, in rat 3Y1-B cells. Here we show that newly synthesized LGP85 and LGP107 are delivered to late endosomes/lysosomes via a direct route without passing through the cell surface. Interestingly, although LGP107 is delivered from the Golgi to early endosomes containing internalized horseradish peroxidase-conjugated transferrin (HRP-Tfn) en route to lysosomes, LGP85 does not pass through the HRP-Tfn-positive early endosomes. These results suggest, therefore, that LGP85 and LGP107 are sorted into distinct transport vesicles at the post-Golgi, presumably the trans-Golgi network (TGN), after which LGP85 is delivered directly to late endosomes/lysosomes, but significant fractions of LGP107 are targeted to early endosomes before transport to late endosomes/lysosomes. This study provides the first evidence that after exiting from the Golgi, LGP85 and LGP107 are targeted to late endosomes/lysosomes via a different pathway.  相似文献   

2.
In the late endocytic pathway, it has been proposed that endocytosed macromolecules are delivered to a proteolytic environment by 'kiss-and-run' events or direct fusion between late endosomes and lysosomes. To test whether the fusion hypothesis accounts for delivery to lysosomes in living cells, we have used confocal microscopy to examine content mixing between lysosomes loaded with rhodamine-dextran and endosomes subsequently loaded with Oregon-Green-dextran. Both kissing and explosive fusion events were recorded. Data from cell-free content-mixing assays have suggested that fusion is initiated by tethering, which leads to formation of a trans-SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) protein complex and then release of lumenal Ca(2+), followed by membrane bilayer fusion. We have shown that the R-SNARE (arginine-containing SNARE) protein VAMP (vesicle-associated membrane protein) 7 is necessary for heterotypic fusion between late endosomes and lysosomes, whereas a different R-SNARE, VAMP 8 is required for homotypic fusion of late endosomes. After fusion of lysosomes with late endosomes, lysosomes are re-formed from the resultant hybrid organelles, a process requiring condensation of content and the removal/recycling of some membrane proteins.  相似文献   

3.
It has been reported that an accumulation of cholesterol within late endosomes/lysosomes in Niemann-Pick type C (NPC) fibroblasts and U18666A-treated cells causes impairment of retrograde trafficking of the cation-independent mannose 6-phosphate/IGF-II receptor (MPR300) from late endosomes to the trans-Golgi network (TGN). In apparent conflict with these results, here we show that as in normal fibroblasts, MPR300 localizes exclusively to the TGN in NPC fibroblasts as well as in normal fibroblasts treated with U18666A. This localization can explain why several lysosomal properties and functions, such as intracellular lysosomal enzyme activity and localization, the biosynthesis of cathepsin D, and protein degradation, are all normal in NPC fibroblasts. These results, therefore, suggest that the accumulation of cholesterol in late endosomes/lysosomes does not affect the retrieval of MPR300 from endosomes to the TGN. Furthermore, treatment of normal and NPC fibroblasts with chloroquine, which inhibits membrane traffic from early endosomes to the TGN, resulted in a redistribution of MPR300 to EEA1 and internalized transferrin-positive, but LAMP-2-negative, early-recycling endosomes. We propose that in normal and NPC fibroblasts, MPR300 is exclusively targeted from the TGN to early endosomes, from where it rapidly recycles back to the TGN without being delivered to late endosomes. This notion provides important insights into the definition of late endosomes, as well as the biogenesis of lysosomes.  相似文献   

4.
Rab5 is a small GTPase that plays roles in the homotypic fusion of early endosomes and regulation of intracellular vesicle transport. We show here that expression of GFP-tagged GTPase-deficient form of Rab5b (Rab5bQ79L) in NRK cells results in the sequential formation of three morphologically and functionally distinct types of endosomes. Expression of GFP-Rab5bQ79L initially caused a homotypic fusion of early endosomes accompanying a redistribution of the TGN-resident cargo molecules, and subsequent fusion with late endosomes/lysosomes, leading to the formation of giant hybrid organelles with features of early endosomes and late endosomes/lysosomes. Surprisingly, the giant endosomes gradually fragmented and shrunk, leading to the accumulation of early endosome clusters and concurrent reformation of late endosomes/lysosomes, a process accelerated by treatment with a phosphatidylinositol-3-kinase (PI(3)K) inhibitor, wortmannin. We postulate that such sequential processes reflect the biogenesis and maintenance of late endosomes/lysosomes, presumably via direct fusion with early endosomes and subsequent fission from hybrid organelles. Thus, our findings suggest a regulatory role for Rab5 in not only the early endocytic pathway, but also the late endocytic pathway, of membrane trafficking in coordination with PI(3)K activity.  相似文献   

