首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of naphthylacetic acid, abscisic acid, gibberellic acid and kinetin on the formation of aerenchyma in seedling roots of Zea mays L. cv. Capella has been studied in relation to reported changes of their concentration in poorly aerated roots, which readily form aerenchyma, and to the effects of these hormones on the production of ethylene, a major factor promoting aerenchyma formation. Because the absence of nitrate accelerates aerenchyma formation in aerated roots, their influence on these roots was compared. The growth regulators were added to roots growing in non-aerated and aerated nutrient solutions, and aerenchyma formation and the production and endogenous concentration of ethylene were measured. Naphthylacetic acid prevented aerenchyma formation in both aerated roots without nitrate and in non-aerated roots although it enhanced the ethylene concentration of the roots. Abscisic acid also prevented aerenchyma formation, but without affecting the ethylene concentration. Gibberellic acid promoted aerenchyma formation in aerated roots only, but ethylene production in both aerated and non-aerated roots. Kinetin promoted aerenchyma formation in both aerated and non-aerated roots. It stimulated ethylene production in aerated roots, but slightly inhibited it in non-aerated roots. Co2+ and Ag+, which suppress ethylene production and action, respectively, reduced the promoting effects of gibberellic acid, but not those of kinetin. It is concluded that the effects of the plant growth regulators on aerenchyma formation in maize roots were, with a possible exception for gibberellic acid, not the result of altered ethylene concentrations in the roots. Their influence on aerenchyma formation is discussed in relation to their reported actions on cell membranes.  相似文献   

2.
3.
In roots of gramineous plants, lysigenous aerenchyma is created by the death and lysis of cortical cells. Rice (Oryza sativa) constitutively forms aerenchyma under aerobic conditions, and its formation is further induced under oxygen‐deficient conditions. However, maize (Zea mays) develops aerenchyma only under oxygen‐deficient conditions. Ethylene is involved in lysigenous aerenchyma formation. Here, we investigated how ethylene‐dependent aerenchyma formation is differently regulated between rice and maize. For this purpose, in rice, we used the reduced culm number1 (rcn1) mutant, in which ethylene biosynthesis is suppressed. Ethylene is converted from 1‐aminocyclopropane‐1‐carboxylic acid (ACC) by the action of ACC oxidase (ACO). We found that OsACO5 was highly expressed in the wild type, but not in rcn1, under aerobic conditions, suggesting that OsACO5 contributes to aerenchyma formation in aerated rice roots. By contrast, the ACO genes in maize roots were weakly expressed under aerobic conditions, and thus ACC treatment did not effectively induce ethylene production or aerenchyma formation, unlike in rice. Aerenchyma formation in rice roots after the initiation of oxygen‐deficient conditions was faster and greater than that in maize. These results suggest that the difference in aerenchyma formation in rice and maize is due to their different mechanisms for regulating ethylene biosynthesis.  相似文献   

4.
He CJ  Morgan PW  Drew MC 《Plant physiology》1996,112(2):463-472
Ethylene has been implicated in signaling cell death in the lysigenous formation of gas spaces (aerenchyma) in the cortex of adventitious roots of maize (Zea mays) subjected to hypoxia. Various antagonists that are known to modify particular steps in signal transduction in other plant systems were applied at low concentrations to normoxic and hypoxic roots of maize, and the effect on cell death (aerenchyma formation) and the increase in cellulase activity that precedes the appearance of cell degeneration were measured. Both cellulase activity and cell death were inhibited in hypoxic roots in the presence of antagonists of inositol phospholipids, Ca2+- calmodulin, and protein kinases. By contrast, there was a parallel promotion of cellulase activity and cell death in hypoxic and normoxic roots by contact with reagents that activate G-proteins, increase cytosolic Ca2+, or inhibit protein phosphatases. Most of these reagents had no effect on ethylene biosynthesis and did not arrest root extension. These results indicate that the transduction of an ethylene signal leading to an increase in intracellular Ca2+ is necessary for cell death and the resulting aerenchyma development in roots of maize subjected to hypoxia.  相似文献   

5.
We have studied the role of ethylene in accelerating the lytic formation of gas spaces (aerenchyma) in the cortex of adventitious roots of maize (Zea mays L.) growing in poorly aerated conditions. Such roots had previously been shown to contain increased concentrations of ethylene. Ten day-old maize plants bearing seminal roots and one whorl of emerging adventitious roots were grown in nutrient solution bubbled with air, ethylene in air (0.1 to 5.0 l l–1), or allowed to become oxygen-deficient in nonaerated (but not completely anaerobic) solution. Additions of 0.1 l l–1 ethylene or more promoted the formation of aerenchyma, with lysis of up to 47% of the cortical cells. The effects of non-aeration were similar to those of exogenous ethylene. When silver ions, an ethylene antagonist, were present at low, non-toxic concentrations (circa 0.6 M), aerenchyma formation was prevented in ethylene treated roots and in those exposed to oxygen deficiency. Silver ions also blocked the inhibiting effect of exogenous ethylene on root extension. By contrast, the suppression of aerenchyma formation by silver ions under oxygendeficient conditions was associated with a retardation of root extension, indicating the importance of aerenchyma for root growth in poorly aerated media. Rates of production of ethylene by excised roots were stimulated by a previous non-aeration treatment. The effectiveness of Ag+ in inhibiting equally the action on cortical cells of exogenous ethylene and of non-aeration, supports the view that gas space (aerenchyma) formation in adventitious roots adpted to oxygendeficient environments is mediated by increased concentrations of endogenous ethylene. The possibility that extra ethylene could arise from increased biosynthesis of a precursor in root tissues with a restricted oxygen supply is discussed.  相似文献   

6.
Maize (Zea mays L.) is generally considered to be a plant with aerenchyma formation inducible by environmental conditions. In our study, young maize plants, cultivated in various ways in order to minimise the stressing effect of hypoxia, flooding, mechanical impedance or nutrient starvation, were examined for the presence of aerenchyma in their primary roots. The area of aerenchyma in the root cortex was correlated with the root length. Although 12 different maize accessions were used, no plants without aerenchyma were acquired until an ethylene synthesis inhibitor was employed. Using an ACC-synthase inhibitor, it was confirmed that the aerenchyma formation is ethylene-regulated and dependent on irradiance. The presence of TUNEL-positive nuclei and ultrastructural changes in cortical cells suggest a connection between ethylene-dependent aerenchyma formation and programmed cell death. Position of cells with TUNEL-positive nuclei in relation to aerenchyma-channels was described.  相似文献   

7.
He CJ  Morgan PW  Drew MC 《Plant physiology》1992,98(1):137-142
Adventitious roots of maize (Zea mays L. cv TX 5855), grown in a well-oxygenated nutrient solution, were induced to form cortical gas spaces (aerenchyma) by temporarily omitting nitrate and ammonium (-N), or phosphate (-P), from the solution. Previously this response was shown (MC Drew, CJ He, PW Morgan [1989] Plant Physiology 91: 266-271) to be associated with a slower rate of ethylene biosynthesis, contrasting with the induction of aerenchyma by hypoxia during which ethylene production is strongly stimulated. In the present paper, we show that aerenchyma formation induced by nutrient starvation was blocked, under noninjurious conditions, by addition of low concentrations of Ag+, an inhibitor of ethylene action, or of aminoethoxyvinyl glycine, an inhibitor of ethylene biosynthesis. When extending roots were exposed to low concentrations of ethylene in air sparged through the nutrient solution, N or P starvation enhanced the sensitivity to exogenous ethylene at concentrations as low as 0.05 microliters ethylene per liter air, promoting a more rapid and extensive formation of aerenchyma than in unstarved roots. We conclude that temporary deprivation of N or P enhances the sensitivity of ethylene-responsive cells of the root cortex, leading to cell lysis and aerenchyma.  相似文献   

8.
Root hydraulic conductivity has been shown to decrease under phosphorus (P) deficiency. This study Investigated how the formation of aerenchyma is related to this change. Root anatomy, as well as root hydraulic conductivity was studied In maize (Zea mays L.) roots under different phosphorus nutrition conditions. Plant roots under P stress showed enhanced degradation of cortical cells and the aerenchyma formation was associated with their reduced root hydraulic conductivity, supporting our hypothesis that air spaces that form in the cortex of phosphorusstressed roots Impede the radial transport of water in a root cylinder. Further evidence came from the variation In aerenchyma formation due to genotypic differences. Five maize inbred lines with different porosity in their root cortex showed a significant negative correlation with their root hydraulic conductivity. Shoot relative water content was also found lower In P-deficient maize plants than that in P-sufficient ones when such treatment was prolonged enough, suggesting a limitation of water transport due to lowered root hydraulic conductivity of P-deficient plants.  相似文献   