5.
In mammalian cells, macromolecules internalized by endocytosis are transported via endosomes for digestion by lysosomal acid hydrolases . The mechanism by which endosomes and lysosomes exchange content remains equivocal . However, lysosomes are reusable organelles because they remain accessible to endocytic enzyme replacement therapies and undergo content mixing with late endosomes . The maturation model, which proposes that endosomes mature into lysosomes , cannot explain these observations. Three mechanisms for content mixing have been proposed. The first is vesicular transport, best supported by a yeast cell-free assay . The second suggests that endosomes and lysosomes engage in repeated transient fusions termed "kiss-and-run" . The third is that endosomes and lysosomes fuse completely, yielding hybrid compartments from which lysosomes reform , termed "fusion-fission" . We utilized time-lapse confocal microscopy to test these hypotheses in living cells. Lysosomes were loaded with rhodamine dextran by pulse-chase, and subsequently late endosomes were loaded with Oregon green 488 dextran. Direct fusions were observed between endosomes and lysosomes, and one such event was captured by correlative electron microscopy. Fluorescence intensity analyses of endosomes that encountered lysosomes revealed a gradual accumulation of lysosomal content. Our data are compatible with a requirement for direct contact between organelles before content is exchanged.  相似文献   

6.
Recently, ATP-binding cassette transporter A1 (ABCA1), the defective molecule in Tangier disease, has been shown to stimulate phospholipid and cholesterol efflux to apolipoprotein A-I (apoA-I); however, little is known concerning the cellular cholesterol pools that act as the source of cholesterol for ABCA1-mediated efflux. We observed a higher level of isotopic and mass cholesterol efflux from mouse peritoneal macrophages labeled with [(3)H]cholesterol/acetyl low density lipoprotein (where cholesterol accumulates in late endosomes and lysosomes) compared with cells labeled with [(3)H]cholesterol with 10% fetal bovine serum, suggesting that late endosomes/lysosomes act as a preferential source of cholesterol for ABCA1-mediated efflux. Consistent with this idea, macrophages from Niemann-Pick C1 mice that have an inability to exit cholesterol from late endosomes/lysosomes showed a profound defect in cholesterol efflux to apoA-I. In contrast, phospholipid efflux to apoA-I was normal in Niemann-Pick C1 macrophages, as was cholesterol efflux following plasma membrane cholesterol labeling. These results suggest that cholesterol deposited in late endosomes/lysosomes preferentially acts as a source of cholesterol for ABCA1-mediated cholesterol efflux.  相似文献   

7.
Lysosomes play a central role in the degradation of proteins and other macromolecules. The mechanisms by which receptors are transferred to lysosomes for constitutive degradation are poorly understood. We have analyzed the processes that lead to the lysosomal delivery of the Fc receptor, FcRn. These studies provide support for a novel pathway for receptor delivery. Specifically, unlike other receptors that enter intraluminal vesicles in late endosomes, FcRn is transferred from the limiting membrane of such endosomes to lysosomes, and is rapidly internalized into the lysosomal lumen. By contrast, LAMP-1 persists on the limiting membrane. Receptor transfer is mediated by tubular extensions from late endosomes to lysosomes, or by interactions of the two participating organelles in kiss-and-linger-like processes, whereas full fusion is rarely observed. The persistence of FcRn on the late endosomal limiting membrane, together with selective transfer to lysosomes, allows this receptor to undergo recycling or degradation. Consequently, late endosomes have functional plasticity, consistent with the presence of the Rab5 GTPase in discrete domains on these compartments.  相似文献   

8.
The Niemann-Pick C1 (NPC1) protein regulates the transport of cholesterol from late endosomes/lysosomes to other compartments responsible for maintaining intracellular cholesterol homeostasis. The present study examined the expression of the NPC1 gene and the distribution of the NPC1 protein that resulted from the transport of LDL-derived cholesterol through normal human fibroblasts. A key finding was that the transport of cholesterol from late endosomes/lysosomes to the sterol-regulatory pool at the endoplasmic reticulum, as determined by feedback inhibition of the sterol-regulatory element binding protein (SREBP) pathway, was associated with the downregulation of the NPC1 gene. Consistent with these results, fibroblasts incubated with LDL had decreased amounts of SREBP protein that interacted with sterol-regulatory element (SRE) sequences positioned within the NPC1 gene promoter region. Finally, partial colocalization of the NPC1 protein with late endosomes/lysosomes and distinct regions of the endoplasmic reticulum suggested that the NPC1 protein may facilitate the transport of cholesterol directly between these two compartments. Together, these results indicate that the transport of LDL-derived cholesterol from late endosomes/lysosomes to the sterol-regulatory pool, known to be regulated by the NPC1 protein, is responsible for promoting feedback inhibition of the SREBP pathway and downregulation of the NPC1 gene.  相似文献   