9.
Submersion of roots of ten-day-old maize (Zea mays L.) seedlings was accompanied by a decrease in pO2 and an increase in pCO2 of the medium adjacent to roots. These changes stimulated ethylene evolution in intact plants. Enhanced biosynthesis of ethylene was accompanied by xylanase activation in adventitious roots. As a result, an enhanced formation of aerenchyma was observed in the cortex of adventitious roots. Therefore, these processes resulted in the development of a ventilation system by which O2 can reach the root system exposed to hypoxia. The volume of aerenchyma was assessed by the volume of gas cavities (porosity). In contrast to the main root, the growth of adventitious roots was not inhibited under these conditions. Enlargement of the stem base and increase in the number of aerenchymatous adventitious roots facilitated the oxygen supply to submerged organs of plants.  相似文献   

10.
? To adapt to waterlogging in soil, some gramineous plants, such as maize (Zea mays), form lysigenous aerenchyma in the root cortex. Ethylene, which is accumulated during waterlogging, promotes aerenchyma formation. However, the molecular mechanism of aerenchyma formation is not understood. ? The aim of this study was to identify aerenchyma formation-associated genes expressed in maize roots as a basis for understanding the molecular mechanism of aerenchyma formation. Maize plants were grown under waterlogged conditions, with or without pretreatment with an ethylene perception inhibitor 1-methylcyclopropene (1-MCP), or under aerobic conditions. Cortical cells were isolated by laser microdissection and their mRNA levels were examined with a microarray. ? The microarray analysis revealed 575 genes in the cortical cells, whose expression was either up-regulated or down-regulated under waterlogged conditions and whose induction or repression was suppressed by pretreatment with 1-MCP. ? The differentially expressed genes included genes related to the generation or scavenging of reactive oxygen species, Ca(2+) signaling, and cell wall loosening and degradation. The results of this study should lead to a better understanding of the mechanism of root lysigenous aerenchyma formation.  相似文献   

11.
Jackson, M. B., Fenning, T. M., and Jenkins, W. 1985 Aerenchyma(gas-space) formation in adventitious roots of rice (Oryza sativaL.) is not controlled by ethylene or small partial pressuresof oxygen.—J. exp. Bot. 36: 1566–1572. The extent of gas-filled voids (aerenchyma) within the cortexof adventitious roots of vegetative rice plants (Oryza sativaL. cv. RB3) was estimated microscopically from transverse sectionswith the aid of a computer-linked digitizer drawing board. Gas-spacewas detectable in 1-d-old tissue and increased in extent withage. After 7 d, approximately 70% of the cortex had degeneratedto form aerenchyma. The extent of the voids in 1-4-d-old tissuewas not increased by stagnant, poorly-aerated external environmentscharacterized by sub-ambient oxygen partial pressures and accumulationsof carbon dioxide and ethylene. Treatment with small oxygenpartial pressures, or with carbon dioxide or ethylene appliedin vigorously stirred nutrient solution also failed to promotethe formation of cortical gas-space. Furthermore, ethylene productionby rice roots was slowed by small oxygen partial pressures typicalof stagnant conditions. Silver nitrate, an inhibitor of ethylene action, did not retardgas-space formation; similarly when endogenous ethylene productionwas inhibited by the application of aminoethoxyvinylglycine(A VG), aerenchyma development continued unabated. Cobalt chloride,another presumed inhibitor of ethylene biosynthesis, did notimpair formation of the gas in rice roots nor did it decreasethe extent of aerenchyma even if A VG was supplied simultaneously.These results contrast with those obtained earlier using rootsof Zea mays L. We conclude that in rice, aerenchyma forms speedily even inwell-aerated environments as an integral part of ordinary rootdevelopment There seems to be little or no requirement for ethyleneas a stimulus in stagnant root-environments where aerenchymais likely to increase the probability of survival. Key words: Rice (Oryza sativa L.), ethylene, flooding, aeration, aerenchyma, environmental stress  相似文献   

12.
Submersion of roots of ten-day-old maize (Zea maysL.) seedlings was accompanied by a decrease in pO2and an increase in pCO2of the medium adjacent to the roots. These changes stimulated ethylene evolution in intact plants. Enhanced biosynthesis of ethylene was accompanied by xylanase activation in adventitious roots. As a result, an enhanced formation of aerenchyma was observed in the cortex of adventitious roots. Therefore, these processes resulted in the development of a ventilation system by which O2can reach the root system exposed to hypoxia. The volume of aerenchyma was assessed by the volume of gas cavities (porosity). In contrast to the main root, the growth of adventitious roots was not inhibited under these conditions. Enlargement of the stem base and increase in the number of aerenchymatous adventitious roots facilitated the oxygen supply to the submerged organs of the plants.  相似文献   