9.
Traditionally, lysosomes have been considered to be a terminal endocytic compartment. Recent studies suggest that lysosomes are quite dynamic, being able to fuse with other late endocytic compartments as well as with the plasma membrane. Here we describe a quantitative fluorescence energy transfer (FRET)-based method for assessing rates of retrograde fusion between terminal lysosomes and late endosomes in living cells. Late endosomes were specifically labeled with 800-nm latex beads that were conjugated with streptavidin and Alexa Fluor 555 (FRET donor). Terminal lysosomes were specifically labeled with 10,000-MW dextran polymers conjugated with biotin and Alexa Fluor 647 (FRET acceptor). Following late endosome-lysosome fusion, the strong binding affinity between streptavidin and biotin brought the donor and acceptor fluorophore molecules into close proximity, thereby facilitating the appearance of a FRET emission signal. Because apparent size restrictions in the endocytic pathway do not permit endocytosed latex beads from reaching terminal lysosomes in an anterograde fashion, the appearance of the FRET signal is consistent with retrograde transport of lysosomal cargo back to late endosomes. We assessed the efficiency of this transport step in fibroblasts affected by different lysosome storage disorders—Niemann-Pick type C, mucolipidosis type IV, and Sandhoff’s disease, all of which have a similar lysosomal lipid accumulation phenotype. We report here, for the first time, that these disorders can be distinguished by their rate of transfer of lysosome cargos to late endosomes, and we discuss the implications of these findings for developing new therapeutic strategies.  相似文献   

10.
Using a cell-free content mixing assay containing rat liver endosomes and lysosomes in the presence of pig brain cytosol, we demonstrated that after incubation at 37°C, late endosome–lysosome hybrid organelles were formed, which could be isolated by density gradient centrifugation. ImmunoEM showed that the hybrids contained both an endocytosed marker and a lysosomal enzyme. Formation of the hybrid organelles appeared not to require vesicular transport between late endosomes and lysosomes but occurred as a result of direct fusion. Hybrid organelles with similar properties were isolated directly from rat liver homogenates and thus were not an artifact of cell-free incubations. Direct fusion between late endosomes and lysosomes was an N-ethylmaleimide–sensitive factor– dependent event and was inhibited by GDP-dissociation inhibitor, indicating a requirement for a rab protein. We suggest that in cells, delivery of endocytosed ligands to an organelle where proteolytic digestion occurs is mediated by direct fusion of late endosomes with lysosomes. The consequences of this fusion to the maintenance and function of lysosomes are discussed.  相似文献   

11.
The lysosome functions are ensured by accurate membrane trafficking in the cell. We found that mouse syntaxin 7 could complement yeast vam3 and pep12 mutants defective in docking/fusion to vacuolar and prevacuolar membranes, respectively. Immunohistochemical studies showed that syntaxin 7 is localized to late endosomes, but not to early endosomes. Induced expression of mutant syntaxin 7 blocked endocytic transport from early to late endosomes but did not block the transport of cathepsin D and lamp-2 from the trans-Golgi network to lysosomes. Thus, syntaxin 7 mediates the endocytic trafficking from early endosomes to late endosomes and lysosomes. These results also suggest that the biosynthetic pathway utilizes a different machinery from that of the endocytic pathway in the docking/fusion to late endosomes.  相似文献   

12.
Cai Q  Lu L  Tian JH  Zhu YB  Qiao H  Sheng ZH 《Neuron》2010,68(1):73-86
Neuron maintenance and survival require late endocytic transport from distal processes to the soma where lysosomes are predominantly localized. Here, we report a role for Snapin in attaching dynein to late endosomes through its intermediate chain (DIC). snapin(-/-) neurons exhibit aberrant accumulation of immature lysosomes, clustering and impaired retrograde transport of late endosomes along processes, reduced lysosomal proteolysis due to impaired delivery of internalized proteins and hydrolase precursors from late endosomes to lysosomes, and impaired clearance of autolysosomes, combined with reduced neuron viability and neurodegeneration. The phenotypes are rescued by expressing the snapin transgene, but not the DIC-binding-defective Snapin-L99K mutant. Snapin overexpression in wild-type neurons enhances late endocytic transport and lysosomal function, whereas expressing the mutant defective in Snapin-DIC coupling shows a dominant-negative effect. Altogether, our study highlights new mechanistic insights into how Snapin-DIC coordinates retrograde transport and late endosomal-lysosomal trafficking critical for autophagy-lysosomal function, and thus neuronal homeostasis.  相似文献   

13.
Endocytosis regulates multiple cellular processes, including the protein composition of the plasma membrane, intercellular signaling, and cell polarity. We have identified the highly conserved protein Rush hour (Rush) and show that it participates in the regulation of endocytosis. Rush localizes to endosomes via direct binding of its FYVE (Fab1p, YOTB, Vac1p, EEA1) domain to phosphatidylinositol 3-phosphate. Rush also directly binds to Rab GDP dissociation inhibitor (Gdi), which is involved in the activation of Rab proteins. Homozygous rush mutant flies are viable but show genetic interactions with mutations in Gdi, Rab5, hrs, and carnation, the fly homologue of Vps33. Overexpression of Rush disrupts progression of endocytosed cargo and increases late endosome size. Lysosomal marker staining is decreased in Rush-overexpressing cells, pointing to a defect in the transition between late endosomes and lysosomes. Rush also causes formation of endosome clusters, possibly by affecting fusion of endosomes via an interaction with the class C Vps/homotypic fusion and vacuole protein-sorting (HOPS) complex. These results indicate that Rush controls trafficking from early to late endosomes and from late endosomes to lysosomes by modulating the activity of Rab proteins.  相似文献   

14.
The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome-lysosome fusion, which is required for processing of various macromolecules.  相似文献   

15.
The drug gefitinib (Iressa), which is a specific inhibitor of EGFR tyrosine kinase, has been shown to suppress the activation of EGFR signaling for survival and proliferation in non-small cell lung cancer (NSCLC) cell lines. A recent study demonstrated rapid down-regulation of ligand-induced EGFR in a gefitinib-sensitive cell line and inefficient down-regulation of EGFR in a gefitinib-resistant cell line in the exponential phase of growth; this implies that each cell type employs a different unknown down-regulation mechanism occurs. However, the mechanism of drug sensitivity to gefitinib remains unclear. In this study, to further substantiate the effect of gefitinib on the EGFR down-regulation pathway and to understand the detailed internalization mechanism of gefitinib-sensitive PC9 and gefitinib-resistant QG56 cell lines, we examined the internalization of Texas red-EGF in the absence or presence of gefitinib in both cell lines. The distribution of internalized Texas red-EGF, early endosomes, and late endosomes/lysosomes was then assessed by confocal immunofluorescence microscopy. Here, we provide novel evidence that efficient endocytosis of EGF–EGFR occurs via the endocytic pathway in the PC9 cells, because the internalized Texas red-EGF-positive small punctate vesicles were transported to the late endosomes/lysosomes and then degraded within the lysosomes after 60 min of internalization. Additionally, gefitinib exerted a strong inhibitory effect on the endocytosis of EGFR in PC9 cells, and the internalization rate of EGFR from the plasma membrane via the early endosomes to the late endosomes/lysosomes was considerably delayed. This indicates that gefitinib efficiently suppresses ligand-stimulated endocytosis of EGFR via the early/late endocytic pathway in PC9 cells. In contrast, the internalization rate of ligand-induced EGFR was not significantly changed by gefitinib in QG56 cells because even in the absence of gefitinib, internalized EGFR accumulation was noted in the early and late endosomes after 60 min of internalization instead of its delivery to the lysosomes in QG56 cells. This suggests that the endocytic machinery of EGFR might be basically impaired at the level of the early/late endosomes. Taken together, this is the first report demonstrating that the suppressive effect of gefitinib on the endocytosis of EGFR is much stronger with PC9 cells than QG56 cells. Thus, impairment in some steps of the EGF–EGFR traffic out of early endosomes toward the late endosomes/lysosomes might confer gefitinib-resistance in NSCLC cell lines. Iressa is a trademark of the AstraZeneca group of companies.  相似文献   