13.
Morphological and anatomical factors such as aerenchyma formation in roots and the development of adventitious roots are considered to be amongst the most important developmental characteristics affecting flooding tolerance. In this study we investigated the lengths of adventitious roots and their capacity to form aerenchyma in three- and four-week-old seedlings of two maize (Zea mays ssp. mays, Linn.) inbred accessions, B64 and Na4, and one teosinte, Z. nicaraguensis Iltis & Benz (Poaceae), with and without a flooding treatment. Three weeks after sowing and following a seven day flooding treatment, both maize and teosinte seedlings formed aerenchyma in the cortex of the adventitious roots of the first three nodes. The degree of aerenchyma formation in the three genotypes increased with a second week of flooding treatment. In drained soil, the two maize accessions failed to form aerenchyma. In Z. nicaraguensis, aerenchyma developed in roots located at the first two nodes three weeks after sowing. In the fourth week, aerenchyma developed in roots of the third node, with a subsequent increase in aerenchyma in the second node roots. In a second experiment, we investigated the capacity of aerenchyma to develop in drained soil. An additional three teosinte species and 15 maize inbred lines, among them a set of flooding-tolerant maize lines, were evaluated. Evaluations indicate that accessions of Z. luxurians (Durieu & Asch. Bird) and two maize inbreds, B55 and Mo20W, form aerenchyma when not flooded. These materials may be useful genetic resources for the development of flooding-tolerant maize accessions.  相似文献   

14.
Roots of Zea mays L. developed more aerenchyma (cortical gas-filledspace) when partially deficient in oxygen (3 kPa) than whensupplied with air (20·8 kPa oxygen) in association withfaster production of ethylene (ethene). The possibility wastested that the additional ethylene production resulted fromdecreases in spermidine (spd) and spermine (spm) which share,with ethylene, a common precursor, S-adenosylmethionine. However,no decreases in spd and spm were seen in root tissue up to 4d-old. Removing oxygen completely also had little effect onspd and spm, but strongly suppressed both ethylene productionand aerenchyma formation. Partial oxygen shortage (3 kPa) increased the concentrationof putrescine (put), the precursor of spd and spm. This increasewas not a response to the extra ethylene formed by such rootssince ethylene treatment did no reproduce the effect. Applicationof inhibitors of put biosynthesis, difluoromethylarginine anddifluoromethylornithine, led to increased aerenchyma formation.Exogenous put inhibited the development of aerenchyma whilestimulating rather than inhibiting ethylene production, whentested in either air or 3 kPa oxygen. Thus, put appears to limitaerenchyma formation by suppressing ethylene action rather thanits production.Copyright 1993, 1999 Academic Press Ethylene, ethene, roots, aerenchyma, polyamines, oxygen shortage, anaerobiosis, environmental stress, Zea mays  相似文献   

15.
Adventitious roots of two to four-weekold intact plants of Zea mays L. (cv. LG11) were shorter but less dense after extending into stagnant, non-aerated nutrient solution than into solution continuously aerated with air. Dissolved oxygen in the non-aerated solutions decreased from 21 kPa to 3–9 kPa within 24 h. When oxygen partial pressures similar to those found in non-aerated solutions (3, 5 and 12 kPa) were applied for 7 d to root systems growing in vigorously bubbled solutions, the volume of gas-space in the cortex (aerenchyma) was increased several fold. This stimulation of aerenchyma was associated with faster ethylene production by 45-mm-long apical root segments. When ethylene production by roots exposed to 5 kPa oxygen was inhibited by aminoethoxyvinylglycine (AVG) dissolved in the nutrient solution, aerenchyma formation was also retarded. The effect of AVG was reversible by concomitant applications of 1-aminocyclopropane-1-carboxylic acid, an immediate precursor of ethylene. Addition of silver nitrate, an inhibitor of ethylene action, to the nutrient solution also prevented the development of aerenchyma in roots given 5 kPa oxygen. Treating roots with only 1 kPa oxygen stimulated ethylene production but failed to promote gas-space formation. These severely oxygen-deficient roots seemed insensitive to the ethylene produced since a supplement of exogeneous ethylene that promoted aerenchyma development in nutrient solution aerated with air (21 kPa oxygen) failed to do so in nutrient solution supplied with 1 kPa oxygen. Both ethylene production and aerenchyma formation were almost completely halted when roots were exposed to nutrient solutions devoid of oxygen. Thus both processes require oxygen and are stimulated by oxygen-deficient surroundings in the 3-to 12-kPa range of oxygen partial pressures when compared with rates observed in air (21 kPa oxygen).Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine  相似文献   

16.

Background and aims

The teosinte Zea nicaraguensis, which is adapted to frequently flooded lowlands, is considered a valuable germplasm resource for the development of flooding-tolerant maize. This species can form constitutive root aerenchyma under well-drained conditions. The objectives of this study were to screen Z. nicaraguensis accessions for the capacity to form constitutive aerenchyma, to obtain progeny with differing degrees of aerenchyma formation, and to compare the flooding tolerance of these progeny.

Methods

We evaluated constitutive aerenchyma formation in the root cortex of seedlings of eight accessions and several segregating populations of Z. nicaraguensis. We also evaluated flooding tolerance in lines selected for high or low degrees of constitutive aerenchyma formation.

Results

Seedlings of the eight accessions showed an extremely wide and continuous range of variation in aerenchyma formation. By phenotypic selection within two accessions, we obtained lines with either high or low degrees of constitutive aerenchyma formation. The lines selected for a higher degree of formation showed relatively high flooding tolerance evaluated by shoot dry weight ratio (flooded:control) than those with a lower degree of formation.

Conclusions

A greater capacity to form constitutive aerenchyma can enhance flooding tolerance.  相似文献   

17.
Detailed morphometric analysis of cell shapes and an immunofluorescent study of microtubules were carried out on primary roots of Zea mays L. Two types of cells were found to be formed within the postmitotic isodiametric growth (PIG) region of the root cortex that were differentially responsive to low level of exogenous ethylene. The innermost and central cell rows of the cortex were sensitive to ethylene treatment and showed a disturbed distribution of cortical microtubules (CMTs) as well as changed polarity of cell growth, whereas the 2–3 outermost cell rows were less sensitive in this respect. This suggests that post-mitotic cells of the inner cortex are specific targets for ethylene action. These properties of the inner cortex are compatible with its cells being involved in the formation of aerenchyma; they may also favour root growth in compacted soil. By contrast, the specific properties of the outer cortex indicate that this tissue domain is necessary for the gaseous impermeability and the mechanical strengthening of subjacent aerenchymatous cortex, especially in the mature region of the root. Ethylene affected neither the pattern of cortical cell expansion in the meristem nor the position of the PIG region with respect to the root tip. This contrasts with gibberellin-deficiency which affected these parameters in both parts of the cortex. These observations indicate a fundamental difference between the role of these two phytohormones in the morphogenesis and development of maize roots.  相似文献   

18.
The relationship between ethylene production, 1-aminocyclopropane-l-carboxylic acid (ACC) concentration and aerenchyma formation (ethylene-promoted cavitation of the cortex) was studied using nodal roots of maize (Zea mays L. cv. LG11) subjected to various O2 treatments. Ethylene evolution was 7–8 fold faster in roots grown at 3 kPa O2 than in those from aerated solution (21 kPa O2), and transferring roots from aerated solution to 3 kPa O2 enhanced ethylene synthesis within less than 2 h. Ethylene production and ACC accumulation were closely correlated in different zones of hypoxic roots, regardless of whether O2 was furnished to the roots through aerenchyma or external solution. Both ethylene production and ACC concentrations (fresh weight basis) were more than 10-fold greater in the distal 0–10 mm than in the fully expanded zone of roots at 3 kPa O2. Aerenchyma formation occurred in the apical 20 mm of these roots. Roots transferred from air to anoxia accumulated less than 0. 1 nmol ACC (mg protein)-1 for the first 1.75 h; no ethylene was produced in this time. The subsequent rise in ACC levels shows that ACC can reach high concentrations even in the absence of O2, presumably due to a de-repression of ACC synthase. The hypothesis was therefore tested that anoxia in the apical region of the root caused enhanced synthesis of ACC, which was transported to more mature regions (10–20 mm behind the apex), where ethylene could be produced and aerenchyma formation stimulated. Surprisingly, exposure of intact root tips to anoxia inhibited aerenchyma formation in the mature root axis. High osmotic pressures around the growing region or excision of apices had the same effect, demonstrating that a growing apex is required for high rates of aerenchyma formation in the adjacent tissue.  相似文献   

19.
淹水对玉米不定根形态结构和ATP酶活性的影响   总被引:26,自引:2,他引:26       下载免费PDF全文
淹水2天后,玉米苗基节内即有不定根原基一进于正常植株。淹水16天后,从基节部长出的不定根数多于正常植株,但淹水导致根系生长和干物质积累大幅度下降。淹水幼苗不定根伸长区内有发达的通气组织形成,使根内部组织孔隙度大幅提高。电镜细胞化学研究表明,经15天淹一,不定根根尖细胞内ATP酶的分布与正常功苗基本相同,酶活性尽管有一定的下降,但仍保持较高水平。根据实验结果,本文重点讨论了不定根的发生及其内部通气组  相似文献   

20.
Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging‐tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号