16.
Rab9 GTPase resides in a late endosome microdomain together with mannose 6-phosphate receptors (MPRs) and the tail-interacting protein of 47 kDa (TIP47). To explore the importance of Rab9 for microdomain establishment, we depleted the protein from cultured cells. Rab9 depletion decreased late endosome size and reduced the numbers of multilamellar and dense-tubule-containing late endosomes/lysosomes, but not multivesicular endosomes. The remaining late endosomes and lysosomes were more tightly clustered near the nucleus, implicating Rab9 in endosome localization. Cells displayed increased surface MPRs and lysosome-associated membrane protein 1. In addition, cells showed increased MPR synthesis in conjunction with MPR missorting to the lysosome. Surprisingly, Rab9 stability on late endosomes required interaction with TIP47. Rabs are thought of as independent, prenylated entities that reside either on membranes or in cytosol, bound to GDP dissociation inhibitor. These data show that Rab9 stability is strongly influenced by a specific effector interaction. Moreover, Rab9 and the proteins with which it interacts seem critical for the maintenance of specific late endocytic compartments and endosome/lysosome localization.  相似文献   

17.
Following endocytosis, ubiquitinated signaling receptors are incorporated within intraluminal vesicles of forming multivesicular endosomes. These vesicles then follow the pathway from early to late endosomes, remaining within the endosomal lumen, and are eventually delivered to lysosomes, where they are degraded together with their protein cargo. However, intraluminal vesicles do not always end up in lysosomes for degradation; they can also fuse back with the limiting membrane of late endosomes. This route, which might be regulated by lyso-bisphosphatidic acid and its putative effector Alix, can be hijacked by the anthrax toxin and vesicular stomatitis virus and is presumably exploited by proteins and lipids that transit through intraluminal vesicles. Alternatively, these vesicles can be released extracellularly, like HIV in macrophages, upon fusion of endosomes or lysosomes with the plasma membrane.  相似文献   

18.
Vance JE 《FEBS letters》2006,580(23):5518-5524
Niemann-Pick C (NPC) disease is a progressive neurological disorder in which cholesterol, gangliosides and bis-monoacylglycerol phosphate accumulate in late endosomes/lysosomes. This disease is caused by mutations in either the NPC1 or NPC2 gene. NPC1 and NPC2 are involved in egress of lipids, particularly cholesterol, from late endosomes/lysosomes but the precise functions of these proteins are not clear. An important question regarding the function of NPC proteins is: why do mutations in these ubiquitously expressed proteins have such dire consequences in the brain? This review summarizes the roles of NPC proteins in lipid homeostasis particularly in the central nervous system.  相似文献   

19.
The precise trafficking routes followed by newly synthesized lysosomal membrane proteins after exit from the Golgi are unclear. To study these events we created a novel chimera (YAL) having a lumenal domain comprising two tyrosine sulfation motifs fused to avidin, and the transmembrane and cytoplasmic domains of lysosome associated membrane protein 1 (Lamp1). The newly synthesized protein rapidly transited from the trans- Golgi Network (TGN) to lysosomes (t(1/2) approximately 30 min after a lag of 15-20 min). However, labeled chimera was captured by biotinylated probes endocytosed for only 5 min, indicating that the initial site of entry into the endocytic pathway was early endosomes. Capture required export of YAL from the TGN, and endocytosis of the biotinylated reagent, and was essentially quantitative within 2 h of chase, suggesting that all molecules were following an identical route. There was no evidence of YAL trafficking via the cell surface. Fusion of TGN-derived vesicles with 5 min endosomes could be recapitulated in vitro, but neither late endosomes nor lysosomes could serve as acceptor compartments. This suggests that contrary to previous conclusions, most if not all newly synthesized Lamp1 traffics from the TGN to early endosomes prior to delivery to late endosomes and lysosomes.  相似文献   

20.
We have used isolated perfused rat livers to examine the intracellular processing of 125I-epidermal growth factor (EGF) and to determine where in the endocytic pathway the hydrolases which degrade EGF are acting. Following uptake of 125I-EGF at 37 or 16 degrees C, subcellular fractions enriched in endosomes and lysosomes were isolated, and their 125I-EGF content was examined by reverse-phase high performance liquid chromatography. Three forms of EGF processed at their carboxyl termini are generated in endosomes. At 37 degrees C, EGF is first processed in early endosomes by a carboxypeptidase B-like protease and is further processed in late endosomes by a trypsin-like protease and then a carboxypeptidase B-like protease. At 16 degrees C, entry of EGF into late endosomes is slowed, and only the first processed form is generated over 60 min. Longer perfusions (180 min) at 16 degrees C result in some processing (7%) by proteases found in late endosomes. EGF-horseradish peroxidase cytochemistry confirmed that the additional processing detected at 180 min correlated with movement of EGF from tubulovesicular to multivesicular endosomes. These results, combined with in vitro incubations of EGF in isolated endosomal and lysosomal fractions, suggest that different proteases are active at selective points in the endocytic pathway and that the full complement of proteases needed for complete degradation of EGF is active only in lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号